1
|
Yin X, Lin L, Fang F, Zhang B, Shen C. Mechanisms and Optimization Strategies of Paracrine Exosomes from Mesenchymal Stem Cells in Ischemic Heart Disease. Stem Cells Int 2023; 2023:6500831. [PMID: 38034060 PMCID: PMC10686715 DOI: 10.1155/2023/6500831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The morbidity and mortality of myocardial infarction (MI) are increasing worldwide. Mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal and differentiation capabilities that are essential in tissue healing and regenerative medicine. However, the low implantation and survival rates of transplanted cells hinder the widespread clinical use of stem cells. Exosomes are naturally occurring nanovesicles that are secreted by cells and promote the repair of cardiac function by transporting noncoding RNA and protein. In recent years, MSC-derived exosomes have been promising cell-free treatment tools for improving cardiac function and reversing cardiac remodeling. This review describes the biological properties and therapeutic potential of exosomes and summarizes some engineering approaches for exosomes optimization to enhance the targeting and therapeutic efficacy of exosomes in MI.
Collapse
Affiliation(s)
- Xiaorong Yin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Lizhi Lin
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fang Fang
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Cheng Shen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Goto T, Ousaka D, Hirai K, Kotani Y, Kasahara S. Intravenous infusion of cardiac progenitor cells in animal models of single ventricular physiology. Eur J Cardiothorac Surg 2023; 64:ezad304. [PMID: 37824193 PMCID: PMC10576638 DOI: 10.1093/ejcts/ezad304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES The goal of this study was to identify the practical applications of intravenous cell therapy for single-ventricle physiology (SVP) by establishing experimental SVP models. METHODS An SVP with a three-stage palliation was constructed in an acute swine model without cardiopulmonary bypass. A modified Blalock-Taussig (MBT) shunt was created using an aortopulmonary shunt with the superior and inferior venae cavae (SVC and IVC, respectively) connected to the left atrium (n = 10). A bidirectional cavopulmonary shunt (BCPS) was constructed using a graft between the IVC and the left atrium with an SVC cavopulmonary connection (n = 10). The SVC and the IVC were connected to the pulmonary artery to establish a total cavopulmonary connection (TCPC, n = 10). The survival times of half of the animal models were studied. The other half and the biventricular sham control (n = 5) were injected intravenously with cardiosphere-derived cells (CDCs), and the cardiac retention of CDCs was assessed after 2 h. RESULTS All SVP models died within 20 h. Perioperative mortality was higher in the BCPS group because of lower oxygen saturation (P < 0.001). Cardiac retention of intravenously delivered CDCs, as detected by magnetic resonance imaging and histologic analysis, was significantly higher in the modified Blalock-Taussig and BCPS groups than in the TCPC group (P < 0.01). CONCLUSIONS Without the total right heart exclusion, stage-specific SVP models can be functionally constructed in pigs with stable outcomes. Intravenous CDC injections may be applicable in patients with SVP before TCPC completion, given that the initial lung trafficking is efficiently bypassed and sufficient systemic blood flow is supplied from the single ventricle.
