1
|
Fuentevilla-Alvarez G, Soto ME, Robles-Herrera GJ, Vargas-Alarcón G, Sámano R, Meza-Toledo SE, Huesca-Gómez C, Gamboa R. Analysis of Circulating miRNA Expression Profiles in Type 2 Diabetes Patients with Diabetic Foot Complications. Int J Mol Sci 2024; 25:7078. [PMID: 39000190 PMCID: PMC11241130 DOI: 10.3390/ijms25137078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with various complications, including diabetic foot, which can lead to significant morbidity and mortality. Non-healing foot ulcers in diabetic patients are a major risk factor for infections and amputations. Despite conventional treatments, which have limited efficacy, there is a need for more effective therapies. MicroRNAs (miRs) are small non-coding RNAs that play a role in gene expression and have been implicated in diabetic wound healing. miR expression was analyzed through RT-qPCR in 41 diabetic foot Mexican patients and 50 controls. Diabetic foot patients showed significant increases in plasma levels of miR-17-5p (p = 0.001), miR-191-5p (p = 0.001), let-7e-5p (p = 0.001), and miR-33a-5p (p = 0.005) when compared to controls. Elevated levels of miR-17, miR-191, and miR-121 correlated with higher glucose levels in patients with diabetic foot ulcers (r = 0.30, p = 0.004; r = 0.25, p = 0.01; and r = 0.21, p = 0.05, respectively). Levels of miR-17 showed the highest diagnostic potential (AUC 0.903, p = 0.0001). These findings underscore the possible role of these miRs in developing diabetes complications. Our study suggests that high miR-17, miR-191, and miR-121 expression is strongly associated with higher glucose levels and the development of diabetic foot ulcers.
Collapse
Affiliation(s)
- Giovanny Fuentevilla-Alvarez
- Endocrinology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico;
| | - María Elena Soto
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (M.E.S.); (G.V.-A.)
- Cardiovascular Line in American British Cowdary (ABC) Medical Center, Sur 136 No. 116 Col. Las Américas, Mexico City 01120, Mexico
| | - Gustavo Jaziel Robles-Herrera
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (G.J.R.-H.); (C.H.-G.)
| | - Gilberto Vargas-Alarcón
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (M.E.S.); (G.V.-A.)
| | - Reyna Sámano
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | - Sergio Enrique Meza-Toledo
- Biochemistry Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| | - Claudia Huesca-Gómez
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (G.J.R.-H.); (C.H.-G.)
| | - Ricardo Gamboa
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (G.J.R.-H.); (C.H.-G.)
| |
Collapse
|
2
|
Xu J, Wang Z, Ai Y, Wen Y. Serum circRNA (Circ)_0051386 assists in the diagnosis of acute ST-segment elevation myocardial infarction and prediction of the occurrence of major adverse cardiovascular events after percutaneous coronary intervention. Acta Cardiol 2024; 79:215-223. [PMID: 38456718 DOI: 10.1080/00015385.2024.2324218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND This study aimed to uncover the diagnostic value of circRNA (Circ)_0051386 in acute ST-segment elevation myocardial infarction (STEMI) and its predictive value for the occurrence of adverse major adverse cardiovascular events (MACEs). METHODS This study included 166 patients with STEMI and 83 health donors. The expression levels of serum Circ_0051386 in these participants were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Additionally, the incidence of MACEs during a 6-month follow-up period after percutaneous coronary intervention (PCI) was collected in the STEMI patient cohort. RESULTS Before and after propensity score matching (PSM), Circ_0051386 all had higher expression levels in the patients with STEMI than the normal subjects (all p < .001)and robust diagnosis values for the STEMI (AUC = 0.766, 0.779). Kaplan-Meier curves showed the high expression Circ_0051386 group had a higher occurrence rate of MACEs during a 6-month follow-up after PCI in patients with STEMI and this phenomenon was confirmed by internal validation (all p < .05). In addition, the multivariate COX regression showed gensini score (HR = 1.020, 95% CI = 1.002 - 1.038, p = .028) and Circ_0051386 (HR = 2.468, 95% CI =1.548-3.935, p < .001)were independent risk factors of the occurrence of MACEs in patients with STEMI after PCI. Pearson analysis presented that Circ_0051386 was positively correlated with gensini scores (r = 0.33), IL-1β (r = 0.55)and TNF-α(r = 0.41). CONCLUSION Our study indicated that Circ_0051386 is a biomarker of the diagnostic for STEMI and the predictor of the MACEs in STEMI patients after PCI. Its potential role in STEMI may be the regulation of inflammation in the vascular endothelial.
