1
|
Yi Y, Liu R, Shang Z, Wang K, Zhang C, Wang Z, Lou Y, Liu J, Li P. Peppermint Essential Oil For Controlling Aspergillus flavus and Analysis of its Antifungal Action Mode. Curr Microbiol 2025; 82:140. [PMID: 39964459 DOI: 10.1007/s00284-025-04116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/02/2025] [Indexed: 03/20/2025]
Abstract
Aspergillus flavus contamination has long been a major problem in the food and agriculture industries, while peppermint essential oil (PEO) is increasingly recognized as an effective alternative for controlling fungal spoilage. However, its biocontrol effect and action mode on A. flavus have rarely been reported. Here, the inhibition rates of PEO on A. flavus were determined by the plate fumigation and mycelial dry weight method. The minimum inhibitory concentration (MIC) was identified as 0.343 μL/mL. In the biocontrol tests, the moldy rates of maize kernels, wheat grains, and peanut kernels in the PEO treatment group were significantly reduced by 65%, 72%, and 63.33%, respectively. The biocontrol efficacy of PEO on maize kernels, wheat grains, and peanut kernels reached 80.67%, 82%, and 67.67%, respectively. Furthermore, antifungal action mode analysis showed that PEO changed the mycelial morphology, damaged the integrity of cell wall and membrane. Moreover, it reduced the ergosterol content, elevated the malondialdehyde content, increased the relative conductivity, and led to the intracellular leakage of nucleic acids and proteins, thereby enhancing the cell membrane permeability. In addition, PEO decreased the antioxidant-related catalase (CAT) and superoxide dismutase (SOD) activities, significantly increased the hydrogen peroxide (H2O2) content, and induced the accumulation of reactive oxygen species (ROS) in the mycelia. In conclusion, this study confirms that PEO, as an effective natural antimicrobial agent, has good application prospects in controlling the spoilage of A. flavus during grain storage and preventing food mold.
Collapse
Affiliation(s)
- Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
- Institute for Complexity Science, Henan University of Technology, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Luohe, 462300, China.
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China.
| | - Rumeng Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Food Laboratory of Zhongyuan, Luohe, 462300, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Zijun Shang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Kai Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Changfu Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Zihao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Yu Lou
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Jiaoyang Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Peng Li
- Institute for Complexity Science, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Song Z, Li P, Wu M, Guo S, Wu T, Hou Y, Yi D. Multi-Effects of Natural Plant Bioactive Components on Intestinal Health in Pigs: Promising Feed-Antibiotic Alternatives? J Nutr 2025:S0022-3166(25)00090-2. [PMID: 39954741 DOI: 10.1016/j.tjnut.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
The poor intestinal health induced by management, stress, or infection remains a substantial challenge restricting the rapid development of the pig industry. Some natural plant bioactive components (NPBCs) have garnered considerable interest owing to their multifarious benefits, including enhancing intestinal morphology, digestion and absorption, barrier function, immune function, and regulating the gut microbiota. However, there are critical factors, such as the lack of standardized production technologies, lower stability and bioavailability, and unclear mechanisms of NPBCs, severely limiting their feeding efficacy and their application in animal production. Here, we conducted a comprehensive review of the recent advances regarding the impacts of NPBCs on pig gut health. Additionally, we highlighted the key areas that warrant further in-depth investigation. Taken together, NPBCs could be green, safe, and effective feed additives by constructively overcoming their limitations, and they are expected to have broader applications in animal husbandry.
Collapse
Affiliation(s)
- Zhuan Song
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Mengjun Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Morsy HM, Zaky MY, Yassin NYS, Khalifa AYZ. Nanoparticle-based flavonoid therapeutics: Pioneering biomedical applications in antioxidants, cancer treatment, cardiovascular health, neuroprotection, and cosmeceuticals. Int J Pharm 2025; 670:125135. [PMID: 39732216 DOI: 10.1016/j.ijpharm.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Flavonoids, a type of natural polyphenolic molecule, have garnered significant research interest due to their ubiquitous nature and diverse biological activities, including antioxidant, anti-inflammatory, and anticancer effects, making them appealing to various scientific disciplines. In this regard, the use of a flavonoid nanoparticle delivery system is to overcome low bioavailability, bioactivity, poor aqueous solubility, systemic absorption, and intensive metabolism. Therefore, this review summarizes the classification of nanoparticles (liposomes, polymeric, and solid lipid nanoparticles) and the advantages of using nanoparticle-flavonoid formulations to boost flavonoid bioavailability. Moreover, this review illustrated the pioneering biomedical applications of nanoparticle-based flavonoid therapeutics, as well as safety and toxicity considerations of using a flavonoid nanoparticle delivery system.
