1
|
Soler-Garzón A, Mulube M, Kamfwa K, Lungu DM, Hamabwe S, Roy J, Salegua V, Fourie D, Porch TG, McClean PE, Miklas PN. GWAS of resistance to three bacterial diseases in the Andean common bean diversity panel. FRONTIERS IN PLANT SCIENCE 2024; 15:1469381. [PMID: 39301162 PMCID: PMC11410698 DOI: 10.3389/fpls.2024.1469381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Bacterial brown spot (BBS) caused by Pseudomonas syringae pv. syringae (Pss), common bacterial blight (CBB) caused by Xanthomonas axonopodis pv. phaseoli (Xap) and Xanthomonas fuscans subsp. fuscans (Xff), and halo bacterial blight (HBB), caused by Pseudomonas syringae pv. phaseolicola (Psph), are major bacterial diseases that severely affect common bean yields and global food security. Andean-origin dry beans, representing large-seeded market classes, are particularly susceptible. Using 140,325 SNPs, a multi-locus GWAS was conducted on subsets of the Andean diversity panel (ADP) phenotyped for BBS in South Africa, CBB in Puerto Rico, South Africa, and Zambia, and HBB in South Africa, through natural infection, artificial inoculation, or both. Twenty-four QTL associated with resistance were identified: nine for BBS, eight for CBB, and seven for HBB. Four QTL intervals on Pv01, Pv03, Pv05, and Pv08 overlapped with BBS and HBB resistance. A genomic interval on Pv01, near the fin gene, which determines growth habit, was linked to resistance to all three pathogens. Different QTLs were detected for BBS and CBB resistance when phenotyped under natural infection versus artificial inoculation. These results underscore the importance of combining phenotyping methods in multi-GWAS to capture the full genetic spectrum. Previously recognized CBB resistance QTL SAP6 and SU91 and HBB resistance QTL HB4.2, and HB5.1, were observed. Other common (MAF >0.25) and rare (MAF <0.05) resistance QTL were also detected. Overall, these findings enhance the understanding and utilization of bacterial resistance present in ADP for the development of common beans with improved resistance.
Collapse
Affiliation(s)
- Alvaro Soler-Garzón
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| | - Mwiinga Mulube
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Kelvin Kamfwa
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Davies M Lungu
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Swivia Hamabwe
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Venâncio Salegua
- Mozambique Agricultural Research Institute (IIAM), Nampula, Mozambique
| | - Deidré Fourie
- Dry Bean Producers Organization, Pretoria, South Africa
| | - Timothy G Porch
- Tropical Agriculture Research Station, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Mayagüez, Puerto Rico
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Prosser, WA, United States
| |
Collapse
|
2
|
Reinprecht Y, Schram L, Perry GE, Morneau E, Smith TH, Pauls KP. Mapping yield and yield-related traits using diverse common bean germplasm. Front Genet 2024; 14:1246904. [PMID: 38234999 PMCID: PMC10791882 DOI: 10.3389/fgene.2023.1246904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
Common bean (bean) is one of the most important legume crops, and mapping genes for yield and yield-related traits is essential for its improvement. However, yield is a complex trait that is typically controlled by many loci in crop genomes. The objective of this research was to identify regions in the bean genome associated with yield and a number of yield-related traits using a collection of 121 diverse bean genotypes with different yields. The beans were evaluated in replicated trials at two locations, over two years. Significant variation among genotypes was identified for all traits analyzed in the four environments. The collection was genotyped with the BARCBean6K_3 chip (5,398 SNPs), two yield/antiyield gene-based markers, and seven markers previously associated with resistance to common bacterial blight (CBB), including a Niemann-Pick polymorphism (NPP) gene-based marker. Over 90% of the single-nucleotide polymorphisms (SNPs) were polymorphic and separated the panel into two main groups of small-seeded and large-seeded beans, reflecting their Mesoamerican and Andean origins. Thirty-nine significant marker-trait associations (MTAs) were identified between 31 SNPs and 15 analyzed traits on all 11 bean chromosomes. Some of these MTAs confirmed genome regions previously associated with the yield and yield-related traits in bean, but a number of associations were not reported previously, especially those with derived traits. Over 600 candidate genes with different functional annotations were identified for the analyzed traits in the 200-Kb region centered on significant SNPs. Fourteen SNPs were identified within the gene model sequences, and five additional SNPs significantly associated with five different traits were located at less than 0.6 Kb from the candidate genes. The work confirmed associations between two yield/antiyield gene-based markers (AYD1m and AYD2m) on chromosome Pv09 with yield and identified their association with a number of yield-related traits, including seed weight. The results also confirmed the usefulness of the NPP marker in screening for CBB resistance. Since disease resistance and yield measurements are environmentally dependent and labor-intensive, the three gene-based markers (CBB- and two yield-related) and quantitative trait loci (QTL) that were validated in this work may be useful tools for simplifying and accelerating the selection of high-yielding and CBB-resistant bean cultivars.