Collapse
Affiliation(s)
- Jinlin Xu
- Emergency Department, Xiantao First People's Hospital, Xiantao, China
| | - Zhiwei Wang
- Emergency Department, Xiantao First People's Hospital, Xiantao, China
| | - Yu Ai
- Emergency Department, Xiantao First People's Hospital, Xiantao, China
| | - Ye Wen
- Emergency Department, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
3
|
Liu X, Wang L, Wang Y, Qiao X, Chen N, Liu F, Zhou X, Wang H, Shen H. Myocardial infarction complexity: A multi-omics approach. Clin Chim Acta 2024; 552:117680. [PMID: 38008153 DOI: 10.1016/j.cca.2023.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Myocardial infarction (MI), a prevalent cardiovascular disease, is fundamentally precipitated by thrombus formation in the coronary arteries, which subsequently decreases myocardial perfusion and leads to cellular necrosis. The intricacy of MI pathogenesis necessitates extensive research to elucidate the disease's root cause, thereby addressing the limitations present in its diagnosis and prognosis. With the continuous advancement of genomics technology, genomics, proteomics, metabolomics and transcriptomics are widely used in the study of MI, which provides an excellent way to identify new biomarkers that elucidate the complex mechanisms of MI. This paper provides a detailed review of various genomics studies of MI, including genomics, proteomics, transcriptomics, metabolomics and multi-omics studies. The metabolites and proteins involved in the pathogenesis of MI are investigated through integrated protein-protein interactions and multi-omics analysis by STRING and Metascape platforms. In conclusion, the future of omics research in myocardial infarction offers significant promise.
Collapse
Affiliation(s)
- Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Nuo Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fangqian Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaoxiang Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
4
|
Bellini S, Guarrera S, Matullo G, Schalkwijk C, Stehouwer CD, Chaturvedi N, Soedamah-Muthu SS, Barutta F, Gruden G. Serum MicroRNA-191-5p Levels in Vascular Complications of Type 1 Diabetes: The EURODIAB Prospective Complications Study. J Clin Endocrinol Metab 2023; 109:e163-e174. [PMID: 37552780 PMCID: PMC10735284 DOI: 10.1210/clinem/dgad468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
CONTEXT MicroRNA-191-5p regulates key cellular processes involved in the pathogenesis of diabetic complications such as angiogenesis, extracellular matrix deposition, and inflammation. However, no data on circulating microRNA-191-5p in the chronic complications of diabetes are available. OBJECTIVE To assess whether serum levels of microRNA-191-5p were associated with micro- and macrovascular disease in a large cohort of subjects with type 1 diabetes mellitus (DM1) from the EURODIAB Prospective Complication Study. DESIGN AND SETTING Levels of microRNA-191-5p were measured by quantitative PCR in 420 patients with DM1 recruited as part of the cross-sectional analysis of the EURODIAB Prospective Complication Study. Cases (n = 277) were subjects with nephropathy and/or retinopathy and/or cardiovascular disease (CVD). Controls (n = 143) were patients without complications. Logistic regression analysis was performed to evaluate the potential independent association of microRNA-191-5p levels with chronic complications of diabetes. RESULTS Levels of microRNA-191-5p were significantly reduced (P < .001) in cases compared with controls even after adjustment for age, sex, and diabetes duration. Logistic regression analysis revealed that microRNA-191-5p was negatively associated with a 58% reduced odds ratio (OR) of chronic diabetes complications, specifically CVD, micro-macroalbuminuria, and retinopathy (OR, 0.42; 95% CI, 0.23-0.77), independent of age, sex, physical activity, educational levels, diabetes duration, glycated hemoglobin, total insulin dose, hypertension, smoking, total cholesterol, albumin excretion rate, estimated glomerular filtration rate, serum vascular cell adhesion molecule-1, and tumor necrosis factor-α. Analyses performed separately for each complication demonstrated a significant independent association with albuminuria (OR, 0.36; 95% CI, (0.18-0.75) and CVD (OR, 0.34; 95% CI, 0.16-0.70). CONCLUSIONS In DM1 subjects, microRNA-191-5p is inversely associated with vascular chronic complications of diabetes.
