1
|
Ibram AAMM, Taidi YH, Benoit-Constant LLN, Jean-Baptiste NT, Adamou I. Diallel analysis of common bean (Phaseolus vulgaris L.) genotypes for seed dietary fibre, carbohydrate, calcium and phosphorus contents. J Appl Genet 2024; 65:419-428. [PMID: 38355922 PMCID: PMC11310273 DOI: 10.1007/s13353-024-00834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Genetic information of bean seed traits can be an immense help to the breeder in selection of suitable genotypes and the appropriate breeding strategies. Therefore, the investigation aims to assess the genetic variability and to elucidate the genetic analysis of seed dietary fibre, carbohydrate, seed calcium and phosphorus contents of Phaseolus vulgaris in the high Guinean Savannah zone conditions. 5 × 5 half-diallel crosses of these traits were conducted in randomized complete block design with three replications. Results revealed high differences between five lines beans (p < 0.05), suggesting the sufficient genetic diversity for these traits. High broad sense heritability values were recorded for seed dietary fibre, carbohydrate and seed calcium content, attesting a strong implication of the genetic factors in the control of these traits; thereby, these traits can be improved through regular selection. The ratio GCA/SCA was greater than unity only for seed phosphorus content. It indicates the prevalence of additive gene effect in the involvement of the genetic control for this trait. The combining ability analysis revealed highly significant differences between parental GCA effects and F1 cross SCA effects. The PB, BI, CT and PR lines beans will prove useful in common bean breeding programmes as donor genotypes, in the development of bean genetic resources for betterment improvement of nutritional traits.
Collapse
Affiliation(s)
- Aladji Abatchoua Madi Madi Ibram
- Department of Sciences and Technics of Biological Agriculture, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
- Genetic and Plant Breeding Unity, Department of Plant Biology, Faculty of Science, University of Yaoundé1, , P.O. Box 812, Yaounde, Cameroon.
| | - Yadji Haman Taidi
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Likeng Li Ngue Benoit-Constant
- Genetic and Plant Breeding Unity, Department of Plant Biology, Faculty of Science, University of Yaoundé1, , P.O. Box 812, Yaounde, Cameroon
| | | | - Ibrahima Adamou
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| |
Collapse
|
2
|
Khalfalla M, Zsombik L, Nagy R, Győri Z. Promoting the elemental profile of sorghum grain: Driving factors affecting nutritional properties under nitrogen fertilizer conditions. Heliyon 2024; 10:e28759. [PMID: 38601610 PMCID: PMC11004528 DOI: 10.1016/j.heliyon.2024.e28759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/09/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
Monitoring nitrogen utilization is crucial in agricultural practices, emphasizing the interrelationship between soil health, nutrient management, and human health. The study was conducted to evaluate the impact of N fertilizer on the nutritional characteristics of diverse S. bicolor varieties, namely Alföldi 1, ES Föehn (Lidea Seeds) with a red pericarp, ES Albanus, Albita, and Farmsugro 180 (all white varieties), the study was conducted in sorghum-producing areas where the crop is non-native. Specifically, the study investigated two soil types: loam clay and sandy soil. Furthermore, the respective varieties were grown under N (27% N CAN) fertilizer conditions, involving 60 kg/ha-1 and 120 kg/ha-1 of the treatment rates applied at each experiment site. We measured the specific element concentration in each sample using the Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) technology. Certainly, the results demonstrated that the different S. bicolor varieties had unique nutritional characteristics attributed to several factors such as soil type, variety, and treatment, which showed a significance value of (P < 0.05). The findings demonstrated that the treatments had distinct impacts as stimulators and inhibitors for certain elements. Specifically, the application of 120 kg/ha-1 negatively affected the levels of particular elements, such as Ca mg/kg-1, in loam clay and sandy soil. The statistical analysis of trace microelement variance did not show a significance value (P > 0.05) when considering the year factor, which supported the data analysis's reliability and accuracy. In summary, to enhance the nutritional value of sorghum grain and supply nutrient-rich food choices for individuals, consider factors such as fertilizer response, nutrient uptake by grain, element mineral accumulation, and advisory variety. Additional research could enhance the nutritional properties of sorghum to provide the required dietary stuff, such as grain processing, which can render sorghum a proper addition to a healthy and balanced human diet.