Collapse
Affiliation(s)
| | - Lyndsay Schram
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Gregory E. Perry
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Emily Morneau
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON, Canada
| | - Thomas H. Smith
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - K. Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Zhu J, Lei L, Wang W, Jiang J, Zhou X. QTL mapping for seed density per silique in Brassica napus. Sci Rep 2023; 13:772. [PMID: 36641540 PMCID: PMC9840639 DOI: 10.1038/s41598-023-28066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Seed density per silique (SDPS) and valid silique length (VSL) are two important yield-influencing traits in rapeseed. SDPS has a direct or indirect effect on rapeseed yield through its effect on seed per silique. In this study, a quantitative trait locus (QTL) for SDPS was detected on chromosome A09 using the QTL-seq approach and confirmed via linkage analysis in the mapping population obtained from 4263 × 3001 cross. Furthermore, one major QTL for SDPS (qSD.A9-1) was mapped to a 401.8 kb genomic interval between SSR markers Nys9A190 and Nys9A531. In the same genomic region, a QTL (qSL.A9) linked to VSL was also detected. The phenotypic variation of qSD.A9-1 and qSL.A9 was 53.1% and 47.6%, respectively. Results of the additive and dominant effects demonstrated that the expression of genes controlling SDPS and VSL were derived from a different parent in this population. Subsequently, we identified 56 genes that included 45 specific genes with exonic (splicing) variants. Further analysis identified specific genes containing mutations that may be related to seed density as well as silique length. These genes could be used for further studies to understand the details of these traits of rapeseed.
Collapse
Affiliation(s)
- Jifeng Zhu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Lei Lei
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Weirong Wang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jianxia Jiang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xirong Zhou
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
4
|
Hohenfeld CS, Passos AR, de Carvalho HWL, de Oliveira SAS, de Oliveira EJ. Genome-wide association study and selection for field resistance to cassava root rot disease and productive traits. PLoS One 2022; 17:e0270020. [PMID: 35709238 PMCID: PMC9202857 DOI: 10.1371/journal.pone.0270020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Cassava root rot disease is caused by a complex of soil-borne pathogens and has high economic impacts because it directly affects the tuberous roots, which are the main commercial product. This study aimed to evaluate cassava genotypes for resistance to root rot disease in a field with a previous history of high disease incidence. It also aimed to identify possible genomic regions associated with field resistance based on genome-wide association studies. A total of 148 genotypes from Embrapa Mandioca and Fruticultura were evaluated over two years, including improved materials and curated germplasms. Analysis of phenotypic data was conducted, as well as a genomic association analysis, based on the general linear model, mixed linear model, and fixed and random model circulating probability unification. The observed high disease index (ω) was directly correlated with genotype survival, affecting plant height, shoot yield, and fresh root yield. The genotypes were grouped into five clusters, which were classified according to level of root rot resistance (i.e., extremely susceptible, susceptible, moderately susceptible, moderately resistant, and resistant). The 10 genotypes with the best performance in the field were selected as potential progenitors for the development of segregating progenies. Estimates of genomic kinship between these genotypes ranged from -0.183 to 0.671. The genotypes BGM-1171 and BGM-1190 showed the lowest degree of kinship with the other selected sources of resistance. The genotypes BGM-0209, BGM-0398, and BGM-0659 showed negative kinship values with most elite varieties, while BGM-0659 presented negative kinship with all landraces. A genome-wide association analysis detected five significant single nucleotide polymorphisms related to defense mechanisms against biotic and abiotic stresses, with putative association with fresh root yield in soil infested with root rot pathogens. These findings can be utilized to develop molecular selection for root rot resistance in cassava.