Collapse
Affiliation(s)
- Hadeer M Morsy
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt.
| | - Nour Y S Yassin
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt
| | - Ashraf Y Z Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia.
| |
Collapse
|
4
|
Banerjee U, Misra S, Mitra SK. A versatile multilayer liquid-liquid encapsulation technique. J Colloid Interface Sci 2025; 679:1266-1276. [PMID: 39427581 DOI: 10.1016/j.jcis.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
HYPOTHESIS Generating multi-layer cargo using conventional methods is challenging. We hypothesize that incorporating a Y-junction compound droplet generator to encase a target core inside a second liquid can circumvent the kinetic energy dependence of the impact-driven liquid-liquid encapsulation technique, enabling minimally restrictive multi-layer encapsulation. EXPERIMENTS Stable wrapping is obtained by impinging a compound droplet (generated using Y-junction) on an interfacial layer of another shell-forming liquid floating on a host liquid bath, leading to double-layered encapsulation. The underlying dynamics of the liquid-liquid interfaces are captured using high-speed imaging. To demonstrate the versatility of the technique, we used various liquids as interfacial layers, including magnetoresponsive oil-based ferrofluids. Moreover, we extended the technique to triple-layered encapsulation by overlaying a second interfacial layer atop the first floating interfacial layer. FINDINGS The encapsulating layer(s) effectively protects the water-soluble inner core (ethylene glycol) inside the water bath. A non-dimensional experimental regime is established for successful encapsulation in terms of the impact kinetic energy, interfacial layer thickness, and the viscosity ratio of the interfacial layer and the outer core liquid. Using selective fluorescent tagging, we confirm the presence of individual shell layers wrapped around the core, which presents a promising pathway to visualize the internal morphology of final encapsulated droplets.
Collapse
Affiliation(s)
- Utsab Banerjee
- Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Sirshendu Misra
- Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K Mitra
- Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
5
|
Hedayati S, Tarahi M, Madani A, Mazloomi SM, Hashempur MH. Towards a Greener Future: Sustainable Innovations in the Extraction of Lavender ( Lavandula spp.) Essential Oil. Foods 2025; 14:100. [PMID: 39796388 PMCID: PMC11720256 DOI: 10.3390/foods14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Lavender is one of the most appreciated aromatic plants, with high economic value in food, cosmetics, perfumery, and pharmaceutical industries. Lavender essential oil (LEO) is known to have demonstrative antimicrobial, antioxidant, therapeutic, flavor and fragrance properties. Conventional extraction methods, e.g., steam distillation (SD) and hydro-distillation (HD), have been traditionally employed to extract LEO. However, the low yield, high energy consumption, and long extraction time of conventional methods have prompted the introduction of novel extraction technologies. Some of these innovative approaches, such as ohmic-assisted, microwave-assisted, supercritical fluid, and subcritical water extraction approaches, are used as substitutes to conventional extraction methods. While other methods, e.g., sonication, pulsed electric field, and cold plasma, can be used as a pre-treatment that is preceded by conventional or emerging extraction technologies. These innovative approaches have a great significance in reducing the energy consumption, shortening the extraction time, and increasing the extraction yield and the quality of EOs. Therefore, they can be considered as sustainable extraction technologies. However, the scale-up of emerging technologies to an industrial level should also be investigated from the techno-economic points of view in future studies.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | - Arghavan Madani
- Department of Food Hygiene Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran; (A.M.); (S.M.M.)
| | - Seyed Mohammad Mazloomi
- Department of Food Hygiene Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran; (A.M.); (S.M.M.)