Collapse
Affiliation(s)
- Maha Khalfalla
- University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Nutrition Science, Debrecen, Böszörményi utca. 138, 4032, Hungary
| | - László Zsombik
- University of Debrecen, Institutes for Agricultural Research and Educational Farm, Research Institute of Nyíregyháza, Vilmos utca 4-6, 4400, Hungary
| | - Róbert Nagy
- University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Nutrition Science, Debrecen, Böszörményi utca. 138, 4032, Hungary
| | - Zoltán Győri
- University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Nutrition Science, Debrecen, Böszörményi utca. 138, 4032, Hungary
| |
Collapse
|
3
|
Desta KT, Choi YM, Shin MJ, Yoon H, Wang X, Lee Y, Yi J, Jeon YA, Lee S. Comprehensive evaluation of nutritional components, bioactive metabolites, and antioxidant activities in diverse sorghum (Sorghum bicolor (L.) Moench) landraces. Food Res Int 2023; 173:113390. [PMID: 37803729 DOI: 10.1016/j.foodres.2023.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Sorghum, one of the prospective crops for addressing future food and nutrition security, has received attention in recent years due to its health-promoting compounds. It is known that several environmental and genetic factors affect the metabolite contents of dietary crops. This study investigated the diversity of different nutrients, functional metabolites, and antioxidant activity using three different assays in 53 sorghum landraces from Korea, China, Japan, Ethiopia, and South Africa. The effects of origin and seed color variations were also investigated. Total phenolic (TPC), total tannin (TTC), total fat, total protein, total dietary fiber, and total crude fiber contents all varied significantly among the sorghum landraces (p < 0.05). Using a gas chromatography-flame ionization detector, palmitic, stearic, oleic, linoleic, and linolenic acids were detected in all the sorghum landraces, and their content significantly varied (p < 0.05). Furthermore, four 3-deoxyanthocyanidins (luteolinidin, apigeninidin, 5-methoxyluteolinidin, and 7-methoxyapigeninidin) and two flavonoids (luteolin and apigenin) were detected in most of the landraces using liquid chromatography-tandem mass spectrometry, and their concentrations also significantly varied. Statistical analyses supported by multivariate tools demonstrated that seed color variation had a significant effect on TPC, TTC, DPPH• and ABTS•+ scavenging activities, and ferric-reducing antioxidant power, with yellow landraces having the highest and white landraces having the lowest values. Seed color variation also had a significant effect on dietary fiber, linoleic acid, linolenic acid, and luteolin contents. In contrast, all nutritional components and fatty acids except total protein and oleic acid were significantly affected by origin, while most 3-deoxyanthocyanidins and flavonoids were unaffected by both origin and seed color differences. This is the first study to report the effect of origin on sorghum seed metabolites and antioxidant activities, laying the groundwork for future studies. Moreover, this study identified superior landraces that could be good sources of health-promoting metabolites.
Collapse
Affiliation(s)
- Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Xiaohan Wang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Yoonjung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Young-Ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sukyeung Lee
- International Technology Cooperation Center, Technology Cooperation Bureau, Rural Development Administration, Jeonju 54875, Republic of Korea.
| |
Collapse
|
4
|
Nagesh Kumar MV, Ramya V, Maheshwaramma S, Ganapathy KN, Govindaraj M, Kavitha K, Vanisree K. Exploiting Indian landraces to develop biofortified grain sorghum with high protein and minerals. Front Nutr 2023; 10:1228422. [PMID: 37876619 PMCID: PMC10591322 DOI: 10.3389/fnut.2023.1228422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Sorghum (Sorghum bicolor L. Moench) is the staple cereal and is the primary source of protein for millions of people in Asia and sub-Saharan Africa. Sorghum grain value has been increasing in tropical countries including India owing to its gluten-free nature, anti-oxidant properties and low glycemic index. However, the nutrient composition of modern cultivars is declining thus necessitating genetic biofortification of sorghum to combat malnutrition and improve nutritional balance in the human diet. Keeping this in view, efforts were made to utilize valuable alleles, associated with nutrient composition, that might have been left behind in the varietal development in sorghum. The study aimed to determine the genetic improvement for nine nutritional and quality parameters (crude protein, in vitro protein digestibility (IVPD), total iron (Fe), total zinc (Zn), bioavailable Fe (%), bioavailable Zn (%), total phenolics, tannins and antioxidant activity) in the grains of 19 sorghum genotypes (high yield, drought and grain mold tolerant) developed from 11 superior India's landraces. After selection and advancement made from 2017 to 2022 through single seed descent method, the improvement in the nine nutritional and quality parameters was assessed. Significant variation was observed for all the nine parameters among the landraces and the genotypes. Sorghum genotypes PYPS 2 and PYPS 13 recorded the highest crude protein (13.21 and 12.80% respectively) and IVPD (18.68 and 19.56% respectively). Majority of the sorghum genotypes recorded high Fe (14.21-28.41 mg/100 g) and Zn (4.81-8.16 mg/100 g). High phenolics and antioxidant activity were recorded in sorghum genotypes PYPS 18 (85.65 mg/g gallic acid equivalents) and PYPS 19 (89.78%) respectively. Selections through SSD method revealed highest improvement in genotype PYPS 10 for crude protein (32.25%), total phenolics (18.48%) and antioxidant activity (15.43%). High improvements in genotypes PYPS 12 (23.50%), PYPS 3 (26.79%), PYPS 15 (21.18%) were recorded for total Fe, available Fe and high tannins, respectively. The study demonstrated that landraces could be effectively utilized as a potential, low-cost and eco-friendly approach in sorghum genetic biofortification to improved sorghum productivity and nutritional supply in semi-arid tropics.