Collapse
|
5
|
Zhu J, Wang W, Jiang M, Yang L, Zhou X. QTL mapping for low temperature germination in rapeseed. Sci Rep 2021; 11:23382. [PMID: 34862452 PMCID: PMC8642550 DOI: 10.1038/s41598-021-02912-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/24/2021] [Indexed: 11/14/2022] Open
Abstract
Rapeseed, a major oil crop in the world, is easily affected by low-temperature stress. A low temperature delays seed germination and increases seedling mortality, adversely affecting rapeseed growth and production. In the present study, a tolerant cultivar (Huyou21) was crossed with a susceptible genotype (3429) to develop a mapping population consisting of 574 F2 progenies and elucidate the genetic mechanisms of seed germination under low temperatures. Two quantitative trait loci (QTL) for low-temperature germination (LTG) were detected, one on chromosome A09 (named qLTGA9-1) and the other on chromosome C01 (named qLTGC1-1), using the QTL-seq approach and confirmed via linkage analysis in the mapping population. Further, qLTGA9-1 was mapped to a 341.86 kb interval between the SSR markers Nys9A212 and Nys9A215. In this region, 69 genes including six specific genes with moderate or high effect function variants were identified based on the Ningyou7 genome sequence. Meanwhile, qLTGC1-1 was mapped onto a 1.31 Mb interval between SSR markers Nys1C96 and Nys1C117. In this region, 133 genes including five specific genes with moderate effect function variants were identified. These specific genes within the two QTL could be used for further studies on cold tolerance and as targets in rapeseed breeding programs.
Collapse
Affiliation(s)
- Jifeng Zhu
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Weirong Wang
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Meiyan Jiang
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Liyong Yang
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xirong Zhou
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
6
|
Chen NWG, Ruh M, Darrasse A, Foucher J, Briand M, Costa J, Studholme DJ, Jacques M. Common bacterial blight of bean: a model of seed transmission and pathological convergence. MOLECULAR PLANT PATHOLOGY 2021; 22:1464-1480. [PMID: 33942466 PMCID: PMC8578827 DOI: 10.1111/mpp.13067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Xanthomonas citri pv. fuscans (Xcf) and Xanthomonas phaseoli pv. phaseoli (Xpp) are the causal agents of common bacterial blight of bean (CBB), an important disease worldwide that remains difficult to control. These pathogens belong to distinct species within the Xanthomonas genus and have undergone a dynamic evolutionary history including the horizontal transfer of genes encoding factors probably involved in adaptation to and pathogenicity on common bean. Seed transmission is a key point of the CBB disease cycle, favouring both vertical transmission of the pathogen and worldwide distribution of the disease through global seed trade. TAXONOMY Kingdom: Bacteria; phylum: Proteobacteria; class: Gammaproteobacteria; order: Lysobacterales (also known as Xanthomonadales); family: Lysobacteraceae (also known as Xanthomonadaceae); genus: Xanthomonas; species: X. citri pv. fuscans and X. phaseoli pv. phaseoli (Xcf-Xpp). HOST RANGE The main host of Xcf-Xpp is the common bean (Phaseolus vulgaris). Lima bean (Phaseolus lunatus) and members of the Vigna genus (Vigna aconitifolia, Vigna angularis, Vigna mungo, Vigna radiata, and Vigna umbellata) are also natural hosts of Xcf-Xpp. Natural occurrence of Xcf-Xpp has been reported for a handful of other legumes such as Calopogonium sp., Pueraria sp., pea (Pisum sativum), Lablab purpureus, Macroptilium lathyroides, and Strophostyles helvola. There are conflicting reports concerning the natural occurrence of CBB agents on tepary bean (Phaseolus acutifolius) and cowpea (Vigna unguiculata subsp. unguiculata). SYMPTOMS CBB symptoms occur on all aerial parts of beans, that is, seedlings, leaves, stems, pods, and seeds. Symptoms initially appear as water-soaked spots evolving into necrosis on leaves, pustules on pods, and cankers on twigs. In severe infections, defoliation and wilting may occur. DISTRIBUTION CBB is distributed worldwide, meaning that it is frequently encountered in most places where bean is cultivated