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| |
Collapse
|
6
|
Vafadar A, Tajbakhsh A, Hosseinpour-Soleimani F, Savardshtaki A, Hashempur MH. Phytochemical-mediated efferocytosis and autophagy in inflammation control. Cell Death Discov 2024; 10:493. [PMID: 39695119 DOI: 10.1038/s41420-024-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Efferocytosis, the clearance of apoptotic cells, is a critical process that maintains tissue homeostasis and immune regulation. Defective efferocytosis is linked to the development of chronic inflammatory conditions, including atherosclerosis, neurological disorders, and autoimmune diseases. Moreover, the interplay between autophagy and efferocytosis is crucial for inflammation control, as autophagy enhances the ability of phagocytic cells. Efficient efferocytosis, in turn, regulates autophagic pathways, fostering a balanced cellular environment. Dysregulation of this balance can contribute to the pathogenesis of various disorders. Phytochemicals, bioactive compounds found in plants, have emerged as promising therapeutic agents owing to their diverse pharmacological properties, including antioxidant, anti-inflammatory, and immunomodulatory effects. This review aims to highlight the pivotal role of phytochemicals in enhancing efferocytosis and autophagy and explore their potential in the prevention and treatment of related disorders. This study examines how phytochemicals influence key aspects of efferocytosis, including phagocytic cell activation, macrophage polarization, and autophagy induction. The therapeutic potential of phytochemicals in atherosclerosis and neurological diseases is highlighted, emphasizing their ability to enhance efferocytosis and autophagy and reduce inflammation. This review also discusses innovative approaches, such as nanoformulations and combination therapies to improve the targeting and bioavailability of phytochemicals. Ultimately, this study inspires further research and clinical applications in phytochemical-mediated efferocytosis enhancement for managing chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardshtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Pan Y, Zhang L, Fu B, Zhuo J, Zhao P, Xi J, Yang D, Yao L, Wang J. Integrated self-assembly and cross-linking technology engineered photodynamic antimicrobial film for efficient preservation of perishable foods. Food Chem 2024; 460:140543. [PMID: 39053268 DOI: 10.1016/j.foodchem.2024.140543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
A new antibacterial film was constructed to combat the severe spoilage of fruits and vegetables caused by microorganisms. Specifically, photoresponsive cinnamaldehyde-tannic‑iron acetate nanospheres (CTF NPs) were prepared using ultrasonic-triggered irreversible equilibrium self-assembly and ionic cross-linking co-driven processes and were integrated into the matrix of κ-carrageenan (KC) (CTF-KC films) as functional fillers. The CTF0.4-KC film (KC film doped with 0.4 mg/mL CTF NPs) showed a 99.99% bactericidal rate against both E. coli and S. aureus, extended the storage period of cherry tomatoes from 20 to 32 days. The introduction of CTF enhanced the barrier, thermal stability, and mechanical strength properties, albeit with a slight compromise on transparency. Furthermore, the biosafety of the CTF0.4-KC film was confirmed through hemolysis and cytotoxicity tests. Together, the aforementioned results demonstrated the outstanding antibacterial and fresh-keeping properties of CTF0.4-KC. These desirable properties highlight the potential use of CTF0.4-KC films in food preservation applications.
