1
|
Li Z, Cao G, Qiu L, Chen X, Zhong L, Wang X, Xu H, Wang C, Fan L, Meng S, Chen J, Song C. Aquaculture activities influencing the generation of geosmin and 2-methylisoborneol: a case study in the aquaculture regions of Hongze Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4196-4208. [PMID: 38100023 DOI: 10.1007/s11356-023-31329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
Contamination by odor substances such as geosmin (GSM) and 2-methylisoborneol (2-MIB) was examined in the cultured water from aquaculture farming in the region of the Hongze Lake in 2022, and some factors influencing residual levels of them in the water were analyzed. Geographically, high concentrations of GSM were located mainly in the north and northeast culture areas of the lake, while those of 2-MIB were found in the northeast and southwest. Analysis of the water in the enclosure culture revealed significant differences in the concentrations of GSM and 2-MIB among the cultured species. The mean concentrations of GSM in culture water were ranked in the order: crab > the four major Chinese carps > silver and bighead carp, and silver and bighead carp > crab > the four major Chinese carps for 2-MIB. The concentration of GSM was significantly higher at 38.99 ± 18.93 ng/L in crab culture water compared to other fish culture water. Significant differences were observed in GSM concentrations between crab enclosure culture and pond culture, while 2-MIB levels were comparable. These findings suggest that cultural management practices significantly affect the generation of odor substances. The taste and odor (T&O) assessment revealed that the residual levels of GSM and 2-MIB in most samples were below the odor threshold concentrations (OTCs), although high levels of GSM and 2-MIB in all water bodies were at 30.9% and 27.5%, respectively. Compared with the corresponding data from other places and the regulation guidelines of Japan, USA, and China, the region in the Hongze Lake is generally classified as a slightly T&O area, capable of supporting the aquaculture production scale.
Collapse
Affiliation(s)
- Zhonghua Li
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
| | - Guoqing Cao
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, People's Republic of China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
| | - Xi Chen
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
| | - Liqiang Zhong
- Freshwater Fisheries Research Institute of Jiangsu Province, 210017, Nanjing, People's Republic of China
| | - Xinchi Wang
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
| | - Huimin Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, People's Republic of China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
| | - Changbo Wang
- Kunshan Fisheries Technology Extension Center, 215300, Kunshan, People's Republic of China
| | - Limin Fan
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, People's Republic of China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
| | - Shunlong Meng
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, People's Republic of China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
| | - Jiazhang Chen
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, People's Republic of China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, People's Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China
| | - Chao Song
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, People's Republic of China.
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China.
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, People's Republic of China.
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, People's Republic of China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, People's Republic of China.
| |
Collapse
|
2
|
Wu H, Xie L, Wu Y, Chen L, Jiang B, Chen X, Wu Y. Improving cleaner production of human activities to mitigate total petroleum hydrocarbons accumulation in coastal environment. MARINE POLLUTION BULLETIN 2023; 186:114473. [PMID: 36512859 DOI: 10.1016/j.marpolbul.2022.114473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The marine coast is an important ecological transitional boundary but easily suffers from human intervention. Total petroleum hydrocarbons (TPHs) are ubiquitous along the coast. However, the influence of anthropogenic and natural factors on TPHs distribution remains unclear. This study sampled surficial sediment (N = 243) from the coasts of the largest peninsula-Leizhou Peninsula, in Southern China. We found that land-based discharge, sea traffic, and sediment type significantly (p < 0.05) drive the accumulation of TPHs. We observed that TPHs increased by 1.036 μg · g-1 (exp[αi] = exp. [0.0355]) of its original value with the addition of one more boat on the wharf. Although the average TPHs were at a moderate level (124.68, ND-1536.14, μg · g-1) and risk, 'Blue Carbon' ecosystems, i.e., mangroves (224.84, ND - 1441.13, μg · g-1, p < 0.001) were more severely polluted. Cleaner production policy should be applied to mitigate TPHs discharging trend from coastal areas.