Collapse
Affiliation(s)
- Takuya Goto
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Daiki Ousaka
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Kenta Hirai
- Department of Cardiovascular Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Yasuhiro Kotani
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| |
Collapse
|
3
|
Efficacy of Stem Cell Therapy in Large Animal Models of Ischemic Cardiomyopathies: A Systematic Review and Meta-Analysis. Animals (Basel) 2022; 12:ani12060749. [PMID: 35327146 PMCID: PMC8944644 DOI: 10.3390/ani12060749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Stem-cell therapy provides a promising strategy for patients with ischemic heart disease. In recent years, numerous studies related to this therapeutic approach were performed; however, the results were often heterogeneous and contradictory. For this reason, we conducted a systematic review and meta-analysis of trials, reporting the use of stem-cell treatment against acute or chronic ischemic cardiomyopathies in large animal models with regard to Left Ventricular Ejection Fraction (LVEF). The defined research strategy was applied to the PubMed database to identify relevant studies published from January 2011 to July 2021. A random-effect meta-analysis was performed on LVEF mean data at follow-up between control and stem-cell-treated animals. In order to improve the definition of the effect measure and to analyze the factors that could influence the outcomes, a subgroup comparison was conducted. Sixty-six studies (n = 1183 animals) satisfied our inclusion criteria. Ischemia/reperfusion infarction was performed in 37 studies, and chronic occlusion in 29 studies; moreover, 58 studies were on a pig animal model. The meta-analysis showed that cell therapy increased LVEF by 7.41% (95% Confidence Interval 6.23−8.59%; p < 0.001) at follow-up, with significative heterogeneity and high inconsistency (I2 = 82%, p < 0.001). By subgroup comparison, the follow-up after 31−60 days (p = 0.025), the late cell injection (>7 days, p = 0.005) and the route of cellular delivery by surgical treatment (p < 0.001) were significant predictors of LVEF improvement. This meta-analysis showed that stem-cell therapy may improve heart function in large animal models and that the swine specie is confirmed as a relevant animal model in the cardiovascular field. Due to the significative heterogeneity and high inconsistency, future translational studies should be designed to take into account the evidenced predictors to allow for the reduction of the number of animals used.
Collapse
|
4
|
In Vivo MRI Tracking of Mesenchymal Stromal Cells Labeled with Ultrasmall Paramagnetic Iron Oxide Particles after Intramyocardial Transplantation in Patients with Chronic Ischemic Heart Disease. Stem Cells Int 2019; 2019:2754927. [PMID: 31814830 PMCID: PMC6877937 DOI: 10.1155/2019/2754927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 09/28/2019] [Indexed: 01/17/2023] Open
Abstract
Background While regenerative stem cell therapy for ischemic heart disease has moved into phase 3 studies, little is still known about retention and migration of cell posttransplantation. In human studies, the ability to track transplanted cells has been limited to labeling with radioisotopes and tracking using nuclear imaging. This method is limited by low resolution and short half-lives of available radioisotopes. Longitudinal tracking using magnetic resonance imaging (MRI) of myocardial injected cells labeled with iron oxide nanoparticles has shown promising results in numerous preclinical studies but has yet to be evaluated in human studies. We aimed to evaluate MRI tracking of mesenchymal stromal cells (MSCs) labeled with ultrasmall paramagnetic iron oxide (USPIO) nanoparticles after intramyocardial transplantation in patients with ischemic heart disease (IHD). Methods Five no-option patients with chronic symptomatic IHD underwent NOGA-guided intramyocardial transplantation of USPIO-labeled MSCs. Serial MRI scans were performed to track labeled cells both visually and using semiautomated T2∗ relaxation time analysis. For safety, we followed symptoms, quality of life, and myocardial function for 6 months. Results USPIO-labeled MSCs were tracked for up to 14 days after transplantation at injection sites both visually and using semiautomated regional T2∗ relaxation time analysis. Labeling of MSCs did not impair long-term safety of treatment. Conclusion This was a first-in-man clinical experience aimed at evaluating the utility of MRI tracking of USPIO-labeled bone marrow-derived autologous MSCs after intramyocardial injection in patients with chronic IHD. The treatment was safe, and cells were detectable at injection sites up to 14 days after transplantation. Further studies are needed to clarify if MSCs migrate out of the injection area into other areas of the myocardium or if injected cells are washed out into the peripheral circulation. The trial is registered with ClinicalTrials.gov NCT03651791.
