1
|
Dehghanbanadaki N, Taghdir M, Naderi-Manesh H. Structural dynamic investigation of Wnt signalling activation through Co-receptor LRP6. J Biomol Struct Dyn 2025:1-14. [PMID: 39819348 DOI: 10.1080/07391102.2024.2446667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/13/2024] [Indexed: 01/19/2025]
Abstract
Cancer sparks if the components of the cellular signaling network are aberrantly activated, leading to uncontrolled cell growth and proliferation. One of the most important players of this highly regulated network is the Wnt/β-catenin signaling, with a significant role in human health and disease. The critical co-receptor of this pathway, LRP6, is overexpressed in various cancer types and is a target for therapy. Therefore, understanding the details of the LRP6 structural activation mechanism is of tremendous importance. This research intended to compare the structural-dynamics features of the E3E4 functional domain of LRP6 induced by the activator Wnt3a and the inhibitor, Dkk1_C, compared with the receptor behavior in the apo-state. Using molecular docking, molecular dynamics simulation, and G_MMPBSA calculation, we characterized overlapping binding regions of Wnt3a and Dkk1_C on E3E4. Despite their overall similar interacting regions, Dkk1_C and Wnt induce remarkably different inter-blades hydrogen bonds, structural-dynamics behavior, and conformational energy landscape in E3E4. According to our findings, Dkk1_C stabilized the interaction. between BP3 blades 2-3, 3-4, and 4-5 and BP4 blades 1-6, 1-2, 2-3, and 3-4, aligned with apo-state. However, on the other hand, Wnt distinguishably destabilized the hydrogen bond networks of these blades. Our DCCM analysis also depicted a similar correlation pattern of apo and Dkk1-bound states, and dramatic differences in Wnt-bound state, with a specific enhancement of correlated movements in EGF4. These data provide atomistic-level clues of how natural regulators of Wnt signaling manipulate LRP6 dynamics and, therefore, guide the structure-based design of efficient artificial inhibitors/activators for the pathway.
Collapse
Affiliation(s)
- N Dehghanbanadaki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - M Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - H Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Gong C, Chang L, Huang R, Sun X, Liu Y, Wu S, Wang L, Xu B, Wang L. LIM kinase 2 activates cardiac fibroblasts and exacerbates postinfarction left ventricular remodeling via crosstalk between the canonical and non-canonical Wnt pathways. Pharmacol Res 2024; 208:107347. [PMID: 39153710 DOI: 10.1016/j.phrs.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Ischemic heart failure rates rise despite decreased acute myocardial infarction (MI) mortality. Excessive myofibroblast activation post-MI leads to adverse remodeling. LIM kinases (LIMK1 and LIMK2) regulate cytoskeleton homeostasis and are pro-fibrotic markers in atrial fibrillation. However, their roles and mechanisms in postinfarction fibrosis and ventricular remodeling remain unclear. This study found that the expression of LIMKs elevated in the border zone (BZ) in mice MI models. LIMK1/2 double knockout (DKO) restrained pathological remodeling and reduced mortality by suppressing myofibroblast activation. By using adeno-associated virus (AAV) with a periostin promoter to overexpress LIMK1 or LIMK2, this study found that myofibroblast-specific LIMK2 overexpression diminished these effects in DKO mice, while LIMK1 did not. LIMK2 kinase activity was critical for myofibroblast proliferation by using AAV overexpressing mutant LIMK2 lack of kinase activity. According to phosphoproteome analysis, functional rescue experiments, co-immunoprecipitation, and protein-protein docking, LIMK2 led to the phosphorylation of β-catenin at Ser 552. LIMK2 nuclear translocation also played a role in myofibroblast proliferation after MI with the help of AAV overexpressing mutant LIMK2 without nuclear location signal. Chromatin immunoprecipitation sequencing identified that LIMK2 bound to Lrp6 promoter region in TGF-β treated cardiac fibroblasts, positively regulating Wnt signaling via Wnt receptor internalization. This study demonstrated that LIMK2 promoted myofibroblast proliferation and adverse cardiac remodeling after MI, by enhancing phospho-β-catenin (Ser552) and Lrp6 signaling. This suggested that LIMK2 could be a target for the treatment of postinfarction injury.