Collapse
Affiliation(s)
- Hongyi Wu
- Western Guangdong Provincial Engineering Technology Research Center of Seafood Resource Sustainable Utilization, Lingnan Normal University, Zhanjiang 524048, Guangdong, People's Republic of China
| | - Ling Xie
- Western Guangdong Provincial Engineering Technology Research Center of Seafood Resource Sustainable Utilization, Lingnan Normal University, Zhanjiang 524048, Guangdong, People's Republic of China
| | - Yuchen Wu
- Western Guangdong Provincial Engineering Technology Research Center of Seafood Resource Sustainable Utilization, Lingnan Normal University, Zhanjiang 524048, Guangdong, People's Republic of China
| | - Liwei Chen
- Western Guangdong Provincial Engineering Technology Research Center of Seafood Resource Sustainable Utilization, Lingnan Normal University, Zhanjiang 524048, Guangdong, People's Republic of China
| | - Bian Jiang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang, Guangdong, 524048, People's Republic of China
| | - Xiaohai Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, People's Republic of China
| | - Yinglin Wu
- Western Guangdong Provincial Engineering Technology Research Center of Seafood Resource Sustainable Utilization, Lingnan Normal University, Zhanjiang 524048, Guangdong, People's Republic of China; School of Life Science and Technology, Lingnan Normal University, Zhanjiang, Guangdong, 524048, People's Republic of China.
| |
Collapse
|
3
|
Hu Y, Zhou C, Xu K, Ke A, Zheng Y, Lu R, Xu J. Pollution level and health risk assessment of the total petroleum hydrocarbon in marine environment and aquatic products: a case of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86887-86897. [PMID: 35802327 DOI: 10.1007/s11356-022-21731-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
To evaluate the pollution level and health risk of total petroleum hydrocarbon (TPH), seawater, sediments, and aquatic organisms were sampled from the southern sea area of Zhejiang Province (Yangtze River Delta, China) between 2017 and 2019. TPH was widely present in the aquatic environment and products, and its concentration was highly variable. The average value of pollution index (PI) exceeded 1 from 2017 to 2018, and 45.46-69.19% of seawater samples and 56.87-50.00% of sediment samples were polluted. The results showed significant differences in the TPH concentration in various species of aquatic organisms. The average TPH value in aquatic organisms could be ranked in the order as follows: bivalve > shrimp > crab > fish, further reflecting that the ability to accumulate and metabolize TPH existed differently among aquatic organisms within the same pond aquaculture environment. It was relatively safe to eat aquatic products since the exposure risk index was found to be far below the threshold value in this study. Therefore, it would be prudent to undertake regular monitoring of TPH to ensure effective ecosystem functioning and seafood safety in the southern Zhejiang ocean.
Collapse
Affiliation(s)
- Yuan Hu
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou, 325005, China
| | - Chaosheng Zhou
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou, 325005, China
| | - Kailun Xu
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou, 325005, China
| | - Aiyin Ke
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou, 325005, China
| | - Yinuo Zheng
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou, 325005, China
| | - Rongmao Lu
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou, 325005, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
4
|
Yang Y, Zhang H, Qiu S, Sooranna SR, Deng X, Qu X, Yin W, Chen Q, Niu B. Risk assessment and early warning of the presence of heavy metal pollution in strawberries. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114001. [PMID: 36027710 DOI: 10.1016/j.ecoenv.2022.114001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution is a major threat to agricultural produce and it can pose potential ecological risks which subsequently impacts on human health. Strawberries are an economically important produce of China. The intrinsic link of heavy metal pollution risk in the soil-strawberry ecosystem is of concern. In this study, the pollution index of heavy metal pollutants in farmlands of different provinces were evaluated, and the results showed significantly high levels of cadmium. In addition, Nemerow integrated pollution index analysis showed that low-pollution farmlands only accounted for 14.07% of the total arable land area. Then, the transfer factors were used to calculate the migration of heavy metals from the soil into strawberries. The results showed that cadmium and nickel were relatively high in strawberries from the Guangxi province. Similar results were found for mercury in Jiangxi Province. The pollution index of single food pollution also showed that mercury in strawberries from Jiangxi Province was at a moderate pollution level. The comprehensive pollution index indicated that heavy metal pollution in strawberries in Central China may be severe. In addition, spatial clustering analysis showed that cadmium, chromium, lead, arsenic and zinc in strawberries had significant hotspot clustering in central, south and southwest China. Finally, our studies also suggested that the risk of carcinogenic and non-carcinogenic diseases was higher in the (2, 4] years age group than in other age groups. People in Yunnan Province were also found to have a higher non-carcinogenic risk than those in other provinces and cities in China. This study provides a comprehensive view of the potential risks of heavy metal contamination in strawberries, which could provide assistance in the design of regulatory and risk management programs for chemical pollutants in strawberries, thus ensuring the safety of consumption of these edible fruits.