Collapse
|
5
|
Narayanan K, Mishra S, Singh S, Pei M, Gulyas B, Padmanabhan P. Engineering Concepts in Stem Cell Research. Biotechnol J 2017; 12. [PMID: 28901712 DOI: 10.1002/biot.201700066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/07/2017] [Indexed: 12/15/2022]
Abstract
The field of regenerative medicine integrates advancements made in stem cells, molecular biology, engineering, and clinical methodologies. Stem cells serve as a fundamental ingredient for therapeutic application in regenerative medicine. Apart from stem cells, engineering concepts have equally contributed to the success of stem cell based applications in improving human health. The purpose of various engineering methodologies is to develop regenerative and preventive medicine to combat various diseases and deformities. Explosion of stem cell discoveries and their implementation in clinical setting warrants new engineering concepts and new biomaterials. Biomaterials, microfluidics, and nanotechnology are the major engineering concepts used for the implementation of stem cells in regenerative medicine. Many of these engineering technologies target the specific niche of the cell for better functional capability. Controlling the niche is the key for various developmental activities leading to organogenesis and tissue homeostasis. Biomimetic understanding not only helped to improve the design of the matrices or scaffolds by incorporating suitable biological and physical components, but also ultimately aided adoption of designs that helped these materials/devices have better function. Adoption of engineering concepts in stem cell research improved overall achievement, however, several important issues such as long-term effects with respect to systems biology needs to be addressed. Here, in this review the authors will highlight some interesting breakthroughs in stem cell biology that use engineering methodologies.
Collapse
Affiliation(s)
- Karthikeyan Narayanan
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, PO Box 9196, One Medical Center Drive, 2 Morgantown, WV 26505-9196, USA
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Satnam Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, PO Box 9196, One Medical Center Drive, 2 Morgantown, WV 26505-9196, USA
| | - Balazs Gulyas
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
6
|
Berninger MT, Mohajerani P, Wildgruber M, Beziere N, Kimm MA, Ma X, Haller B, Fleming MJ, Vogt S, Anton M, Imhoff AB, Ntziachristos V, Meier R, Henning TD. Detection of intramyocardially injected DiR-labeled mesenchymal stem cells by optical and optoacoustic tomography. PHOTOACOUSTICS 2017; 6:37-47. [PMID: 28540184 PMCID: PMC5430154 DOI: 10.1016/j.pacs.2017.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 05/10/2023]
Abstract
The distribution of intramyocardially injected rabbit MSCs, labeled with the near-infrared dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbo-cyanine-iodide (DiR) using hybrid Fluorescence Molecular Tomography-X-ray Computed Tomography (FMT-XCT) and Multispectral Optoacoustic Tomography (MSOT) imaging technologies, was investigated. Viability and induction of apoptosis of DiR labeled MSCs were assessed by XTT- and Caspase-3/-7-testing in vitro. 2 × 106, 2 × 105 and 2 × 104 MSCs labeled with 5 and 10 μg DiR/ml were injected into fresh frozen rabbit hearts. FMT-XCT, MSOT and fluorescence cryosection imaging were performed. Concentrations up to 10 μg DiR/ml did not cause apoptosis in vitro (p > 0.05). FMT and MSOT imaging of labeled MSCs led to a strong signal. The imaging modalities highlighted a difference in cell distribution and concentration correlated to the number of injected cells. Ex-vivo cryosectioning confirmed the molecular fluorescence signal. FMT and MSOT are sensitive imaging techniques offering high-anatomic resolution in terms of detection and distribution of intramyocardially injected stem cells in a rabbit model.
Collapse
Affiliation(s)
- Markus T. Berninger
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Trauma and Orthopaedic Surgery, BG Unfallklinik Murnau, Murnau, Germany
- Corresponding author at: Department of Trauma and Orthopaedic Surgery, BG Unfallklinik Murnau, Prof.-Küntscher-Strasse 8, 82418, Murnau, Germany.