Collapse
Affiliation(s)
- Chenyi Gong
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China; Department of Cardiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Lei Chang
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China; Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Rong Huang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China
| | - Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China
| | - Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China
| | - Shaojun Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China
| | - Lintao Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China; Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China.
| | - Lian Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, the Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, China; Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
3
|
Xue W, Zhu B, Zhao K, Huang Q, Luo H, Shou Y, Huang Z, Guo H. Targeting LRP6: A new strategy for cancer therapy. Pharmacol Res 2024; 204:107200. [PMID: 38710241 DOI: 10.1016/j.phrs.2024.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Targeting specific molecular drivers of tumor growth is a key approach in cancer therapy. Among these targets, the low-density lipoprotein receptor-related protein 6 (LRP6), a vital component of the Wnt signaling pathway, has emerged as an intriguing candidate. As a cell-surface receptor and vital co-receptor, LRP6 is frequently overexpressed in various cancer types, implicating its pivotal role in driving tumor progression. The pursuit of LRP6 as a target for cancer treatment has gained substantial traction, offering a promising avenue for therapeutic intervention. Here, this comprehensive review explores recent breakthroughs in our understanding of LRP6's functions and underlying molecular mechanisms, providing a profound discussion of its involvement in cancer pathogenesis and drug resistance. Importantly, we go beyond discussing LRP6's role in cancer by discussing diverse potential therapeutic approaches targeting this enigmatic protein. These approaches encompass a wide spectrum, including pharmacological agents, natural compounds, non-coding RNAs, epigenetic factors, proteins, and peptides that modulate LRP6 expression or disrupt its interactions. In addition, also discussed the challenges associated with developing LRP6 inhibitors and their advantages over Wnt inhibitors, as well as the drugs that have entered phase II clinical trials. By shedding light on these innovative strategies, we aim to underscore LRP6's significance as a valuable and multifaceted target for cancer treatment, igniting enthusiasm for further research and facilitating translation into clinical applications.
Collapse
Affiliation(s)
- Wei Xue
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Bo Zhu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Kaili Zhao
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Qiuju Huang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region of China
| | - Yiwen Shou
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhaoquan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Hongwei Guo
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
4
|
LRP6-mediated phosphorylation of connexin43 in myocardial infarction. iScience 2023; 26:106160. [PMID: 36879803 PMCID: PMC9985046 DOI: 10.1016/j.isci.2023.106160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/30/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Ventricular tachycardia (VT) and ventricular fibrillation are most causes of early death in patients with acute myocardial infarction (AMI). Conditional cardiac-specific low-density lipoprotein receptor-related protein 6 (LRP6)-knockout mice with connexin 43 (Cx43) reduction triggered the lethal ventricular arrhythmias. Thus, it is necessary for exploring whether LRP6 and its upstream genes circRNA1615 mediate the phosphorylation of Cx43 in VT of AMI. Here, we showed that circRNA1615 regulated the expression of LRP6 mRNA through sponge adsorption of miR-152-3p. Importantly, LRP6 interference fragments aggravated hypoxia injury of Cx43, while overexpression of LRP6 improved the phosphorylation of Cx43. Subsequently, interference with G-protein alpha subunit (Gαs) downstream of LRP6 further inhibited the phosphorylation of Cx43, along with increasing VT. Our results demonstrated that LRP6 upstream genes circRNA1615 controlled the damage effect and VT in AMI, and LRP6 mediated the phosphorylation of Cx43 via Gαs which played a role in VT of AMI.
Collapse
|
5
|
Desita SR, Hariftyani AS, Jannah AR, Setyobudi AK, Oktaviono YH. PCSK9 and LRP6: potential combination targets to prevent and reduce atherosclerosis. J Basic Clin Physiol Pharmacol 2022; 33:529-534. [PMID: 35429418 DOI: 10.1515/jbcpp-2021-0291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Coronary artery disease (CAD) is a disease characterized by atherosclerosis formation which causes sudden cardiac death. The prevalence of CAD is expected to increase by 2030. Atherosclerosis started from accumulation of LDL in the blood vessels, followed by endothelial cell activation and dysfunction. PCSK9 is a gene that plays an important role in the creation of atherosclerotic plaque through induced degradation of LDLRs. Inhibition of PCSK9 gene resulted in a decrease of LDLRs degradation and reduction in LDL-C levels. LRP6, as well as its mutation, is a coreceptor that contributes to atherosclerosis through the canonical Wnt/β-catenin pathway. By employing EMPs mediated miRNA-126, third-generation antisense against miR-494-3p (3 GA-494), and recombinant Wnt mouse Wnt3a (rmWnt3a), the inhibition of LRP6 could reduce VSMCs proliferation, enhancing anti-inflammatory macrophages, and diminished bioactive lipids component, respectively. Those mechanisms lead to the stabilization and reduction of atherosclerosis plaques.