Collapse
Affiliation(s)
- Yifan Pan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bangfeng Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiafeng Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Di Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lenan Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
8
|
Liu Y, Wang D, Lai Y, Zou J, Yang P, Wu Z, He W. Deep Eutectic Solvents for Essential-Oil Delivery and Bacterial-Infected Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23766-23779. [PMID: 39480745 DOI: 10.1021/acs.langmuir.4c02736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Essential oils (EOs) are volatile secondary metabolites of natural plants with multitudinous pharmacological activities. However, limited by their properties, such as low solubility, high volatility, photothermal instability, irritation, release, etc., EOs encounter significant challenges in pharmaceutical applications. Deep eutectic solvents (DESs) have been developed for the transdermal delivery of biomolecules and lipid-soluble drugs. Herein, a series of DES carriers were synthesized to improve the undesirable properties of EOs. We first optimized the DESs according to solubilization and aqueous dispersity using Chimonanthus nitens Oliv. EO (COEO) as a model EO. Then, the EO-DES formulations were diluted to prepare optimal aqueous EO-DES nanoformulations (AqEDs). Mechanically, hydrogen bonding allowed the DES to dissolve the complex components in EOs; meanwhile, the interaction forces, such as π-π stacking and hydrogen bonding, drove the EO-DES to assemble into nanostructures in aqueous conditions, forming AqEDs. Lastly, a case study demonstrated that clove EO-AqEDscould effectively promote methicillin-resistant Staphylococcus aureus-infected wound healing in vivo, along with biocompatibility. This AqED strategy provides a generalized platform for solubilizing EOs and improving their transdermal/topical delivery.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Di Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Jiahui Zou
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
9
|
Pam P, Goudarzi MA, Ghotboddin Mohammadi S, Asbaghi O, Aghakhani L, Clark CCT, Hashempur MH, Haghighat N. The effects of kiwifruit consumption on anthropometric and cardiometabolic indices in adults: A systematic review and meta-analysis. Food Sci Nutr 2024; 12:7017-7032. [PMID: 39479621 PMCID: PMC11521643 DOI: 10.1002/fsn3.4385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 11/02/2024] Open
Abstract
The current systematic review and meta-analysis was conducted to evaluate the effects of kiwifruit intake on anthropometric indices and key cardiometabolic parameters. Related articles were found by searching PubMed, ISI Web of Science, and Scopus to detect relevant Randomized Clinical Trials (RCTs) and novel systematic reviews relating to kiwi consumption in adults, up to August 2023. The weighted mean difference (WMD) and 95% confidence intervals (CIs) were calculated using a random-effects model. Heterogeneity, sensitivity analysis, and publication bias were assessed and reported using standard methods. Six RCTs were included in the meta-analysis. Analyzing overall effect sizes demonstrated a significant reduction in low-density lipoprotein cholesterol (LDL) levels (WMD: -9.30 mg/dL; 95% CI: -17.56 to -1.04, p = .027), whereas no significant alterations of triglycerides (TG) (WMD: -12.91 mg/dL; 95% CI: -28.17 to 2.34, p = .097), total cholesterol (TC) (WMD: -7.66 mg/dL; 95% CI: -17.85 to 2.52, p = .141), high-density lipoprotein cholesterol (HDL) (WMD: 2.87 mg/dL; 95% CI: -0.36 to 6.11, p = .141), fasting blood glucose (FBG) (WMD: 1.06 mg/dL; 95% CI: -1.43 to 3.56, p = .404), C-reactive protein (CRP) (WMD: 0.15 mg/dL; 95% CI: -0.40, 0.70, p = .0598), body weight (BW) (WMD: 0.85 kg; 95% CI: -1.34 to 3.04, p = .448), body mass index (BMI) (WMD: 0.04 kg/m2; 95% CI: -0.75 to 0.83, p = .920), and waist circumference (WC) (WMD: 0.18 cm; 95% CI: -1.81 to 2.19, p = .855) were found. Our findings suggest that consuming kiwifruit does not have a significant impact on anthropometric indices and cardiometabolic factors, except for LDL-C levels.
Collapse
Affiliation(s)
- Pedram Pam
- Student Research Committee, Department of Clinical NutritionTabriz University of Medical SciencesTabrizIran
- Department of Clinical NutritionTabriz University of Medical SciencesTabrizIran
| | | | - Shirin Ghotboddin Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Omid Asbaghi
- Cancer Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | - Ladan Aghakhani
- Laparoscopy Research CenterShiraz University of Medical SciencesShirazIran
| | | | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Neda Haghighat
- Laparoscopy Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
10
|
Castro D, Podshivalov A, Ponomareva A, Zhilenkov A. Study of the Reinforcing Effect and Antibacterial Activity of Edible Films Based on a Mixture of Chitosan/Cassava Starch Filled with Bentonite Particles with Intercalated Ginger Essential Oil. Polymers (Basel) 2024; 16:2531. [PMID: 39274163 PMCID: PMC11397879 DOI: 10.3390/polym16172531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Edible films based on biopolymers are used to protect food from adverse environmental factors. However, their ample use may be hindered by some challenges to their mechanical and antimicrobial properties. Despite this, in most cases, increasing their mechanical properties and antibacterial activity remains a relevant challenge. To solve this problem, a possible option is to fill the biopolymer matrix of films with a functional filler that combines high reinforcing and antibacterial properties. In this work, biocomposite films based on a mixture of chitosan and cassava starch were filled with a hybrid filler in the form of bentonite clay particles loaded with ginger essential oil (GEO) in their structure with varied concentrations. For this purpose, GEO components were intercalated into bentonite clay interlayer space using a mechanical capture approach without using surface-active and toxic agents. The structure and loading efficiency of the essential oil in the obtained hybrid filler were analyzed by lyophilization and laser analysis of dispersions, ATR-FTIR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The filled biocomposite films were analyzed using ATR-FTIR spectroscopy, optical and scanning electron spectroscopy, energy dispersive spectroscopy, mechanical analysis under tension, and the disk diffusion method for antibacterial activity. The results demonstrated that the tensile strength, Young's modulus, elongation at the break, and the antibacterial effect of the films increased by 40%, 19%, 44%, and 23%, respectively, compared to unfilled film when the filler concentration was 0.5-1 wt.%.