Collapse
Affiliation(s)
- Stefania Bellini
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, IIGM, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, AOU Città della Salute e della Scienza, 10126 Turin, Italy
| | - Casper Schalkwijk
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6221 Maastricht, the Netherlands
| | - Coen D Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6221 Maastricht, the Netherlands
| | - Nish Chaturvedi
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Sabita S Soedamah-Muthu
- Center of Research on Psychology in Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, 5048 Tilburg, the Netherland
- Institute for Food, Nutrition and Health, University of Reading Reading RG6 6UR, UK
| | - Federica Barutta
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Gabriella Gruden
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
5
|
Boxhammer E, Paar V, Wernly B, Kiss A, Mirna M, Aigner A, Acar E, Watzinger S, Podesser BK, Zauner R, Wally V, Ablinger M, Hackl M, Hoppe UC, Lichtenauer M. MicroRNA-30d-5p-A Potential New Therapeutic Target for Prevention of Ischemic Cardiomyopathy after Myocardial Infarction. Cells 2023; 12:2369. [PMID: 37830583 PMCID: PMC10571870 DOI: 10.3390/cells12192369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
(1) Background and Objective: MicroRNAs (miRs) are biomarkers for assessing the extent of cardiac remodeling after myocardial infarction (MI) and important predictors of clinical outcome in heart failure. Overexpression of miR-30d-5p appears to have a cardioprotective effect. The aim of the present study was to demonstrate whether miR-30d-5p could be used as a potential therapeutic target to improve post-MI adverse remodeling. (2) Methods and Results: MiR profiling was performed by next-generation sequencing to assess different expression patterns in ischemic vs. healthy myocardium in a rat model of MI. MiR-30d-5p was significantly downregulated (p < 0.001) in ischemic myocardium and was selected as a promising target. A mimic of miR-30d-5p was administered in the treatment group, whereas the control group received non-functional, scrambled siRNA. To measure the effect of miR-30d-5p on infarct area size of the left ventricle, the rats were randomized and treated with miR-30d-5p or scrambled siRNA. Histological planimetry was performed 72 h and 6 weeks after induction of MI. Infarct area was significantly reduced at 72 h and at 6 weeks by using miR-30d-5p (72 h: 22.89 ± 7.66% vs. 35.96 ± 9.27%, p = 0.0136; 6 weeks: 6.93 ± 4.58% vs. 12.48 ± 7.09%, p = 0.0172). To gain insight into infarct healing, scratch assays were used to obtain information on cell migration in human umbilical vein endothelial cells (HUVECs). Gap closure was significantly faster in the mimic-treated cells 20 h post-scratching (12.4% more than the scrambled control after 20 h; p = 0.013). To analyze the anti-apoptotic quality of miR-30d-5p, the ratio between phosphorylated p53 and total p53 was evaluated in human cardiomyocytes using ELISA. Under the influence of the miR-30d-5p mimic, cardiomyocytes demonstrated a decreased pp53/total p53 ratio (0.66 ± 0.08 vs. 0.81 ± 0.17), showing a distinct tendency (p = 0.055) to decrease the apoptosis rate compared to the control group. (3) Conclusion: Using a mimic of miR-30d-5p underlines the cardioprotective effect of miR-30d-5p in MI and could reduce the risk for development of ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Elke Boxhammer
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Vera Paar
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Bernhard Wernly
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Moritz Mirna
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Achim Aigner
- Rudolf Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, 04107 Leipzig, Germany;
| | - Eylem Acar
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Simon Watzinger
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Bruno K. Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Roland Zauner
- Dermatology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Verena Wally
- Dermatology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Michael Ablinger
- Dermatology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | | | - Uta C. Hoppe
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Michael Lichtenauer
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| |
Collapse
|
6
|