Collapse
Affiliation(s)
| | - Vittal Ramya
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | | | | | - Mahalingam Govindaraj
- HarvestPlus Program, The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Kosnam Kavitha
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | - Kalisetti Vanisree
- Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| |
Collapse
|
5
|
Nagesh Kumar MV, Ramya V, Govindaraj M, Dandapani A, Maheshwaramma S, Ganapathy KN, Kavitha K, Goverdhan M, Jagadeeshwar R. India's rainfed sorghum improvement: Three decades of genetic gain assessment for yield, grain quality, grain mold and shoot fly resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:1056040. [PMID: 36600924 PMCID: PMC9806348 DOI: 10.3389/fpls.2022.1056040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Sorghum is a climate-resilient cereal and staple food crop for more than 200 million people in arid and semi-arid countries of Asia and Africa. Despite the economic importance, the productivity of sorghum in India is constrained by biotic and abiotic stresses such as incidences of shoot fly, grain mold and drought. Indian sorghum breeding focused on dual-purpose (grain and fodder), short-duration varieties with multiple resistance/tolerance to pests and diseases and improved nutritional quality (high protein, iron and zinc and low fat). In this context, it is important to ascertain the genetic progress made over 30 years by assessing the efficiency of past achievements in genetic yield potential and to facilitate future genetic improvement. The current study determined the genetic gain in 24 sorghum varieties developed by the national and state level research systems during 1990-2020. The 24 varieties were evaluated for three years (2018-2020) at six locations in Telangana state for yield, nutritional characteristics and tolerance to shoot fly and grain mold. The absolute grain yield genetic gain from the base year 1990 is 44.93 kg/ha/yr over the first released variety CSV 15. The realized mean yield increased from 2658 kg/ha of the variety CSV 15 in 1990s to 4069 kg/ha of SPV 2579 developed in 2020s. The absolute genetic gain for grain mold resistance is -0.11 per year with an overall relative gain of 1.46% over CSV 15. The top varieties for grain yield (SPV 2579, SPV 2678 and SPV 2578), fodder yield (PYPS 2, SPV 2769 and SPV 2679), shoot fly tolerance (PYPS 8, PYPS 2 and SPV 2179), mold tolerance (PYPS 8, PYPS 2 and SPV 2579) and high protein (PYPS 8, PYPS 2 and SPV 2769) were identified for possible scale up and further use in breeding program diversification. The study revealed that sorghum varieties bred with diverse genetic backgrounds such as landraces and with tolerance to pests and diseases had stable yield performance. Application of genomics and other precision tools can double genetic gains for these traits to strengthen sorghum cultivation in rainfed areas serving food and nutrition security.