| | - Pouyan Mohajerani
- Institute for Biological and Medical Imaging, Technische Universität München und Helmholtz Zentrum München, Neuherberg, Germany
| | - Moritz Wildgruber
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Nicolas Beziere
- Institute for Biological and Medical Imaging, Technische Universität München und Helmholtz Zentrum München, Neuherberg, Germany
| | - Melanie A. Kimm
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Xiaopeng Ma
- Institute for Biological and Medical Imaging, Technische Universität München und Helmholtz Zentrum München, Neuherberg, Germany
| | - Bernhard Haller
- Institute for Medical Statistics and Epidemiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Megan J. Fleming
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan Vogt
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martina Anton
- Institute for Experimental Oncology and Therapy Research and Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Andreas B. Imhoff
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technische Universität München und Helmholtz Zentrum München, Neuherberg, Germany
| | - Reinhard Meier
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | |
Collapse
|
7
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
Corradetti B, Ferrari M. Nanotechnology for mesenchymal stem cell therapies. J Control Release 2015; 240:242-250. [PMID: 26732556 DOI: 10.1016/j.jconrel.2015.12.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSC) display great proliferative, differentiative, chemotactic, and immune-modulatory properties required to promote tissue repair. Several clinical trials based on the use of MSC are currently underway for therapeutic purposes. The aim of this article is to examine the current trends and potential impact of nanotechnology in MSC-driven regenerative medicine. Nanoparticle-based approaches are used as powerful carrier systems for the targeted delivery of bioactive molecules to ensure MSC long-term maintenance in vitro and to enhance their regenerative potential. Nanostructured materials have been developed to recapitulate the stem cell niche within a tissue and to instruct MSC toward the creation of regeneration-permissive environment. Finally, the capability of MSC to migrate toward the site of injury/inflammation has allowed for the development of diagnostic imaging systems able to monitor transplanted stem cell bio-distribution, toxicity, and therapeutic effectiveness.
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA.
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
9
|
Zhou B, Li D, Qian J, Li Z, Pang P, Shan H. MR tracking of SPIO-labeled mesenchymal stem cells in rats with liver fibrosis could not monitor the cells accurately. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:473-80. [PMID: 26153152 DOI: 10.1002/cmmi.1650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/13/2015] [Accepted: 05/18/2015] [Indexed: 01/31/2023]
Abstract
Our previous study showed that in vivo magnetic resonance (MR) imaging is effective in tracking superparamagnetic iron oxide (SPIO)-labeled bone marrow mesenchymal stem cells (BMSCs) in rats with liver fibrosis. SPIO-labeling-induced signal reduction on MR images was completely reversed within 15 days after transplantation. It is still unclear whether the signal changes in MR imaging could reflect the number of transplanted cells in the liver. In the present study, BMSCs of male rats were doubly labeled with enhanced green fluorescent protein (EGFP) and SPIO and injected intravascularly into female rats with liver fibrosis. At different time points after injection, MR imaging was performed. The distribution of SPIO particles and EGFP-positive cells was determined by Prussian blue staining and EGFP immunohistochemistry, respectively. The distribution of transplanted BMSCs in various organs was assessed by detection of the SRY gene using real-time quantitative PCR. At 15 days post transplantation, the numbers of transplanted cells were significantly decreased in the lung, kidney, spleen and muscle, but not liver and heart, in comparison with those at 7 days after transplantation. EGFP staining-positive cells were observed in the liver intralobular parenchyma, while Prussian blue staining was negative at 42 days after transplantation. Taken together, SPIO particles and EGFP-labeled BMSCs show a different tissue distribution pattern in rats with liver fibrosis after a long-term period of monitoring. SPIO-based MR imaging may not be suitable for long-term tracking of transplanted BMSCs in vivo.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou, China
| | - Dan Li
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou, China
| | - Jiesheng Qian
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou, China
| | - Zhengran Li
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou, China
| | - Pengfei Pang
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou, China
| | - Hong Shan
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou, China.,Interventional Radiology Institute, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Adenovirus-mediated expression of human sodium-iodide symporter gene permits in vivo tracking of adipose tissue-derived stem cells in a canine myocardial infarction model. Nucl Med Biol 2015; 42:621-9. [PMID: 25899941 DOI: 10.1016/j.nucmedbio.2015.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 02/02/2015] [Accepted: 03/16/2015] [Indexed: 11/23/2022]
Abstract
INTRODUCTION In vivo tracking of the transplanted stem cells is important in pre-clinical research of stem cell therapy for myocardial infarction. We examined the feasibility of adenovirus-mediated sodium iodide symporter (NIS) gene to cell tracking imaging of transplanted stem cells in a canine infarcted myocardium by clinical single photon emission computed tomography (SPECT). METHODS Beagle dogs were injected intramyocardially with NIS-expressing adenovirus-transfected canine stem cells (Ad-hNIS-canine ADSCs) a week after myocardial infarction (MI) development. (99m)Tc-methoxyisobutylisonitrile ((99m)Tc-MIBI) and (99m)Tc-pertechnetate ((99m)TcO4(-)) SPECT imaging were performed for assessment of infarcted myocardium and viable stem cell tracking. Transthoracic echocardiography was performed to monitor any functional cardiac changes. RESULTS Left ventricular ejection fraction (LVEF) was decreased after LAD ligation. There was no significant difference in EF between the groups with the stem cell or saline injection. (125)I uptake was higher in Ad-hNIS-canine ADSCs than in non-transfected ADSCs. Cell proliferation and differentiation were not affected by hNIS-carrying adenovirus transfection. (99m)Tc-MIBI myocardial SPECT imaging showed decreased radiotracer uptake in the infarcted apex and mid-anterolateral regions. Ad-hNIS-canine ADSCs were identified as a region of focally increased (99m)TcO4(-) uptake at the lateral wall and around the apex of the left ventricle, peaked at 2 days and was observed until day 9. CONCLUSIONS Combination of adenovirus-mediated NIS gene transfection and clinical nuclear imaging modalities enables to trace the fate of transplanted stem cells in infarcted myocardium for translational in vivo cell tracking study for prolonged duration.