Levstek T, Karun T, Rehberger Likozar A, Šebeštjen M, Trebušak Podkrajšek K. Interplay between microRNAs, Serum Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9), and Lipid Parameters in Patients with Very High Lipoprotein(a) Treated with PCSK9 Inhibitors. Genes (Basel) 2023; 14:genes14030632. [PMID: 36980904 PMCID: PMC10048228 DOI: 10.3390/genes14030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has an important function in the regulation of lipid metabolism. PCSK9 reduces hepatic low-density lipoprotein receptors, thereby increasing low-density lipoprotein cholesterol levels. However, its regulation remains to be elucidated, including post-transcriptional regulation by microRNAs (miRNAs). We aimed to explore the interplay between miRNAs, total serum PCSK9, and lipids during treatment with PCSK9 inhibitors. A total of 64 patients with stable coronary artery disease and very high lipoprotein(a) levels and 16 sex- and age-matched control subjects were enrolled. Patients received a PCSK9 inhibitor (evolocumab or alirocumab). Total serum PCSK9 levels were measured by immunoassay. RNA was isolated from plasma using magnetic beads, and expression of selected miRNAs was analyzed by quantitative PCR. Total serum PCSK9 levels were significantly higher in control subjects compared with patients. After 6 months of treatment with PCSK9 inhibitors, total serum PCSK9 levels increased significantly. The expression of miR-191-5p was significantly lower, and the expression of miR-224-5p and miR-483-5p was significantly higher in patients compared with control subjects. Using linear regression, the expression of miR-483-5p significantly predicted the serum PCSK9 level at baseline. After the 6-month period of therapy, the expression of miR-191-5p and miR-483-5p significantly increased. Our results support a role for miR-483-5p in regulating circulating PCSK9 in vivo. The difference in expression of miR-191-5p, miR-224-5p, and miR-337-3p between patients and control subjects suggests their possible role in the pathogenesis of coronary artery disease.
Collapse
Affiliation(s)
- Tina Levstek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Tina Karun
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Andreja Rehberger Likozar
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Miran Šebeštjen
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
- Department of Cardiology, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Vrazov trg 1, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
7
|
Pedersen OB, Grove EL, Nissen PH, Larsen SB, Pasalic L, Kristensen SD, Hvas AM. Expression of microRNA Predicts Cardiovascular Events in Patients with Stable Coronary Artery Disease. Thromb Haemost 2023; 123:307-316. [PMID: 36603835 DOI: 10.1055/s-0042-1760258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND New biomarkers are warranted to identify patients with coronary artery disease (CAD) at high risk of recurrent cardiovascular events. It has been reported that the expression of microRNAs (miRs) may influence the development of CAD. OBJECTIVES We aimed to investigate whether the expression of selected candidate miRs is a predictor of cardiovascular events in a cohort of stable CAD patients. METHODS We performed a single-center prospective study of 749 stable CAD patients with a median follow-up of 2.8 years. We investigated the expression of nine candidate miRs and their relation to cardiovascular events in this cohort. The primary endpoint was the composite of nonfatal myocardial infarction (MI), stent thrombosis (ST), ischemic stroke, and cardiovascular death. The composite of nonfatal MI and ST was analyzed as a secondary endpoint. Furthermore, nonfatal MI, ST, ischemic stroke, and all-cause mortality were analyzed as individual endpoints. RESULTS Employing receiver operating characteristic curves, it was shown that compared with traditional cardiovascular risk factors alone, combining the expression of miR-223-3p with existing traditional cardiovascular risk factors increased the predictive value of ST (area under the curve: 0.88 vs. 0.77, p = 0.04), the primary composite endpoint (0.65 vs. 0.61, p = 0.049), and the secondary endpoint of the composite of nonfatal MI and ST (0.68 vs. 0.62, p = 0.04). CONCLUSION Among patients with CAD, adding miR-223-3p expression to traditional cardiovascular risk factors may improve prediction of cardiovascular events, particularly ST. Clinical trials confirming these findings are warranted.