Collapse
Affiliation(s)
| | - Vittal Ramya
- Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, India
| | - Mahalingam Govindaraj
- HarvestPlus program, The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Appavoo Dandapani
- Indian Council of Agricultural Research-National Academy of Agricultural Research Management, Rajendranagar, Hyderabad, Telangana, India
| | - Setaboyine Maheshwaramma
- Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, India
| | - Kuyyamudi Nanaiah Ganapathy
- Indian Council of Agricultural Research -Indian Institute of Millets Research Rajendranagar, Hyderabad, Telangana, India
| | - Kosnam Kavitha
- Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, India
| | - Manthati Goverdhan
- Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, India
| | - Rumandla Jagadeeshwar
- Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Shah AA, Yasin NA, Mudassir M, Ramzan M, Hussain I, Siddiqui MH, Ali HM, Shabbir Z, Ali A, Ahmed S, Kumar R. Iron oxide nanoparticles and selenium supplementation improve growth and photosynthesis by modulating antioxidant system and gene expression of chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR) in arsenic-stressed Cucumis melo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119413. [PMID: 35525515 DOI: 10.1016/j.envpol.2022.119413] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/19/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Current research reveals the positive role of iron oxide nanoparticles (IONPs) and selenium (Se) in extenuation of arsenic (As) induced toxicity in Cucumis melo. C. melo plants grown in As spiked soil (20 mg kg-1 As) showed reduced growth, chlorophyll (Chl) content, photosynthetic rate, stomatal conductivity and transpiration. On the other hand, the alone applications of IONPs or Se improved growth and physiochemical parameters of C. melo plants. Additionally, exogenous application IONPs and Se synergistically improved the activity of antioxidative enzymes and glyoxalase system in C. melo plants. In addition, the collective treatment of IONPs and Se reduced As uptake, enhanced rate of photosynthesis and increased gas exchange attributes of C. melo plants under As stress. Interactive effect of IONPs and Se regulated reduced glutathione (GSH), oxidized glutathione (GSSG) and ascorbate (AsA) content in C. melo plants exposed to As-contaminated Soil. IONPs and Se treatment also regulated expression of respiratory burst oxidase homologue D (RBOHD) gene, chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR). Therefore, the combined treatment of IONPs and Se may enhance the growth of crop plants by alleviating As stress.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Nasim Ahmad Yasin
- Senior Superintendent Gardens, RO-II office, University of the Punjab, Lahore, Pakistan
| | | | - Musarrat Ramzan
- Department of Botany, Islamia University Bahawalpur, Pakistan
| | - Iqtidar Hussain
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KPK, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zunera Shabbir
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, USA
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Pakistan
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
7
|
Karaman K, Kardeş YM, Doran T, Akçura M, Kaplan M. T‐Biplot analysis of some biochemical characteristics and mineral composition of different sorghum (
Sorghum bicolor
L.) sprouts. Cereal Chem 2022. [DOI: 10.1002/cche.10590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kevser Karaman
- Erciyes UniversityFaculty of Agriculture, Agricultural Biotechnology DepartmentKayseriTurkey
| | - Yusuf Murat Kardeş
- Bilecik Seyh Edebali UniversityFaculty of Agriculture, Field Crops DepartmentBilecikTurkey
| | - Turhan Doran
- Erciyes UniversityFaculty of Agriculture, Field Crops DepartmentKayseriTurkey
| | - Mevlüt Akçura
- Çanakkale Onsekiz Mart UniversityFaculty of Agriculture, Field Crops DepartmentÇanakkaleTurkey
| | - Mahmut Kaplan
- Erciyes UniversityFaculty of Agriculture, Field Crops DepartmentKayseriTurkey
| |
Collapse
|
8
|
Shinda CA, Nthakanio PN, Gitari JN, Runo S, Mukono S, Maina S. Nutrient content of sorghum hybrid lines between Gadam and hard coat tannin sorghum cultivars. Food Sci Nutr 2022; 10:2202-2212. [PMID: 35844921 PMCID: PMC9281938 DOI: 10.1002/fsn3.2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Sorghum is an important food crop in the world that exhibits a predominant role in fulfilling the nutritional requirements, particularly in low-income group populations of marginal areas in Kenya. It is a principal source of proteins, carbohydrates, fats, and crude fibers (CFs), which are important nutrients necessary for human development and health. Reduced tannin in sorghum grains is desirable since it affects the availability of nutrients. This study aimed at assessing the nutrient content in filial generation one (F1) developed between Gadam (sorghum), which is low in tannin and hard coat tannin (sorghum) cultivars. The nutrient content analyses were carried out from samples collected in a completely randomized design experiment. Crude protein (CP) and tannin content were analyzed using the modified Kjeldahl method and vanillin-HCl methanol method, respectively, whereas moisture, fat, CF, ash, and carbohydrate contents were determined using Association of Official Analytical Chemists methods. Data collected were subjected to analysis of variance using R statistical software. Among the F1s, Kari/Mtama-1 x Gadam recorded the highest CP value of 10.390%. This differed significantly from Gadam x Kari/Mtama-1 which recorded CP content of 9.770%. Kari/Mtama-1 x Gadam recorded the highest fat and moisture contents of 2.299% and 8.600%, respectively. The highest CF content of 3.433% was recorded in Gadam x Serena. Gadam x Kari/Mtama-1 recorded the highest ash content of 1.619%, whereas the highest carbohydrate (84.503%) and tannin content (0.771 mg/g) means were recorded in Seredo x Gadam. Results demonstrated that the choice of maternal and paternal parent influence CP, CF, and carbohydrate contents. Among the F1s, tannin content ranged from 0.106 to 0.771 mg/g compared to 0.953 to 1.763 mg/g recorded in Serena and Seredo (hard coat seeded cultivars). This is an indication that tannin can be downregulated through hybridization.