Collapse
|
11
|
Huang Z, Li C, Yang S, Xu J, Shen Y, Xie X, Dai Y, Lu H, Gong H, Sun A, Qian J, Ge J. Magnetic resonance hypointensive signal primarily originates from extracellular iron particles in the long-term tracking of mesenchymal stem cells transplanted in the infarcted myocardium. Int J Nanomedicine 2015. [PMID: 25767388 PMCID: PMC4354691 DOI: 10.2147/ijn.s77858] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The long-lasting hypointensities in cardiac magnetic resonance (CMR) were believed to originate from superparamagnetic iron oxide (SPIO)-engulfed macrophages during long-term stem cell tracking. However, the iron clearance capacity of the ischemic heart was limited. Therefore, we speculated that the extracellular SPIO particles may also be involved in the generation of false-positive signals. METHODS AND RESULTS Male swine mesenchymal stem cells (MSCs) were incubated with SPIO for 24 hours, and SPIO labeling had no significant effects on either cell viability or differentiation. In vitro studies showed that magnetic resonance failed to distinguish SPIO from living SPIO-MSCs or dead SPIO-MSCs. Two hours after the establishment of the female swine acute myocardial infarction model, 2×10(7) male SPIO-labeled MSCs (n=5) or unlabeled MSCs (n=5) were transextracardially injected into the infarcted myocardium at ten distinct sites. In vivo CMR with T2 star weighted imaging-flash-2D sequence revealed a signal void corresponding to the initial SPIO-MSC injection sites. At 6 months after transplantation, CMR identified 32 (64%) of the 50 injection sites, where massive Prussian blue-positive iron deposits were detected by pathological examination. However, iron particles were predominantly distributed in the extracellular space, and a minority was distributed within CD68-positive macrophages and other CD68-negative cells. No sex-determining region Y DNA of donor MSCs was detected. CONCLUSION CMR hypointensive signal is primarily caused by extracellular iron particles in the long-term tracking of transplanted MSCs after myocardial infarction. Consideration should be given to both the false-positive signal and the potential cardiac toxicity of long-standing iron deposits in the heart.