Collapse
Affiliation(s)
- Oliver Buchhave Pedersen
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Erik Lerkevang Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter H Nissen
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | | | - Leonardo Pasalic
- Department of Clinical and Laboratory Haematology, Institute of Clinical Pathology and Medical Research, Westmead University Hospital, Sydney, Australia.,Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Steen Dalby Kristensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
CircLDLR Modulates the Proliferation and Apoptosis of Vascular Smooth Muscle Cells in Coronary Artery Disease Through miR-26-5p/KDM6A Axis. J Cardiovasc Pharmacol 2022; 80:132-139. [PMID: 35384910 DOI: 10.1097/fjc.0000000000001275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/17/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT The purpose of this study was to investigate the effect of circLDLR on the proliferation and apoptosis of vascular smooth muscle cells (VSMCs) in coronary artery disease and its regulatory mechanism. The expression of KDM6A was detected by qRT-PCR or Western blot. VSMCs were transfected with miR-26-5p mimic/inhibitor or OE KDM6A. Cell proliferation and apoptosis were assessed. Luciferase reporter gene assays were used to examine interactions between miR-26-5p and KDM6A in VSMCs. Downregulation of circLDLR was associated with increased miR-26-5p in coronary artery disease tissues. In addition, circLDLR could inhibit cell proliferation and promote cell apoptosis by regulating miR-26-5p. Moreover, the overexpression of KDM6A reduced VSMCs proliferation and increased apoptosis in an miR-26-5p/circLDLR axis-dependent manner. CircLDLR modulates the proliferation and apoptosis of VSMCs through miR-26-5p/KDM6A axis.
Collapse
|
9
|
LncRNA XIST facilitates hypoxia-induced myocardial cell injury through targeting miR-191-5p/TRAF3 axis. Mol Cell Biochem 2022; 477:1697-1707. [DOI: 10.1007/s11010-022-04385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/02/2022] [Indexed: 10/18/2022]
|
10
|
Marathon-Induced Cardiac Strain as Model for the Evaluation of Diagnostic microRNAs for Acute Myocardial Infarction. J Clin Med 2021; 11:jcm11010005. [PMID: 35011745 PMCID: PMC8745173 DOI: 10.3390/jcm11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The current gold standard biomarker for myocardial infarction (MI), cardiac troponin (cTn), is recognized for its high sensitivity and organ specificity; however, it lacks diagnostic specificity. Numerous studies have introduced circulating microRNAs as potential biomarkers for MI. This study investigates the MI-specificity of these serum microRNAs by investigating myocardial stress/injury due to strenuous exercise. Methods: MicroRNA biomarkers were retrieved by comprehensive review of 109 publications on diagnostic serum microRNAs for MI. MicroRNA levels were first measured by next-generation sequencing in pooled sera from runners (n = 46) before and after conducting a full competitive marathon. Hereafter, reverse transcription quantitative real-time PCR (qPCR) of 10 selected serum microRNAs in 210 marathon runners was performed (>10,000 qPCR measurements). Results: 27 potential diagnostic microRNA for MI were retrieved by the literature review. Eight microRNAs (miR-1-3p, miR-21-5p, miR-26a-5p, miR-122-5p, miR-133a-3p, miR-142-5p, miR-191-5p, miR-486-3p) showed positive correlations with cTnT in marathon runners, whereas two miRNAs (miR-134-5p and miR-499a-5p) showed no correlations. Upregulation of miR-133a-3p (p = 0.03) and miR-142-5p (p = 0.01) went along with elevated cTnT after marathon. Conclusion: Some MI-associated microRNAs (e.g., miR-133a-3p and miR-142-5p) have similar kinetics under strenuous exercise and MI as compared to cTnT, which suggests that their diagnostic specificity could be limited. In contrast, several MI-associated microRNAs (miR-26a-5p, miR-134-5p, miR-191-5p) showed different release behavior; hence, combining cTnT with these microRNAs within a multi-marker strategy may add diagnostic accuracy in MI.