Collapse
Affiliation(s)
- Cecilia A. Shinda
- Department of Water and Agricultural Resource ManagementUniversity of EmbuEmbuKenya
| | - Paul N. Nthakanio
- Department of Water and Agricultural Resource ManagementUniversity of EmbuEmbuKenya
| | - Josiah N. Gitari
- Department of Water and Agricultural Resource ManagementUniversity of EmbuEmbuKenya
| | - Steven Runo
- Department of Biochemistry, Microbiology and BiotechnologyKenyatta UniversityNairobiKenya
| | - Simon Mukono
- Department of Physical SciencesUniversity of EmbuEmbuKenya
| | - Samuel Maina
- Department of Biological SciencesUniversity of EmbuEmbuKenya
| |
Collapse
|
9
|
Nazari L, Khazaei A, Ropelewska E. Prediction of tannin, protein, and total phenolic content of grain sorghum using image analysis and machine learning. Cereal Chem 2022. [DOI: 10.1002/cche.10542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Leyla Nazari
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO) Shiraz Iran
| | - Azim Khazaei
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO) Karaj Iran
| | - Ewa Ropelewska
- Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research Konstytucji 3 Maja 1/3, 96‐100 Skierniewice Poland
| |
Collapse
|
10
|
Zhao H, Tang J, Yang Q. Effects of geographical origin, variety, harvest season, and their interactions on multi-elements in cereal, tuber, and legume crops for authenticity. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03729-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe chemical composition of 4 spring wheat species was analyzed: einkorn (Triticum monococcum) (local cv.), emmer (Triticum dicoccon) (Lamella cv.), spelt (Triticum spelta) (Wirtas cv.), and common wheat (Triticum aestivum) (Rospuda cv.). Mean emmer and einkorn yield was significantly lower than that of common wheat. The analyses of the wheat grain included the content of total protein, crude ash, crude fat, crude fibre, carbohydrates, phosphorus, potassium, magnesium, calcium, copper, iron, manganese, and zinc. The grains of the tested ancient wheats were richer in protein, lipids, crude fibre, and crude ash than the common wheat grains. The significantly highest levels of crude protein, ether extract, and crude ash were found in einkorn. As the protein concentration in the grain increased, the calcium, magnesium, and potassium levels increased, and the zinc and manganese levels decreased. Genotypic differences between the studied wheats were reflected in the concentrations of the minerals and nutrients, an observation which can be useful in further cross-linkage studies. Dough made from common wheat and spelt flour showed better performance quality classifying it to be used for bread production. In turn, flour from emmer and einkorn wheat may be intended for pastry products, due to short dough development time and constancy as well as high softening.
