1
|
Astorino C, De Nardo E, Lettieri S, Ferraro G, Pirri CF, Bocchini S. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM). MEMBRANES 2023; 13:903. [PMID: 38132907 PMCID: PMC10744731 DOI: 10.3390/membranes13120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Membrane-based Polymers of Intrinsic Microporosity (PIMs) are promising candidates for energy-efficient industrial gas separations, especially for the separation of carbon dioxide over methane (CO2/CH4) and carbon dioxide over nitrogen (CO2/N2) for natural gas/biogas upgrading and carbon capture from flue gases, respectively. Compared to other separation techniques, membrane separations offer potential energy and cost savings. Ultra-permeable PIM-based polymers are currently leading the trade-off between permeability and selectivity for gas separations, particularly in CO2/CH4 and CO2/N2. These membranes show a significant improvement in performance and fall within a linear correlation on benchmark Robeson plots, which are parallel to, but significantly above, the CO2/CH4 and CO2/N2 Robeson upper bounds. This improvement is expected to enhance the credibility of polymer membranes for CO2 separations and stimulate further research in polymer science and applied engineering to develop membrane systems for these CO2 separations, which are critical to energy and environmental sustainability. This review aims to highlight the state-of-the-art strategies employed to enhance gas separation performances in PIM-based membranes while also mitigating aging effects. These strategies include chemical post-modification, crosslinking, UV and thermal treatment of PIM, as well as the incorporation of nanofillers in the polymeric matrix.
Collapse
Affiliation(s)
- Carmela Astorino
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Eugenio De Nardo
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Stefania Lettieri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Giuseppe Ferraro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| | - Sergio Bocchini
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144 Torino, Italy; (C.A.); (E.D.N.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy;
| |
Collapse
|
2
|
Aloraini S, Mathias M, Crone J, Bryce K, Yu M, Kirk RA, Ahmad MZ, Asuquo ED, Rico-Martínez S, Volkov AV, Foster AB, Budd PM. Crosslinking of Branched PIM-1 and PIM-Py Membranes for Recovery of Toluene from Dimethyl Sulfoxide by Pervaporation. ACS APPLIED POLYMER MATERIALS 2023; 5:1145-1158. [PMID: 36817336 PMCID: PMC9926464 DOI: 10.1021/acsapm.2c01600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Branched forms of the archetypal polymer of intrinsic microporosity PIM-1 and the pyridinecarbonitrile-containing PIM-Py may be crosslinked under ambient conditions by palladium(II) acetate. Branched PIM-1 can arise in polymerizations of 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane with tetrafluoroterephthalonitrile conducted at a high set temperature (160 °C) under conditions, such as high dilution, that lead to a lower-temperature profile over the course of the reaction. Membranes of PIM-1 and PIM-Py crosslinked with palladium acetate are sufficiently stable in organic solvents for use in the recovery of toluene from its mixture with dimethyl sulfoxide (DMSO) by pervaporation at 65 °C. With both PIM-1 and PIM-Py membranes, pervaporation gives high toluene/DMSO separation factors (around 10 with a 77 vol % toluene feed). Detailed analysis shows that the membranes themselves are slightly selective for DMSO and it is the high driving force for toluene evaporation that drives the separation.
Collapse
Affiliation(s)
- Sulaiman Aloraini
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
- Department
of Chemistry, College of Science and Arts, Qassim University, Ar Rass52571, Saudi Arabia
| | - Michael Mathias
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Jessica Crone
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Kurtis Bryce
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Ming Yu
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
- Department
of Chemical Engineering, The University
of Melbourne, Melbourne, VIC3010, Australia
| | - Richard A. Kirk
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Mohd Zamidi Ahmad
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Edidiong D. Asuquo
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | | | - Alexey V. Volkov
- A.
V. Topchiev Institute of Petrochemical Synthesis, 29 Leninsky Avenue, Moscow119991, Russian
Federation
| | - Andrew B. Foster
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| | - Peter M. Budd
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United Kingdom
| |
Collapse
|
3
|
Zhu J, Yuan S, Wang J, Zhang Y, Tian M, Van der Bruggen B. Microporous organic polymer-based membranes for ultrafast molecular separations. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Ye H, Zhang C, Huo C, Zhao B, Zhou Y, Wu Y, Shi S. Advances in the Application of Polymers of Intrinsic Microporosity in Liquid Separation and Purification: Membrane Separation and Adsorption Separation. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1821059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hong Ye
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Caili Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Chaowei Huo
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Bingyu Zhao
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Yuanhao Zhou
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Yichen Wu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Shengpeng Shi
- Beijing Research Institute of Chemical Industry, Beijing, China
| |
Collapse
|
5
|
Putintseva MN, Yushkin AA, Bondarenko GN, Kirk RA, Budd PM, Volkov AV. Crosslinking of Polybenzodioxane PIM-1 for Improving Its Stability in Aromatic Hydrocarbons. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090419060113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|