Collapse
Affiliation(s)
- Saskia R Desita
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ayik R Jannah
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Yudi H Oktaviono
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya, Indonesia
| |
Collapse
|
6
|
LRP6 Receptor Plays Essential Functions in Development and Human Diseases. Genes (Basel) 2022; 13:genes13010120. [PMID: 35052459 PMCID: PMC8775365 DOI: 10.3390/genes13010120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
LRP6 is a member of the low-density lipoprotein receptor superfamily of cell-surface receptors. It is required for the activation of the Wnt/β-catenin signalling pathway. LRP6 is detected in different tissue types and is involved in numerous biological activities such as cell proliferation, specification, metastatic cancer, and embryonic development. LRP6 is essential for the proper development of different organs in vertebrates, such as Xenopus laevis, chickens, and mice. In human, LRP6 overexpression and mutations have been reported in multiple complex diseases including hypertension, atherosclerosis, and cancers. Clinical studies have shown that LRP6 is involved in various kinds of cancer, such as bladder and breast cancer. Therefore, in this review, we focus on the structure of LRP6 and its interactions with Wnt inhibitors (DKK1, SOST). We also discuss the expression of LRP6 in different model systems, with emphasis on its function in development and human diseases.
Collapse
|
7
|
Chen LJ, Lin XX, Guo J, Xu Y, Zhang SX, Chen D, Zhao Q, Xiao J, Lian GH, Peng SF, Guo D, Yang H, Shu Y, Zhou HH, Zhang W, Chen Y. Lrp6 Genotype affects Individual Susceptibility to Nonalcoholic Fatty Liver Disease and Silibinin Therapeutic Response via Wnt/β-catenin-Cyp2e1 Signaling. Int J Biol Sci 2021; 17:3936-3953. [PMID: 34671210 PMCID: PMC8495406 DOI: 10.7150/ijbs.63732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is a serious threat to human health worldwide, with a high genetic susceptibility. Rs2302685, a functional germline variant of LRP6, has been recently found to associate with NAFLD risk. This study was aimed to clarify the underlying mechanism associated with rs2302685 risk and its impact on pharmacotherapy in treatment of NAFLD. Methods: Venous blood samples were collected from NAFLD and non-NAFLD patients for SNP genotyping by using mass spectrometry. The Lrp6-floxdel mouse (Lrp6(+/-)) was generated to model the partial function associated with human rs2302685. The liver injury and therapeutic effects of silibinin were compared between Lrp6(+/-) and Lrp6(+/+) mice received a methionine-choline deficient (MCD) diet or normal diet. The effect of Lrp6 functional alteration on Wnt/β-catenin-Cyp2e1 signaling activities was evaluated by a series of cellular and molecular assays. Results: The T allele of LRP6 rs2302685 was confirmed to associate with a higher risk of NAFLD in human subjects. The carriers of rs2302685 had reduced level of AST and ALT as compared with the noncarriers. The Lrp6(+/-) mice exhibited a less severe liver injury induced by MCD but a reduced response to the treatment of silibinin in comparison to the Lrp6(+/+) mice, suggesting Lrp6 as a target of silibinin. Wnt/β-catenin-Cyp2e1 signaling together with ROS generation could be exacerbated by the overexpression of Lrp6, while decreased in response to Lrp6 siRNA or silibinin treatment under NAFLD modeling. Conclusions: The Lrp6 function affects individual susceptibility to NAFLD and the therapeutic effect of silibinin through the Wnt/β-catenin-Cyp2e1 signaling pathway. The present work has provided an underlying mechanism for human individual susceptibility to NAFLD associated with Lrp6 polymorphisms as well as a rationale for the effective use of silibinin in NAFLD patients.
Collapse
Affiliation(s)
- Li-Jie Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Xiu-Xian Lin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jing Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Song-Xia Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Dan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Guang-Hui Lian
- Department of gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shi-Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| |
Collapse
|
8
|
Li RL, Fan CH, Gong SY, Kang S. Effect and Mechanism of LRP6 on Cardiac Myocyte Ferroptosis in Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8963987. [PMID: 34712388 PMCID: PMC8548150 DOI: 10.1155/2021/8963987] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/24/2021] [Accepted: 09/11/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND This study was aimed at exploring the biological function and molecular mechanism of ferroptosis of LRP6 modulation in cardiomyocytes of myocardial infarction (MI). METHOD We established the ferroptosis model of MI in vivo and in vitro and constructed the modulation network of circRNA-miRNA-LRP6 by bioinformatics analysis; then, we focused on exploring the regulatory relationship of LRP6 and its upstream genes circRNA1615 and miR-152-3p in the RIP experiments and the double luciferase reporter gene assay. Also, we tested the LRP6-mediated autophagy-related ferroptosis in MI. RESULTS Ferroptosis was found in cardiomyocytes of MI, and ferroptosis inhibitor Ferrostatin-1 (Fer-1) could improve the pathological process of MI. LRP6 was involved in the process of ferroptosis in cardiomyocytes, and LRP6 deletion regulated ferroptosis in cardiomyocytes through autophagy. Screening and identification of the upstream gene circRNA1615 would target LRP6. circRNA1615 inhibited ferroptosis in cardiomyocytes, and circRNA1615 could regulate the expression of LRP6 through sponge adsorption of miR-152-3p, prevent LRP6-mediated autophagy-related ferroptosis in cardiomyocytes, and finally control the pathological process of MI. CONCLUSIONS circRNA1615 inhibits ferroptosis via modulation of autophagy by the miRNA152-3p/LRP6 molecular axis in cardiomyocytes of myocardial infarction.