in the Americas, Asia, Africa, and Oceania, except for arid tropical areas. Xcf-Xpp are regulated nonquarantine pathogens in Europe and are listed in the A2 list by the European and Mediterranean Plant Protection Organization (EPPO). GENOME The genome consists of a single circular chromosome plus one to four extrachromosomal plasmids of various sizes, for a total mean size of 5.27 Mb with 64.7% GC content and an average predicted number of 4,181 coding sequences. DISEASE CONTROL Management of CBB is based on integrated approaches that comprise measures aimed at avoiding Xcf-Xpp introduction through infected seeds, cultural practices to limit Xcf-Xpp survival between host crops, whenever possible the use of tolerant or resistant bean genotypes, and chemical treatments, mainly restricted to copper compounds. The use of pathogen-free seeds is essential in an effective management strategy and requires appropriate sampling, detection, and identification methods. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTPH, https://gd.eppo.int/taxon/XANTFF, and http://www.cost.eu/COST_Actions/ca/CA16107.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Mylène Ruh
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Armelle Darrasse
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Justine Foucher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Martial Briand
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Joana Costa
- University of Coimbra, Centre for Functional Ecology ‐ Science for People & the Planet, Department of Life SciencesCoimbraPortugal
| | - David J. Studholme
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | | |
Collapse
|
7
|
Sources of Resistance to Common Bacterial Blight and Charcoal Rot Disease for the Production of Mesoamerican Common Beans in the Southern United States. PLANTS 2021; 10:plants10050998. [PMID: 34067661 PMCID: PMC8156677 DOI: 10.3390/plants10050998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
The gene pool of Mesoamerican common beans (Phaseolus vulgaris L.) includes genotypes in the small-to-medium-size seeded dry beans, as well as some snap beans from hotter environments adapted to the Southeastern United States. However, the warm and humid climate of the Southeastern United States is conducive to diseases such as Common Bacterial Blight (CBB) and Charcoal Rot (CR). The pathogens for these two diseases can survive long periods in infested soil or on seeds and are difficult to control through pesticides. Hence, field-level resistance would be the best management strategy for these diseases. The goals of this study were (1) to evaluate field-level resistance from the various commercial classes and subgroups represented in the Mesoamerican gene pool as sources for breeding beans for the region and (2) to evaluate genome-wide marker × trait associations (GWAS) using genetic markers for the genotypes. A total of 300 genotypes from the Mesoamerican Diversity Panel (MDP) were evaluated for CBB and CR in field experiments for three years. CBB resistance was also tested with a field isolate in controlled greenhouse conditions. The analysis of variance revealed the presence of variability in the MDP for the evaluated traits. We also identified adapted common bean genotypes that could be used directly in Southeastern production or that could be good parents in breeding programs for CBB and CR resistance. The GWAS detected 14 significant Single-Nucleotide Polymorphism (SNP) markers associated with CBB resistance distributed on five chromosomes, namely Pv02, Pv04, Pv08, Pv10, and Pv11, but no loci for resistance to CR. A total of 89 candidate genes were identified in close vicinity (±100 kb) to the significant CBB markers, some of which could be directly or indirectly involved in plant defense to diseases. These results provide a basis to further understand the complex inheritance of CBB resistance in Mesoamerican common beans and show that this biotic stress is unrelated to CR resistance, which was evident during a drought period. Genotypes with good yield potential for the Southeastern U.S. growing conditions were found with resistant to infection by the two diseases, as well as adaptation to the hot and humid conditions punctuated by droughts found in this region.
