1
|
Ferreira AC, Martinho JF, Branco JB. Hydrogenation of CO2 over Cobalt‐Lanthanide Bimetallic Oxide Nanofibers. ChemCatChem 2022. [DOI: 10.1002/cctc.202101548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ana C. Ferreira
- IST: Universidade de Lisboa Instituto Superior Tecnico Centro de Química Estrutural CQE, Campus Tecnológico e NuclearEstrada Nacional 10, ao km 139.7 2695-066 Portugal PORTUGAL
| | - Joana F. Martinho
- IST: Universidade de Lisboa Instituto Superior Tecnico Centro de Química Estrutural Campus Tecnológico e NuclearEstrada Nacional 10, ao km 139.7Bobadela 2695-066 Bobadela PORTUGAL
| | - Joaquim B. Branco
- IST: Universidade de Lisboa Instituto Sperior Técnico Departamento de Engenharia e Ciências Nucleares Campus Tecnológico e NuclearEstrada Nacional 10, ao km 139.7Bobadela 2695-066 Bobadela PORTUGAL
| |
Collapse
|
2
|
Cerium d-Block Element (Co, Ni) Bimetallic Oxides as Catalysts for the Methanation of CO2: Effect of Pressure. Catalysts 2021. [DOI: 10.3390/catal12010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nickel– and cobalt–cerium bimetallic oxides were used as catalysts for the methanation of CO2 under pressure. The catalysts’ activity increases with pressure and an increase of just 10 bar is enough to double the yield of methane and to significantly improve the selectivity. The best results were those obtained over nickel–cerium bimetallic oxides, but the effect of pressure was particularly relevant over cobalt–cerium bimetallic oxides, which yield to methane increases from almost zero at atmospheric pressure to 50–60% at 30 bar. Both catalyst types are remarkably competitive, especially those containing nickel, which were always more active than a commercial rhodium catalyst used as a reference (5wt.% Rh/Al2O3) and tested under the same conditions. For the cobalt–cerium bimetallic oxides, the existence of a synergetic interaction between Co and CoO and the formation of cobalt carbides seems to play an important role in their catalytic behavior. Correlation between experimental reaction rates and simulated data confirms that the catalysts’ behavior follows the Langmuir–Hinshelwood–Hougen–Watson kinetic model, but Le Chatelier’s principle is also important to understand the catalysts’ behavior under pressure. A catalyst recycle study was also performed. The results obtained after five cycles using a nickel–cerium catalyst show insignificant variations in activity and selectivity, which are important for any type of practical application.
Collapse
|
3
|
Effect of Temperature, Syngas Space Velocity and Catalyst Stability of Co-Mn/CNT Bimetallic Catalyst on Fischer Tropsch Synthesis Performance. Catalysts 2021. [DOI: 10.3390/catal11070846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The effect of reaction temperature, syngas space velocity, and catalyst stability on Fischer-Tropsch reaction was investigated using a fixed-bed microreactor. Cobalt and Manganese bimetallic catalysts on carbon nanotubes (CNT) support (Co-Mn/CNT) were synthesized via the strong electrostatic adsorption (SEA) method. For testing the performance of the catalyst, Co-Mn/CNT catalysts with four different manganese percentages (0, 5, 10, 15, and 20%) were synthesized. Synthesized catalysts were then analyzed by TEM, FESEM, atomic absorption spectrometry (AAS), and zeta potential sizer. In this study, the temperature was varied from 200 to 280 °C and syngas space velocity was varied from 0.5 to 4.5 L/g.h. Results showed an increasing reaction temperature from 200 °C to 280 °C with reaction pressure of 20 atm, the Space velocity of 2.5 L/h.g and H2/CO ratio of 2, lead to the rise of CO % conversion from 59.5% to 88.2% and an increase for C5+ selectivity from 83.2% to 85.8%. When compared to the other catalyst formulation, the catalyst sample with 95% cobalt and 5% manganese on CNT support (95Co5Mn/CNT) performed more stable for 48 h on stream.
Collapse
|
4
|
ZHENG JN, AN K, WANG JM, LI J, LIU Y. Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/s1872-5813(19)30031-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|