Collapse
Affiliation(s)
- Rui-lin Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai 200120, China
| | - Cheng-hui Fan
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai 200120, China
| | - Shi-yu Gong
- School of Medicine, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Sheng Kang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai 200120, China
| |
Collapse
|
9
|
Enayatkhani M, Salimi M, Azadmanesh K, Teimoori-Toolabi L. In-silico identification of new inhibitors for Low-density lipoprotein receptor-related protein6 (LRP6). J Biomol Struct Dyn 2020; 40:4440-4450. [PMID: 33351722 DOI: 10.1080/07391102.2020.1857843] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is an important therapeutic target for diseases such as osteoporosis, Alzheimer, cancer, and neurodegenerative disease. Computational methods such as ligand-based and structure-based virtual screening have been introduced as an extremely efficient and accurate tool for finding new drug targets and candidates. In this study, we aimed to screen the National Cancer Institute (NCI) Diversity Set II and parts of the ZINC database by virtual screening to identify potential and safe compounds that can inhibit the LRP6 protein. By utilizing various screening methods such as rigid and flexible molecular docking and Lipinski's rule of five, we identified 10 potential compounds. Then, their validity was further tested by molecular dynamics simulation and MMPBSA binding free energy calculations. Eventually, it was concluded that ZINC03954520, ZINC01729523, ZINC03898665, ZINC13152226, ZINC26730911 and ZINC01069082 compounds can be potential drug compounds for inhibiting LRP6 protein. These compounds in complex with β-propeller domains of LRP6 showed that they are capable of altering the backbone of these domains and interfere with their structural dynamics which may lead to the inhibition of the signal transmission. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maryam Enayatkhani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Salimi
- Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Manandhar S, Kabekkodu SP, Pai KSR. Aberrant canonical Wnt signaling: Phytochemical based modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153243. [PMID: 32535482 DOI: 10.1016/j.phymed.2020.153243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/07/2020] [Accepted: 05/10/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Wnt signaling pathway plays a major role during development like gastrulation, axis formation, organ development and organization of body plan development. Wnt signaling aberration has been linked with various disease conditions like osteoporosis, colon cancer, hair follicle tumor, Leukemia, and Alzheimer's disease. Phytochemicals like flavonoid, glycosides, polyphenols, have been reported to directly target the markers of Wnt signaling in different disease models. PURPOSE The study deals in detail about the different phytochemical targeting key players of Wnt signaling pathway in diseases like Cancer, Osteoporosis, and Alzheimer's disease. We have focused on the Pharmacological basis of disease alleviation by phytochemical specifically targeting the Wnt signaling markers in this study. METHODS The study focused on the published articles from the preclinical rodent and invitro cell line studies related to Wnt signaling and Phytochemicals related to Cancer, Alzheimer's and Osteoporosis. The electronic databases Scopus, Web of Science and Pubmed database were used for the systematic search of literatures from 2005 up to 2019 using keywords Canonical Wnt signaling pathway, Cancer, Alzheimer's disease, Osteoporosis, Phytochemicals. The focus was to identify the target specific modulation of Wnt signaling mediated by phytochemicals. RESULTS Approximately 30 phytochemicals of different class have been identified to modulate Wnt signaling pathway acting through Axin, β-catenin translocation, GSK-3β, AKT, Wif-1 in various experimental studies. The down regulation of Wnt signaling is observed in Cancer mostly colorectal cancer, breast cancer mediated through mutations in APC and Axin genes. Different class of Phytochemicals such as flavonoid, glycosides, polyphenol, alkaloids etc. have been found to target Wnt signaling markers and alleviate Cancer. Similarly, Up regulation of Wnt signaling has been reported in Osteoporosis and neurodegenerative disease like Alzheimer's disease. CONCLUSION This review highlights the possibility of the Phytochemicals to target Wnt markers and its potential to either activate or deactivate the Wnt signaling pathway. It also describes the challenges in proper targeting of Wnt signaling and the potential risk and consequences of either up regulation or down regulation of the signaling pathway. This article highlights the possibility of Wnt signaling pathway as a therapeutic option in different diseases.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|