Collapse
|
12
|
Ferruzzi MG, Kruger J, Mohamedshah Z, Debelo H, Taylor JR. Insights from in vitro exploration of factors influencing iron, zinc and provitamin A carotenoid bioaccessibility and intestinal absorption from cereals. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Tasie MM, Gebreyes BG. Characterization of Nutritional, Antinutritional, and Mineral Contents of Thirty-Five Sorghum Varieties Grown in Ethiopia. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:8243617. [PMID: 32258096 PMCID: PMC7086442 DOI: 10.1155/2020/8243617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/08/2020] [Indexed: 11/18/2022]
Abstract
An experiment was carried out to characterize the proximate compositions and antinutritional and mineral contents of sorghum varieties released for production by the Ethiopian sorghum improvement programme. Sorghum is an extensively researched crop in Ethiopia. However, comprehensive information on nutritional, antinutritional, and mineral content has not been generated. In the present study, thirty-five sorghum varieties released by the national sorghum improvement programme were used and evaluated for their proximate compositions, tannin, and mineral nutrient. AOAC methods of analysis were used for proximate compositions and mineral content together, i.e., whereas for tannin, vanillin-HCL assay methods of analysis were used. Differences between sorghum varieties were significant (P ≤ 0.05) for all measured parameters. Proximate composition values such as moisture, ash, crude fat, crude fiber, crude protein, and CHO varied from 9.66 to 12.94, 1.12 to 2.29, 2.48 to 4.60, 2.17 to 8.59, 8.20 to 16.48, and 67.56 to 76.42, respectively. The highest mineral content of P (367.965), Na (6.151), Mg (207.526), K (314.011), Ca (67.159), Fe (14.018), and Zn (6.484) as measured by mg/100 g was found from the varieties Macia, Abshir, Chiro, Birmash, Dagem, and Assossa-1 (Fe and Zn), respectively. Maximum tannin values of 3337.200 and 2474.7 mg/100 g were obtained from Lalo and Dano, respectively. The varieties such as Miskir, Abshir, ESH-1, Meko-1, Red Swazi, and Karimtams have higher nutritional and mineral and lower antinutritional values among the tested varieties. The abovementioned varieties should be considered for food product development due to their nutritional qualities.
Collapse
Affiliation(s)
- Masresha Minuye Tasie
- Food Science and Nutrition, Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Belay Gezahegn Gebreyes
- Food Science and Nutrition, Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| |
Collapse
|
14
|
Water deficit and heat stress induced alterations in grain physico-chemical characteristics and micronutrient composition in field grown grain sorghum. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Singh S, Singh LB, Singh DR, Chand S, Zamir Ahmed SK, Singh VN, Dam Roy S. Indigenous underutilized vegetables for food and nutritional security in an island ecosystem. Food Secur 2018. [DOI: 10.1007/s12571-018-0840-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Gregory PJ, Wahbi A, Adu-Gyamfi J, Heiling M, Gruber R, Joy EJ, Broadley MR. Approaches to reduce zinc and iron deficits in food systems. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2017. [DOI: 10.1016/j.gfs.2017.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Yadav K, Patel P, Srivastava AK, Ganapathi TR. Overexpression of native ferritin gene MusaFer1 enhances iron content and oxidative stress tolerance in transgenic banana plants. PLoS One 2017; 12:e0188933. [PMID: 29190821 PMCID: PMC5708808 DOI: 10.1371/journal.pone.0188933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/15/2017] [Indexed: 11/30/2022] Open
Abstract
Iron is an indispensable element for plant growth and defense and hence it is essential to improve the plant's ability to accumulate iron. Besides, it is also an important aspect for human health. In view of this, we attempted to increase the iron content in banana cultivar Rasthali using MusaFer1 as a candidate gene. Initially, the expression of all five genes of the MusaFer family (MusaFer1-5) was quantified under iron-excess and -deficient conditions. The supplementation of 250 and 350 μM iron enhanced expression of all MusaFer genes; however, MusaFer1 was increased maximally by 2- and 4- fold in leaves and roots respectively. Under iron deficient condition, all five MusaFer genes were downregulated, indicating their iron dependent regulation. In MusaFer1 overexpressing lines, iron content was increased by 2- and 3-fold in leaves and roots respectively, as compared with that of untransformed lines. The increased iron was mainly localized in the epidermal regions of petiole. The analysis of MusaFer1 promoter indicated that it might control the expression of iron metabolism related genes and also other genes of MusaFer family. MusaFer1 overexpression led to downregulated expression of MusaFer3, MusaFer4 and MusaFer5 in transgenic leaves which might be associated with the plant's compensatory mechanism in response to iron flux. Other iron metabolism genes like Ferric reductase (FRO), transporters (IRT, VIT and YSL) and chelators (NAS, DMAS and NAAT) were also differentially expressed in transgenic leaf and root, suggesting the multifaceted impact of MusaFer1 towards iron uptake and organ distribution. Additionally, MusaFer1 overexpression increased plant tolerance against methyl viologen and excess iron which was quantified in terms of photosynthetic efficiency and malondialdehyde content. Thus, the study not only broadens our understanding about iron metabolism but also highlights MusaFer1 as a suitable candidate gene for iron fortification in banana.
Collapse
Affiliation(s)
- Karuna Yadav
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Prashanti Patel
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ashish Kumar Srivastava
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - T. R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
18
|
Melash AA, Mengistu DK, Aberra DA. Linking Agriculture with Health through Genetic and Agronomic Biofortification. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/as.2016.75029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|