1
|
Wang H, Wang J, Zhang H, Wang X, Rao X. Quercetin encapsulation and release using rapid CO 2-responsive rosin-based surfactants in Pickering emulsions. Food Chem 2024; 458:140528. [PMID: 39047322 DOI: 10.1016/j.foodchem.2024.140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Emulsion-based delivery systems are extensively employed for encapsulating functional active ingredients, protecting them from degradation, and enhancing bioavailability and release efficiency. Here, a CO2-responsive surfactant synthesized from rosin displays rapid responsiveness to CO2 at room temperature, transitioning reversibly switches between active and inactive states multiple times. The dual tertiary amines on the rosin rigid structure contributes to its CO2 sensitivity. When in its active cationic form, in conjunction with silica nanoparticles, it exhibits desired Pickering emulsification performance across various oil phases. In the Pickering emulsion loaded with quercetin, the encapsulation efficiency and loading efficiency reached 80.50% and 0.69%, respectively, with stability lasting at least 30 days. The system provides robust protection for quercetin against external factors, such as UV and heat, revealing sustained release effects. This study investigated the potential of using rosin-based CO2-responsive surfactants alongside nanoparticles to design stable Pickering emulsion systems for active substance encapsulation and sustained release.
Collapse
Affiliation(s)
- Hanwen Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Jiawei Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Hangyuan Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Xinyang Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China.
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China.
| |
Collapse
|
2
|
Shi J, Jiang J. CO 2/N 2 Triggered Aqueous Recyclable Surfactants for Biphasic Catalytic Reactions in the Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20416-20427. [PMID: 39292966 DOI: 10.1021/acs.langmuir.4c01784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The utilization of Pickering emulsions in interfacial catalysis offers a promising environmental platform for biphasic reactions. However, complicated surface coating or chemical grafting methods are always required to prepare the surface-active catalysts for the Pickering emulsions, since most of them are commercially unavailable. Here, we report CO2-switchable Pickering emulsions for biphasic reactions, in which Pd@Al2O3 nanoparticles are in situ modified by a CO2/N2 responsive surfactant. Compared with the chemical grafted methods, the in situ formed Pickering interfacial catalysts avoid complex chemical modification. Furthermore, efficient demulsification and separation of the oil phase and the products without surfactant contaminations can be achieved by CO2 trigger. The Pickering interfacial catalysis system can also be reformed after the aqueous phase containing the catalyst nanoparticles, and the surfactant is recycled and reused. The strategy is universal for nitrobenzene reductions and alcohol oxidations, providing a convenient and green method for the preparation of Pickering catalysts with commercially available nanoparticles, efficient emulsion separation, and recovery of the catalyst nanoparticles and emulsifiers in various two-phase organic reactions.
Collapse
Affiliation(s)
- Jin Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
3
|
Chen T, Sun Z, Guo Y, Xu Y. Does the active hydrogen atom in the hydantoin anion affect the physical properties, CO 2 capture and conversion of ionic liquids? Phys Chem Chem Phys 2024; 26:12957-12964. [PMID: 38632968 DOI: 10.1039/d3cp05965k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Compared to the effect of the active hydrogen atom in the cation in protic ionic liquids (ILs) on their properties and applications, there are very few reports on the role of the active hydrogen atom in the anion. In order to better understand the role of the active hydrogen atom in the anion, the physical properties, CO2 capture and conversion of three hydantoin-based anion-functionalized ILs ([P4442][Hy], [P4442]2[Hy], and [HDBU][Hy]) have been investigated via experiments, spectroscopy, and DFT calculations in this work. The results show that the active hydrogen atom in the anion can form anionic hydrogen bonding networks, which significantly increase the melting point and viscosity and decrease the basicity of the IL, thereby weakening its ability to capture and convert CO2. Interestingly, [P4442][Hy] undergoes a solid/liquid two-phase transition during CO2 absorption/desorption due to the formation of quasi-intramolecular hydrogen bonding between the active hydrogen atom and the O- atom of the absorbed CO2, suggesting that the presence of the active hydrogen atom gives [P4442][Hy] the potential to be an excellent molecular switch. As there is no active hydrogen atom in the anion of [P4442]2[Hy], it shows excellent CO2 capture and conversion performance through the double-site interaction. [HDBU][Hy] shows the weakest catalytic CO2 conversion due to the presence of active hydrogen atoms on both its anion and cation. Therefore, the active hydrogen atom in the anion may play a more important role in the properties and potential applications of ILs than the active hydrogen atom in the cation.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Chemistry, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province, 312000, China.
| | - Zhongyuan Sun
- Department of Chemistry, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province, 312000, China.
| | - Yujun Guo
- Department of Chemistry, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province, 312000, China.
| | - Yingjie Xu
- Department of Chemistry, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province, 312000, China.