Collapse
|
8
|
Duarte Santos T, Badiale Furlong E. Biological contamination of the common bean ( Phaseolus vulgaris L.) and its impact on food safety. Crit Rev Food Sci Nutr 2021; 62:4998-5004. [PMID: 33543994 DOI: 10.1080/10408398.2021.1881038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The occurrence of biological contaminants in common beans is a challenge for food safety, as they can affect the bean at different points in the production chain. Their presence can result in damage to the health of consumers through their direct toxic effect or by promoting nutritional deficiencies, in addition to decreasing the crop yield that has an economic impact. In this article, the information available in the literature on the occurrence of biological contaminants in the common bean (Phaseolus vulgaris L.) was organized to identify the main risks to food safety due to biological contamination. Research showed that many studies investigated the effects of microbial contaminants during the farming and harvested of beans and that some strategies have been used to avoid losses. The presence of toxigenic fungi and some mycotoxins have also been reported, indicating that common beans may carry thermostable toxic residues, directly impacting human health. Further studies are needed to identify the role of microorganisms in determining the quality of common beans and to estimate their risks to food safety. HighlightsBeans can be contaminated by biological agents.Plants infected with parasites may be highly susceptible to other contaminants.Micotoxicologic contamination is less prevalent in beans than other grains.There are strategies to decrease the risk of bacterial contamination in beans.
Collapse
Affiliation(s)
- Thaisa Duarte Santos
- Laboratório de Micotoxinas e Ciência de Alimentos (LAMCA), Escola de Quíımica e Alimentos, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Eliana Badiale Furlong
- Laboratório de Micotoxinas e Ciência de Alimentos (LAMCA), Escola de Quíımica e Alimentos, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Monteiro ALR, Chaves FS, Pantaleão ASL, Carneiro PCS, de Souza Carneiro JE, Badel JL. Sources, Spectrum, Genetics, and Inheritance of Phaseolus vulgaris Resistance Against Xanthomonas citri pv. fuscans. PHYTOPATHOLOGY 2020; 110:1428-1436. [PMID: 32301679 DOI: 10.1094/phyto-01-20-0020-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Common bean (Phaseolus vulgaris) is one of the most consumed agricultural products in the world. Its production is affected by common bacterial blight (CBB) caused by Xanthomonas citri pv. fuscans and X. phaseoli pv. phaseoli. In this work, we investigated the spectrum, genetics, and inheritance of common bean resistance to X. citri pv. fuscans. Inoculation of nine selected cultivars with an X. citri pv. fuscans strain showed that BRS Radiante and IAPAR 16 were resistant. These two cultivars were also resistant to six X. phaseoli pv. phaseoli strains of different geographic origins, demonstrating their broad-spectrum resistances. BRS Radiante sustained smaller X. citri pv. fuscans populations than two susceptible cultivars. Stomatal densities of IAPAR 16 and BRS Radiante were significantly higher than or not different from susceptible cultivars. BRS Radiante showed the lowest general combining ability values and the combination BRS Radiante × Carioca MG the lowest specific combining ability (SCA) values, revealing the capacity of BRS Radiante to increase resistance to X. citri pv. fuscans. Positive and negative parental SCA values indicated dominant and recessive genes involved in X. citri pv. fuscans resistance. Resistance of the BRS Radiante × Carioca MG cross segregated in a 9:7 ratio in the F2 population, indicating that it is governed by two complementary dominant genes. Maximum likelihood analysis showed that the resistance of BRS Radiante to X. citri pv. fuscans is conferred by a gene of major effect with contribution of additional polygenes. This study contributes with important knowledge on the resistance against CBB in Brazilian common bean cultivars as well as with molecular tools for confirmation of common bean hybrids.