Collapse
Affiliation(s)
- Zheyong Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chenguang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shan Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jianfeng Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yunli Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xinxing Xie
- Department of Cardiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Yuxiang Dai
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hao Lu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hui Gong
- Institute of Biomedical Science, Fudan University, Shanghai, People's Republic of China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Juying Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Crisci E, Fraile L, Novellas R, Espada Y, Cabezón R, Martínez J, Cordoba L, Bárcena J, Benitez-Ribas D, Montoya M. In vivo tracking and immunological properties of pulsed porcine monocyte-derived dendritic cells. Mol Immunol 2014; 63:343-54. [PMID: 25282042 DOI: 10.1016/j.molimm.2014.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023]
Abstract
Cellular therapies using immune cells and in particular dendritic cells (DCs) are being increasingly applied in clinical trials and vaccines. Their success partially depends on accurate delivery of cells to target organs or migration to lymph nodes. Delivery and subsequent migration of cells to regional lymph nodes is essential for effective stimulation of the immune system. Thus, the design of an optimal DC therapy would be improved by optimizing technologies for monitoring DC trafficking. Magnetic resonance imaging (MRI) represents a powerful tool for non-invasive imaging of DC migration in vivo. Domestic pigs share similarities with humans and represent an excellent animal model for immunological studies. The aim of this study was to investigate the possibility using pigs as models for DC tracking in vivo. Porcine monocyte derived DC (MoDC) culture with superparamagnetic iron oxide (SPIO) particles was standardized on the basis of SPIO concentration and culture viability. Phenotype, cytokine production and mixed lymphocyte reaction assay confirmed that porcine SPIO-MoDC culture were similar to mock MoDCs and fully functional in vivo. Alike, similar patterns were obtained in human MoDCs. After subcutaneous inoculation in pigs, porcine SPIO-MoDC migration to regional lymph nodes was detected by MRI and confirmed by Perls staining of draining lymph nodes. Moreover, after one dose of virus-like particles-pulsed MoDCs specific local and systemic responses were confirmed using ELISPOT IFN-γ in pigs. In summary, the results in this work showed that after one single subcutaneous dose of pulsed MoDCs, pigs were able to elicit specific local and systemic immune responses. Additionally, the dynamic imaging of MRI-based DC tracking was shown using SPIO particles. This proof-of-principle study shows the potential of using pigs as a suitable animal model to test DC trafficking with the aim of improving cellular therapies.
Collapse
Affiliation(s)
- Elisa Crisci
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | | | - Rosa Novellas
- Fundació Hospital Clínic Veterinari, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès Barcelona, Spain
| | - Yvonne Espada
- Fundació Hospital Clínic Veterinari, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès Barcelona, Spain
| | - Raquel Cabezón
- Fundació Clínic per la Recerca Biomèdica, Centre Esther Koplowitz, Barcelona, Spain
| | - Jorge Martínez
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Spain
| | - Lorena Cordoba
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal (INIA-CISA), Valdeolmos, 28130 Madrid, Spain
| | - Daniel Benitez-Ribas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Centre Esther Koplowitz, Barcelona, Spain
| | - María Montoya
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain.
| |
Collapse
|
13
|
Mathiasen AB, Kastrup J. Non-invasive in-vivo imaging of stem cells after transplantation in cardiovascular tissue. Am J Cancer Res 2013; 3:561-72. [PMID: 23946822 PMCID: PMC3741605 DOI: 10.7150/thno.5787] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/03/2013] [Indexed: 12/11/2022] Open
Abstract
Stem cell therapy for degenerative diseases, including ischemic heart disease is now a clinical reality. In the search for the optimal cell type for each patient category, many different stem cell subpopulations have been used. In addition, different cell processing procedures and delivery methods have been utilized. Moreover, choices of endpoints have varied between studies. Diverging results have been reported from clinical experiences, with some studies demonstrating promising results with improved cardiac function and reduced mortality and clinical symptoms, and others have seen no improvements. To better understand the underlying mechanisms of these results, a reverse translation from bedside to bench has been opened. Non-invasive cell tracking after implantation has a pivotal role in this translation. Imaging based methods can help elucidate important issues such as retention, migration and efficacy of the transplanted cells. Great effort is being made in finding new and better imaging techniques for different imaging modalities, and much have already been learned. But there are still many unanswered questions. In this review, we give an overview of the imaging modalities used for cell tracking and summarize the latest advances within the field.