Collapse
|
11
|
Zhou J, Shao L, Yu J, Huang J, Feng Q. PDGF-BB promotes vascular smooth muscle cell migration by enhancing Pim-1 expression via inhibiting miR-214. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1728. [PMID: 35071422 PMCID: PMC8743727 DOI: 10.21037/atm-21-5638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022]
Abstract
Background Several studies have indicated that the platelet-derived growth factor/platelet-derived growth factor receptor (PDGF/PDGFR) pathway is involved in the process of atherosclerosis. However, its underlying mechanism remains to be further elucidated. Serine/threonine-protein kinase pim-1 (Pim-1), a member of serine/threonine-specific kinases, is a pro-oncogene published to be related to cell proliferation, apoptosis, and metastasis of cancer cells. Whether Pim-1 is involved in PDGF/PDGFR pathway-mediated coronary atherosclerotic heart disease remains to be elucidated. Methods We established a cell model of PDGF-BB-stimulated smooth muscle cells using A7r5 cells. Transwell assay was used to detect the potential of cell migration and invasion. The targeted regulation of Pim-1 by miR-214 was confirmed by luciferase assay. Rescue experiments were performed to determine the role of the PDGF-BB/miR-214/Pim-1 axis on the cell migration of smooth muscle cells by including PDGF-BB treatment, and the overexpression of miR-214 and Pim-1. Quantitative polymerase chain reaction (qPCR) was used to examine the gene expression and western blot was performed to detect the protein expression. Results Our data indicated that PDGF-BB could effectively enhance smooth muscle cell migration. We also showed Pim-1 was a target of miR-214 in A7r5 cells. The expression of Pim-1 was shown to be upregulated by PDGF-BB via suppression of the expression of miR-214. Moreover, overexpression miR-214 inhibited PDGF-BB-stimulated Pim-1 expression and smooth muscle cell migration via modulating epithelial-mesenchymal transition (EMT), but no change on cell cycle. However, overexpression of Pim-1 reversed miR-214-blocked cell migration by promoting the activation of the STAT3, AKT, and ERK signaling pathways. Conclusions Our data suggested that the PDGF/miR-214/Pim-1 axis could be a potential target for coronary atherosclerotic heart disease.
Collapse
Affiliation(s)
- Jinshan Zhou
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Lifang Shao
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jianghao Yu
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Junchao Huang
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Qiang Feng
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
12
|
Kennel PJ, Schulze PC. A Review on the Evolving Roles of MiRNA-Based Technologies in Diagnosing and Treating Heart Failure. Cells 2021; 10:cells10113191. [PMID: 34831414 PMCID: PMC8617680 DOI: 10.3390/cells10113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/24/2022] Open
Abstract
MiRNA-regulated processes are pivotal in cardiovascular homeostasis and disease. These short non-coding RNAs have ideal properties that could be utilized as potential biomarkers; moreover, their functions as post-transcriptional regulators of mRNA make them interesting therapeutic targets. In this review, we summarize the current state of miRNA-based biomarkers in a variety of diseases leading to heart failure, as well as provide an outlook on developing miRNA-based therapies in the heart failure field.
Collapse
|
13
|
Tanase DM, Gosav EM, Ouatu A, Badescu MC, Dima N, Ganceanu-Rusu AR, Popescu D, Floria M, Rezus E, Rezus C. Current Knowledge of MicroRNAs (miRNAs) in Acute Coronary Syndrome (ACS): ST-Elevation Myocardial Infarction (STEMI). Life (Basel) 2021; 11:life11101057. [PMID: 34685428 PMCID: PMC8541211 DOI: 10.3390/life11101057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Regardless of the newly diagnostic and therapeutic advances, coronary artery disease (CAD) and more explicitly, ST-elevation myocardial infarction (STEMI), remains one of the leading causes of morbidity and mortality worldwide. Thus, early and prompt diagnosis of cardiac dysfunction is pivotal in STEMI patients for a better prognosis and outcome. In recent years, microRNAs (miRNAs) gained attention as potential biomarkers in myocardial infarction (MI) and acute coronary syndromes (ACS), as they have key roles in heart development, various cardiac processes, and act as indicators of cardiac damage. In this review, we describe the current available knowledge about cardiac miRNAs and their functions, and focus mainly on their potential use as novel circulating diagnostic and prognostic biomarkers in STEMI.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence: (E.M.G.); (M.F.); (E.R.)