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, 508 Huancheng West Road, Shaoxing, Zhejiang Province, 312000, China
| |
Collapse
|
4
|
Zhao W, Cheng Y, Pu J, Su L, Wang N, Cao Y, Liu L. Research Progress in Structure Synthesis, Properties, and Applications of Small-Molecule Silicone Surfactants. Top Curr Chem (Cham) 2024; 382:11. [PMID: 38589726 DOI: 10.1007/s41061-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Silicone surfactants have garnered significant research attention owing to their superior properties, such as wettability, ductility, and permeability. Small-molecular silicone surfactants with simple molecular structures outperform polymeric silicone surfactants in terms of surface activity, emulsification, wetting, foaming, and other areas. Moreover, silicone surfactants with small molecules exhibit a diverse and rich molecular structure. This review discusses various synthetic routes for the synthesis of different classes of surfactants, including single-chain, "umbrella" structure, double chain, bolaform, Gemini, and stimulus-responsive surfactants. The fundamental surface/interface properties of the synthesized surfactants are also highlighted. Additionally, these surfactants have demonstrated enormous potential in agricultural synergism, drug delivery, mineral flotation, enhanced oil recovery, separation, and extraction, and foam fire-fighting.
Collapse
Affiliation(s)
- Wenhui Zhao
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yuqiao Cheng
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.
| | - Jiaqi Pu
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Leigang Su
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Nan Wang
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yinhao Cao
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Lijun Liu
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| |
Collapse
|
5
|
Liu L, Zhang M, Lu Y, Chen G, Lu B, Ge L, Lu Z, Sun D, Xu Z. Microstructure-dependent CO 2-responsive microemulsions for deep-cleaning of oil-contaminated soils. CHEMOSPHERE 2024; 350:140928. [PMID: 38092174 DOI: 10.1016/j.chemosphere.2023.140928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
CO2-responsive microemulsion (ME) is considered a promising candidate for deep-cleaning and oil recovery from oil-contaminated soils. Understanding the responsive nature of different microstructures (i.e., oil-in-water (O/W), bicontinuous (B.C.) and water-in-oil (W/O)) is essential for unlocking the potential and mechanisms of CO2-responsive emulsions in complex multiphase systems and providing comprehensive guidance for remediation of oil-contaminated soils. Herein, the responsiveness of microstructures of ME to CO2 trigger was investigated using experimental designs and coarse-grained molecular dynamic simulations. MEs were formed for the first time by a weakly associated pseudo-Gemini surfactant of indigenous organic acids (naphthenic acids, NAs are a class of natural surface-active molecules in crude oil) and tetraethylenepentamine (TEPA) through fine tuning of co-solvent of dodecyl benzene sulfonic acid (DBSA) and butanol. The O/W ME exhibited an optimal CO2-responsive character due to easier proton migration in the continuous aqueous phase and more pronounced dependence of configuration on deprotonated NA ions. Conversely, the ME with W/O microstructure exhibited a weak to none responsive characteristic, most likely attributed to its high viscosity and strong oil-NA interactions. The O/W ME also showed superior cleaning efficiency and oil recovery from oil-contaminated soils. The results from this study provide insights for the design of CO2-responsive MEs with desired performance and guidance for choosing the favorable operating conditions in various industrial applications, such as oily solid waste treatment, enhanced oil recovery (EOR), and pipeline transportation. The insights from this work allow more efficient and tailored design of switchable MEs for manufacturing advanced responsive materials in various industrial sectors and formulation of household products.