Collapse
Affiliation(s)
- Yunfeng Yang
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Hui Zhang
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Songyin Qiu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, 369 Fulham Road, London SW10 9NH, United Kingdom
| | - Xiaojun Deng
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, PR China
| | - Xiaosheng Qu
- National Engineering laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal, Nanning, PR China
| | - Wenyu Yin
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, Jiangsu, PR China.
| | - Qin Chen
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China.
| | - Bing Niu
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China.
| |
Collapse
|
5
|
Liu L, Lu Y, Shan Y, Mi J, Zhang Z, Ni F, Zhang J, Shao W. Pollution characteristics of soil heavy metals around two typical copper mining and beneficiation enterprises in Northwest China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:788. [PMID: 36104572 DOI: 10.1007/s10661-022-10416-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
In order to investigate the situation of heavy metal pollution in the heavy metal industry in Gansu Province, a large copper mining province, two large and typical copper mining and beneficiation enterprises with differences in topographic features, climatic conditions, and soil types were selected as the target of this study based on similar ore types and beneficiation processes. Around these two enterprises, geochemical baselines of the six heavy metals were established, while the degree of local soil heavy metal pollution and potential hazards to humans were assessed based on statistical analysis, single-factor and multi-factor index analysis, and health risk evaluation models. In addition, Spearman's correlation analysis and hierarchical cluster analysis were used to explore the intrinsic association between each heavy metal in the two mining industries to reveal the pattern of soil heavy metal pollution in the copper mining and beneficiation industry and to propose targeted measures to improve and prevent soil heavy metal pollution. The results showed that the heavy metal pollution in the soil around Shengxi Mining Co., Ltd. of Subei County (SX enterprise) was higher than that around Yangba Copper Co., Ltd. of Gansu Province (YB enterprise), but the two enterprises had similar patterns of pollution, with an overall medium level of pollution. The carcinogenic and non-carcinogenic risks for children and adults were within acceptable limits for both enterprises. Besides, the correlation between the different heavy metals to similarity in their sources of contamination and the different degrees of association between the soil heavy metals of the two enterprises due to their environmental characteristics.
Collapse
Affiliation(s)
- Lei Liu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Yajing Lu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Yuxin Shan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Jimin Mi
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Zepeng Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Fei Ni
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Jun Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Wenyan Shao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Li QG, Liu GH, Qi L, Wang HC, Ye ZF, Zhao QL. Heavy metal-contained wastewater in China: Discharge, management and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152091. [PMID: 34863767 DOI: 10.1016/j.scitotenv.2021.152091] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 05/22/2023]
Abstract
A large amount of heavy metal-contained wastewater (HMW) was discharged during Chinese industry development, which has caused many environmental problems. This study reviewed discharge, management and treatment of HMW in China through collecting and analyzing data from China's official statistical yearbook, standards, technical specifications, government reports, case reports, and research paper. Results showed that industry wastewater discharged by an amount of about 221.6 × 108 t (in 2012), where emission of heavy metals including Pb, Hg, Cd, Cr(VI), T-Cr was around 388.4 t (in 2012). Heavy metal emission with wastewater in east China and central south China was observed to be graver than that in other areas. However, control of heavy metals in Pb and Cd in northwest China was more difficult compared with other areas. In terms of management, China's government has issued many wastewater discharge standards, strict management policies for controlling HMW discharge in recent years, resulting in reduced HMW discharge. In addition, main HMW treatment technology in China was chemical precipitation, and other technologies such as membrane separation, adsorption, ion exchange, electrochemical and biological methods were also occasionally applied. In the future, chemical industries will be concentrated in northwest China, therefore control of HMW discharge should be paid much more attention in those areas. In addition, more effective and environment-friendly heavy metal removal and regeneration technologies should be developed, such as biomaterials adsorbent.
Collapse
Affiliation(s)
- Qian-Gang Li
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Hong-Chen Wang
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Zheng-Fang Ye
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Quan-Lin Zhao
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|