Collapse
|
14
|
MRI detection of nonproliferative tumor cells in lymph node metastases using iron oxide particles in a mouse model of breast cancer. Transl Oncol 2013; 6:347-54. [PMID: 23730415 DOI: 10.1593/tlo.13121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 01/28/2023] Open
Abstract
Cell tracking with magnetic resonance imaging (MRI) and iron nanoparticles is commonly used to monitor the fate of implanted cells in preclinical disease models. Few studies have employed these methods to study cancer cells because proliferative iron-labeled cancer cells will lose the label as they divide. In this study, we evaluate the potential for retention of the iron nanoparticle label, and resulting MRI signal, to serve as a marker for slowly dividing cancer cells. Green fluorescent protein-transfected MDA-MB-231 breast cancer cells were labeled with red fluorescent micron-sized superparamagnetic iron oxide (MPIO) nanoparticles. Cells were examined in vitro at multiple time points after labeling by staining for iron-labeled cells and by flow cytometric detection of the fluorescent MPIO. Severe combined immune deficiency (SCID) mice were implanted with 5 x 10(5) MPIO-labeled or unlabeled cells in the mammary fat pad and MRI was performed weekly until 28 days after injection. Microscopy was performed to validate MRI. In vitro assays revealed a very small percentage of cells that retained MPIO at 14 days after labeling. Regions of signal loss were observed in MRI of primary tumors that developed from iron-labeled cancer cells. Small focal regions of signal loss were detected in images of the axillary and brachial nodes in six of eight mice, at day 14 or later, with microscopy confirming the presence of iron-labeled cancer cells. Our data suggest an interesting role for cell tracking with iron particles since label retention leads to persistent signal void, allowing proliferative status to be determined.
Collapse
|
15
|
Optimal labeling dose, labeling time, and magnetic resonance imaging detection limits of ultrasmall superparamagnetic iron-oxide nanoparticle labeled mesenchymal stromal cells. Stem Cells Int 2013; 2013:353105. [PMID: 23577035 PMCID: PMC3614076 DOI: 10.1155/2013/353105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/09/2013] [Accepted: 02/11/2013] [Indexed: 01/07/2023] Open
Abstract
Background. Regenerative therapy is an emerging treatment modality. To determine migration and retention of implanted cells, it is crucial to develop noninvasive tracking methods. The aim was to determine ex vivo magnetic resonance imaging (MRI) detection limits of ultrasmall superparamagnetic iron-oxide (USPIO) labeled mesenchymal stromal cells (MSCs). Materials and Methods. 248 gel-phantoms were constructed and scanned on a 1.5T MRI-scanner. Phantoms contained human MSCs preincubated with USPIO nanoparticles for 2, 6, or 21 hours using 5 or 10 μg USPIO/105 MSCs. In addition, porcine hearts were scanned after injection of USPIO labeled MSCs. Results. Using 21 h incubation time and 10 μg USPIO/105 MSCs, labeled cells were clearly separated from unlabeled cells on MRI using 250.000 (P < 0.001), 500.000 (P = 0.007), and 1.000.000 MSCs (P = 0.008). At lower incubation times and doses, neither labeled nor unlabeled cells could be separated. In porcine hearts labeled, but not unlabeled, MSCs were identified on MRI. Conclusions. As few as 250.000 MSCs can be detected on MRI using 21 h incubation time and 10 μg USPIO/105 MSCs. At lower incubation times and doses, several million cells are needed for MRI detection. USPIO labeled cells can be visualized by MRI in porcine myocardial tissue.
Collapse
|
16
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Qi Y, Feng G, Huang Z, Yan W. The application of super paramagnetic iron oxide-labeled mesenchymal stem cells in cell-based therapy. Mol Biol Rep 2012; 40:2733-40. [PMID: 23269616 DOI: 10.1007/s11033-012-2364-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 12/17/2012] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cell (MSC)-based therapy has great potential for tissue regeneration. However, being able to monitor the in vivo behavior of implanted MSCs and understand the fate of these cells is necessary for further development of successful therapies and requires an effective, non-invasive and non-toxic technique for cell tracking. Super paramagnetic iron oxide (SPIO) is an idea label and tracer of MSCs. MRI can be used to follow SPIO-labeled MSCs and has been proposed as a gold standard for monitoring the in vivo biodistribution and migration of implanted SPIO-labeled MSCs. This review discusses the biological effects of SPIO labeling on MSCs and the therapeutic applications of local or systemic delivery of these labeled cells.
Collapse
Affiliation(s)
- Yiying Qi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | | | | | | |
Collapse
|