Collapse
Affiliation(s)
- Lingfei Liu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingshan Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Gaojian Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Binda Lu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Zhouguang Lu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, Shandong, 250100, China
| | - Zhenghe Xu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Zhang Z, Peng B, Zhang Y, Xiong J, Li J, Liu J. Switchable Pickering Emulsions Stabilized via Synergistic Nanoparticles-Superamphiphiles Effects and Rapid Response to CO 2/N 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1604-1612. [PMID: 38183283 DOI: 10.1021/acs.langmuir.3c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
A CO2/N2-responsive emulsion provides milder reaction conditions, nontoxicity, and economic feasibility compared to other switchable surfactants. In this study, CO2/N2-responsive pickering emulsions were fabricated by using a compounded dispersion containing SiO2 nanoparticles (NPs) and superamphiphiles as the emulsifying agents. The synergistic effects of the SiO2 NPs and superamphiphiles significantly stabilized the emulsion at all of the tested concentrations and prevented complete phase separation of oil and water. The electrostatic interaction between the SiO2 NPs and superamphiphiles was disrupted after bubbling with CO2 for 30 s, resulting in the breaking of the emulsion. However, the dispersion recovered its interfacial activity after the introduction of N2 and again emulsified the emulsion. This reversible switching behavior was validated through three consecutive cycles of bubbling CO2/N2. The protonation and deprotonation of the SiO2 NPs and superamphiphiles in response to CO2/N2 facilitated reversible assembly and disassembly, which enabled the switching of the emulsions between inactive and active forms. The novel highly stable Pickering emulsions demonstrated rapid demulsification and emulsification in response to CO2/N2 and are promising for a wide range of applications.
Collapse
Affiliation(s)
- Zhenghao Zhang
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Bo Peng
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yupeng Zhang
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiaxin Xiong
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jingwei Li
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jianwei Liu
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
7
|
Cunningham MF, Jessop PG. CO 2-Switchable colloids. Chem Commun (Camb) 2023; 59:13272-13288. [PMID: 37872815 DOI: 10.1039/d3cc03929c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The development and design of CO2-switchable colloidal particles is described. A presentation of the principles of CO2 switching, especially as they apply to colloids, is followed by recent progress in the preparation of several types of colloidal particles (polymer nanoparticles, metal-organic frameworks (MOFs), quantum dots, graphene, cellulose nanocrystals, carbon nanotubes) for various applications (Pickering stabilizers, catalysts, latexes), and our perspective on future opportunities.
Collapse
Affiliation(s)
- Michael F Cunningham
- Queen's University, Department of Chemical Engineering, 19 Division Street, Kingston, ON, Canada.
| | - Philip G Jessop
- Queen's University, Department of Chemistry, 90 Bader Lane, Kingston, ON, Canada
| |
Collapse
|
8
|
Li Z, Tang X, Mou Z, Wang X, Lv S, Fan X, Dong T, Li Z. Surfactants Accelerate Isotope Exchange-Based 18F-Fluorination in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37329319 DOI: 10.1021/acs.langmuir.3c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Radiochemical yields (RCYs) of isotope exchange-based 18F-fluorination of non-carbon-centered substrates in water are rationally enhanced by adding surfactants, which increases both the rate constant k and local reactant concentrations. Among 12 surfactants, the cationic surfactant cetrimonium bromide (CTAB) and two nonionic surfactants (Tween 20 and Tween 80) were selected for their superior catalytic effects, namely, electrostatic effects or solubilization effects. For a model substrate, bis(4-methoxyphenyl)phosphinic fluoride, the 18F-fluorination rate constant (k) increased up to 7-fold, while its saturation concentration rose up to 15-fold due to micelle formation, encapsulating 70-94% of the substrate. With 30.0 mmol/L CTAB, the required 18F-labeling temperature of a typical organofluorosilicon prosthesis ([18F]SiFA) decreased from 95 °C to room temperature, achieving an RCY of 22%. For an E[c(RGDyK)]2-derived peptide tracer with an organofluorophosphine prosthesis, the RCY in water at 90 °C achieved 25%, correspondingly increasing the molar activity (Am). After high-performance liquid chromatography (HPLC) or solid-phase purification, the residual selected surfactant concentrations in the tracer injections were well below the FDA DII (Inactive Ingredient Database) limits or the LD50 in mice.
Collapse
Affiliation(s)
- Zhongjing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Xiaoqun Tang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhaobiao Mou
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoxiao Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Shengji Lv
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Fan
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Taotao Dong
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Zijing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|