Collapse
Affiliation(s)
- David Castro
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Aleksandr Podshivalov
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Alina Ponomareva
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Anton Zhilenkov
- Institute of Robotics and Intelligent Systems, Saint-Petersburg State Marine Technical University, Lotsmanskaya Str., 3, 190121 Saint-Petersburg, Russia
| |
Collapse
|
11
|
Hedayati S, Tarahi M, Iraji A, Hashempur MH. Recent developments in the encapsulation of lavender essential oil. Adv Colloid Interface Sci 2024; 331:103229. [PMID: 38878587 DOI: 10.1016/j.cis.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 07/31/2024]
Abstract
The unregulated and extensive application of synthetic compounds, such as preservatives, pesticides, and drugs, poses serious concerns to the environment, food security, and global health. Essential oils (EOs) are valid alternatives to these synthetic chemicals due to their therapeutic, antioxidant, and antimicrobial activities. Lavender essential oil (LEO) can be potentially applied in food, cosmetic, textile, agricultural, and pharmaceutical industries. However, its bioactivity can be compromised by its poor stability and solubility, which severely restrict its industrial applications. Encapsulation techniques can improve the functionality of LEO and preserve its bioactivity during storage. This review reports recent advances in the encapsulation of LEO by different methods, such as liposomes, emulsification, spray drying, complex coacervation, inclusion complexation, and electrospinning. It also outlines the effects of different processing conditions and carriers on the stability, physicochemical properties, and release behavior of encapsulated LEO. Moreover, this review focuses on the applications of encapsulated LEO in different food and non-food products.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Hu X, Huang Y, Tang X, Zhang K, Yang F. Interactions between rice starch and flavor components and their impact on flavor. Int J Biol Macromol 2024; 275:133397. [PMID: 38960261 DOI: 10.1016/j.ijbiomac.2024.133397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Flavor is considered one of the most significant factors affecting food quality. However, it is often susceptible to environmental factors, so encapsulation is highly necessary to facilitate proper handling and processing. In this study, the structural changes in starch encapsulation and their effects on flavor retention were investigated using indica starch (RS) as a matrix to encapsulate three flavoring compounds, namely nonanoic acid, 1-octanol, and 2-pentylfuran. The rheological and textural results suggested that the inclusion of flavor compounds improved the intermolecular interactions between starch molecules, resulting in a significant increase in the physicochemical properties of starch gels in the order: nonanoic acid > 1-octanol > 2-pentylfuran. The XRD results confirmed the successful preparation of v-starch. Additionally, the inclusion complexes (ICs) were characterized using FT-IR, SEM, and DSC techniques. The results showed that v-starch formed complexes with Flavor molecules. The higher enthalpy of the complexes suggested that the addition of alcohols and acids could improve the intermolecular complexation between starch molecules. The retention rates of three flavor compounds in starch were determined using HS-GC, with the values of 51.7 %, 32.37 %, and 35.62 %. Overall, this study provides insights into novel approaches to enhance the quality and flavor retention, improve the storability and stability, reduce losses during processing and storage, and extend the shelf life of starchy products.
