1
|
Coghi P, Ng JPL, Kadioglu O, Law BYK, Qiu AC, Saeed MEM, Chen X, Ip CK, Efferth T, Liu L, Wong VKW. Synthesis, computational docking and biological evaluation of celastrol derivatives as dual inhibitors of SERCA and P-glycoprotein in cancer therapy. Eur J Med Chem 2021; 224:113676. [PMID: 34256125 DOI: 10.1016/j.ejmech.2021.113676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022]
Abstract
A series of eleven celastrol derivatives was designed, synthesized, and evaluated for their in vitro cytotoxic activities against six human cancer cell lines (A549, HepG2, HepAD38, PC3, DLD-1 Bax-Bak WT and DKO) and three human normal cells (LO2, BEAS-2B, CCD19Lu). To our knowledge, six derivatives were the first example of dipeptide celastrol derivatives. Among them, compound 3 was the most promising derivative, as it exhibited a remarkable anti-proliferative activity and improved selectivity in liver cancer HepAD38 versus human normal hepatocytes, LO2. Compound 6 showed higher selectivity in liver cancer cells against human normal lung fibroblasts, CCD19Lu cell line. The Ca2+ mobilizations of 3 and 6 were also evaluated in the presence and absence of thapsigargin to demonstrate their inhibitory effects on SERCA. Derivatives 3 and 6 were found to induce apoptosis on LO2, HepG2 and HepAD38 cells. The potential docking poses of all synthesized celastrol dipeptides and other known inhibitors were proposed by molecular docking. Finally, 3 inhibited P-gp-mediated drug efflux with greater efficiency than inhibitor verapamil in A549 lung cancer cells. Therefore, celastrol-dipeptide derivatives are potent drug candidates for the treatment of drug-resistant cancer.
Collapse
Affiliation(s)
- Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Alena Congling Qiu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Xi Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chi Kio Ip
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
2
|
Hou W, Liu B, Xu H. Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. Eur J Med Chem 2020; 189:112081. [DOI: 10.1016/j.ejmech.2020.112081] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|