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ana Roxana Ganceanu-Rusu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Diana Popescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital Iasi, 700483 Iasi, Romania
- Correspondence: (E.M.G.); (M.F.); (E.R.)
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Correspondence: (E.M.G.); (M.F.); (E.R.)
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (M.C.B.); (N.D.); (A.R.G.-R.); (D.P.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
14
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
15
|
Yu J, Zhou A, Li Y. Clinical value of miR-191-5p in predicting the neurological outcome after out-of-hospital cardiac arrest. Ir J Med Sci 2021; 191:1607-1612. [PMID: 34462890 DOI: 10.1007/s11845-021-02745-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The diagnostic and prognostic value of microRNAs (miRNA) in human disease has been confirmed in a number of clinical studies. AIMS The purpose of this study was to investigate the predictive value of miR-191-5p in the neurological outcome of patients recovering from out-of-hospital cardiac arrest (OHCA). METHODS A total of 260 patients undergoing the target temperature management trial were analyzed. The expression level of serum miR-191-5p was detected by qRT-PCR at 48 h after return of spontaneous circulation (ROSC). ROC curve was established to evaluate the ability of miR-191-5p as a biomarker for predicting adverse neurological outcomes after OHCA. Kaplan-Meier curve and Cox regression analysis were used for survival analysis. RESULTS One hundred eighteen patients (45%) had poor neurological outcomes at 6 months. The expression level of serum miR-191-5p in patients with poor neurological outcomes was significantly lower than that in patients with good neurological prognosis (P < 0.001) and was not associated with TTM trial. The AUC, sensitivity, and specificity of the ROC curve were 0.899, 84.7%, and 82.4%, respectively, suggesting that the level of miR-191-5p had the ability to predict neurological outcome. By the end of the experiment, 88 patients (34%) were dead. Results of survival analysis showed that lower miR-191-5p expression level was significantly associated with lower survival rate (HR: 0.344, 95% CI = 0.208-0.567, P < 0.001). CONCLUSIONS The level of miR-191-5p was down-regulated in patients with poor neurological outcomes, and it could be used as a promising novel biomarker for prediction of neurological outcome and survival after OHCA.
Collapse
Affiliation(s)
- Jie Yu
- Clinical Skills Training Center, Affiliated Hospital of Weifang Medical University, Shandong, 261031, China.
| | - Aihua Zhou
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Shandong, 261031, China
| | - Ying Li
- Department of Urology Surgery, Affiliated Hospital of Weifang Medical University, Shandong, 261031, China
| |
Collapse
|
16
|
Peng X, Chen Y, Wang X, Hu A, Li X. Safety and efficacy of His-bundle pacing/left bundle branch area pacing versus right ventricular pacing: a systematic review and meta-analysis. J Interv Card Electrophysiol 2021; 62:445-459. [PMID: 34019186 DOI: 10.1007/s10840-021-00998-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recent studies have demonstrated that right ventricular pacing (RVP) has deleterious effects on non-synchronized ventricular contraction, while His-bundle pacing (HBP) or left bundle branch area pacing (LBBaP) contribute to improvements in patients' mid- and long-term outcomes. This meta-analysis aimed to compare the safety and efficacy of physiologic pacing (HBP/LBBaP) versus those of RVP. METHODS A systematic search of PubMed, Cochrane Library, and Embase was conducted for studies that compared the effects of physiologic pacing and RVP. All eligible studies were published before January 1, 2021 and were conducted in humans. STATA software version 15.0 was used for all the data analyses. RESULTS Twenty articles (n = 2787 patients) were included in this meta-analysis. Compared to RVP, physiologic pacing was associated with a significantly shorter QRS duration and better cardiac function. Physiologic pacing was also correlated with lower rates of mitral regurgitation, pacing-induced cardiomyopathy, death, heart failure hospitalization, and atrial fibrillation, although the above results were not statistically significant. In addition, RVP led to the achievement of higher success rates than physiologic pacing, a shorter fluoroscopic time and mean procedure duration, a lower pacing threshold: the results were statistically significant. Compared with HBP, LBBaP appeared to have some advantages in R wave amplitudes, pacing threshold, fluoroscopic time, procedure time, and success rate, with statistically significant differences. Whereas HBP was associated with fewer surgical complications and shorter QRS duration, the results were not statistically significant. CONCLUSION Physiologic pacing (HBP/LBBaP) might be a better strategy than RVP and improve long-term clinical outcomes like cardiac function. Although LBBaP appears to have some advantages over HBP, the long-term benefits are still controversial. More large-scale randomized clinical trials are needed for further verification.