Collapse
Affiliation(s)
- XinYue Hu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Liuzhou Luosifen Engineering Technology Research Center, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Vocational & Technical College, Nanning, 530026, China.
| | - Xiangyi Tang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545000, China; Liuzhou Liangmianzhen Co., Ltd., Liuzhou 545000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510460, China.
| | - Kunming Zhang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Liuzhou Luosifen Engineering Technology Research Center, Guangxi University of Science and Technology, Liuzhou 545000, China.
| | - Feng Yang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545000, China.
| |
Collapse
|
13
|
Ni X, Bai H, Han J, Zhou Y, Bai Z, Luo S, Xu J, Jin C, Li Z. Inhibitory activities of essential oils from Syzygium aromaticum inhibition of Echinochloa crus-galli. PLoS One 2024; 19:e0304863. [PMID: 38905259 PMCID: PMC11192376 DOI: 10.1371/journal.pone.0304863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/23/2024] Open
Abstract
Echinochloa crus-galli is a serious weed species in rice paddies. To obtain a new potential bioherbicide, we evaluated the inhibitory activities of 13 essential oils and their active substances against E. crus-galli. Essential oil from Syzygium aromaticum (L.) Merr. & L. M. Perry (SAEO) exhibited the highest herbicidal activity (EC50 = 3.87 mg mL-1) among the 13 essential oils evaluated. The SAEO was isolated at six different temperatures by vacuum fractional distillation, including 164°C, 165°C (SAEO-165), 169°C, 170°C 175°C and 180°C. The SAEO-165 had the highest inhibitory rate against E. crus-galli. Gas chromatography-mass spectrometry and high phase liquid chromatography identified eugenol (EC50 = 4.07 mg mL-1), α-caryophyllene (EC50 = 17.34 mg mL-1) and β-caryophyllene (EC50 = 96.66 mg mL-1) as the three compounds in SAEO. Results from a safety bioassay showed that the tolerance of rice seedling (~ 20% inhibition) was higher than that of E. crus-galli (~ 70% inhibition) under SAEO stress. SAEO induced excessive generation of reactive oxygen species leading to oxidative stress and ultimately tissue damage in E. crus-galli. Our results indicate that SAEO has a potential for development into a new selective bio-herbicide. They also provide an example of a sustainable management strategy for E. crus-galli in rice paddies.
Collapse
Affiliation(s)
- Xianzhi Ni
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haodong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jincai Han
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Zhou
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhendong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Siquan Luo
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
| | - Jingjing Xu
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chenzhong Jin
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
| | - Zuren Li
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
14
|
Kazemi A, Iraji A, Esmaealzadeh N, Salehi M, Hashempur MH. Peppermint and menthol: a review on their biochemistry, pharmacological activities, clinical applications, and safety considerations. Crit Rev Food Sci Nutr 2024; 65:1553-1578. [PMID: 38168664 DOI: 10.1080/10408398.2023.2296991] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this manuscript, we conducted a comprehensive review of the diverse effects of peppermint on human health and explored the potential underlying mechanisms. Peppermint contains three main groups of phytochemical constituents, including essential oils (mainly menthol), flavonoids (such as hesperidin, eriodictyol, naringenin, quercetin, myricetin, and kaempferol), and nonflavonoid phenolcarboxylic acids. Peppermint exhibits antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, anti-cancer, anti-aging, and analgesic properties and may be effective in treating various disorders, including gastrointestinal disorders (e.g., irritable bowel syndrome, dyspepsia, constipation, functional gastrointestinal disorders, nausea/vomiting, and gallbladder stones). In addition, peppermint has therapeutic benefits for psychological and cognitive health, dental health, urinary retention, skin and wound healing, as well as anti-depressant and anti-anxiety effects, and it may improve memory. However, peppermint has paradoxical effects on sleep quality and alertness, as it has been shown to improve sleep quality in patients with fatigue and anxiety, while also increasing alertness under conditions of monotonous work and relaxation. We also discuss its protective effects against toxic agents at recommended doses, as well as its safety and potential toxicity. Overall, this review provides the latest findings and insights into the properties and clinical effects of peppermint/menthol and highlights its potential as a natural therapeutic agent for various health conditions.
Collapse
Affiliation(s)
- Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Salehi
- Traditional and Complementary Medicine Research Center (TCMRC), Department of Traditional Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|