Collapse
Affiliation(s)
- Ana Leticia Rocha Monteiro
- Laboratory of Molecular Phytobacteriology, Department of Plant Pathology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Fabiana Salomão Chaves
- Laboratory of Molecular Phytobacteriology, Department of Plant Pathology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Augusto Soares Lins Pantaleão
- Laboratory of Molecular Phytobacteriology, Department of Plant Pathology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | - Jorge Luis Badel
- Laboratory of Molecular Phytobacteriology, Department of Plant Pathology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
10
|
Wu J, Wang L, Fu J, Chen J, Wei S, Zhang S, Zhang J, Tang Y, Chen M, Zhu J, Lei L, Geng Q, Liu C, Wu L, Li X, Wang X, Wang Q, Wang Z, Xing S, Zhang H, Blair MW, Wang S. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat Genet 2019; 52:118-125. [PMID: 31873299 DOI: 10.1038/s41588-019-0546-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
We conducted a large-scale genome-wide association study evaluation of 683 common bean accessions, including landraces and breeding lines, grown over 3 years and in four environments across China, ranging in latitude from 18.23° to 45.75° N, with different planting dates and abiotic or biotic stresses. A total of 505 loci were associated with yield components, of which seed size, flowering time and harvest maturity traits were stable across years and environments. Some loci aligned with candidate genes controlling these traits. Yield components were observed to have strong associations with a gene-rich region on the long arm of chromosome 1. Manipulation of seed size, through selection of seed length versus seed width and height, was deemed possible, providing a genome-based means to select for important yield components. This study shows that evaluation of large germplasm collections across north-south geographic clines is useful in the detection of marker associations that determine grain yield in pulses.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lanfen Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jibao Chen
- Key Laboratory of Water Ecological Security for Water Region of Mid-line Project of South-to-North Water Diversion, Nanyang Normal University, Nanyang, China
| | - Shuhong Wei
- Institute of Crop Germplasm, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shilong Zhang
- Bijie Academy of Agricultural Sciences, Bijie, China
| | - Jie Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Mingli Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jifeng Zhu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Lei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghe Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunliang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoming Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoli Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Wang
- Institute of Crop Germplasm, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhaoli Wang
- Bijie Academy of Agricultural Sciences, Bijie, China
| | | | | | - Matthew W Blair
- Department of Agricultural & Environmental Sciences, Tennessee State University, Nashville, TN, USA.
| | - Shumin Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
11
|
Genome sequence of Xanthomonas fuscans subsp. fuscans strain Xff49: a new isolate obtained from common beans in Southern Brazil. Braz J Microbiol 2019; 50:357-367. [PMID: 30850979 DOI: 10.1007/s42770-019-00050-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
The genus Xanthomonas comprises Gram-negative bacteria, many of which are phytopathogens. Xanthomonas fuscans subsp. fuscans is one of the most devastating pathogens affecting the bean plant, resulting in the common bacterial blight of bean (CBB). The disease is mainly foliar and affects a wide variety of bean species, thus acting as the yield-limiting factor for the bean crop. Here, we report the whole-genome sequencing of a new strain of X. fuscans subsp. fuscans, named Xff49, isolated from the infected and symptomatic beans from Capão do Leão, Southern Brazil. The genetic analysis demonstrated the presence of single-nucleotide variants (SNVs) in this strain, potentially affecting the mobilome, cell mobility, and inorganic ion metabolism. In addition, the analysis resulted in the identification of a new plasmid similar to the pAX22 derived from Achromobacter denitrificans, which was named plX, along with plA and plC, previously reported in other strains of X. fuscans subsp. fuscans. Xff49 represents the first Brazilian genome of X. fuscans subsp. fuscans and might provide useful information applicable to the studies of phylogenetics, evolution, and pathogenomics, thereby allowing a better understanding of the genomic features present in the Brazilian strains.
Collapse
|
12
|
Tugume JK, Tusiime G, Sekamate AM, Buruchara R, Mukankusi CM. Diversity and interaction of common bacterial blight disease-causing bacteria (Xanthomonas spp.) with Phaseolus vulgaris L. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|