Collapse
Affiliation(s)
- Xinyi Peng
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Wang
- Department of Cardiology, Qindao University Medical College Affiliated Yantaiyuhuangding Hospital, Yantai, China
| | - Aizhen Hu
- Department of Cardiology, Qindao University Medical College Affiliated Yantaiyuhuangding Hospital, Yantai, China
| | - Xuexun Li
- Department of Cardiology, Shandong Provincial Hospital, Shandong, 250021, Jinan, China.
| |
Collapse
|
17
|
Scărlătescu AI, Micheu MM, Popa-Fotea NM, Dorobanțu M. MicroRNAs in Acute ST Elevation Myocardial Infarction-A New Tool for Diagnosis and Prognosis: Therapeutic Implications. Int J Mol Sci 2021; 22:4799. [PMID: 33946541 PMCID: PMC8124280 DOI: 10.3390/ijms22094799] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Despite diagnostic and therapeutic advances, coronary artery disease and especially its extreme manifestation, ST elevation myocardial infarction (STEMI), remain the leading causes of morbidity and mortality worldwide. Early and prompt diagnosis is of great importance regarding the prognosis of STEMI patients. In recent years, microRNAs (miRNAs) have emerged as promising tools involved in many pathophysiological processes in various fields, including cardiovascular diseases. In acute coronary syndromes (ACS), circulating levels of miRNAs are significantly elevated, as an indicator of cardiac damage, making them a promising marker for early diagnosis of myocardial infarction. They also have prognostic value and great potential as therapeutic targets considering their key function in gene regulation. This review aims to summarize current information about miRNAs and their role as diagnostic, prognostic and therapeutic targets in STEMI patients.
Collapse
Affiliation(s)
- Alina Ioana Scărlătescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (N.-M.P.-F.); (M.D.)
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Nicoleta-Monica Popa-Fotea
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (N.-M.P.-F.); (M.D.)
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Maria Dorobanțu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (N.-M.P.-F.); (M.D.)
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| |
Collapse
|
18
|
Wang Z, Wu Y, Zhang J. Cardiac resynchronization therapy in heart failure patients: tough road but clear future. Heart Fail Rev 2020; 26:735-745. [PMID: 33098491 DOI: 10.1007/s10741-020-10040-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/14/2023]
Abstract
Cardiac resynchronization therapy (CRT) based on biventricular pacing (BVP) is an invaluable intervention currently used in heart failure (HF) patients. The therapy involves electromechanical dyssynchrony, which can not only improve heart function and quality of life but also reduce hospitalization and mortality rates. However, approximately 30% to 40% of patients remain unresponsive to conventional BVP in clinical practice. In the recent years, extensive research has been employed to find a more physiological approach to cardiac resynchronization. The His-Purkinje system pacing (HPSP) including His bundle pacing (HBP) and left bundle branch area pacing (LBBaP) may potentially be the future of CRT. These technologies present various advantages including offering an almost real physiological pacing, less complicated procedures, and economic feasibility. Additionally, other methods, such as isolated left-ventricular pacing and multipoint pacing, may in the future be important but non-mainstream alternatives to CRT because currently, there is no strong evidence to support their effectiveness. This article reviews the current situation and latest progress in CRT, explores the existing technology, and highlights future prospects in the development of CRT.
Collapse
Affiliation(s)
- Ziyu Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yongquan Wu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| | - Junmeng Zhang
- Department of Cardiology, Heart Center, the First Hospital of Tsinghua University, No. 6 Jiuxianqiao 1st Street, Chaoyang District, Beijing, 100016, China.
| |
Collapse
|