1
|
Chen X, Zhou Q, Zhang Y, Chen L, Li N. Incorporating Mixed-Ligand Zeolitic Imidazolate Framework into Polydimethyldiethoxysilane (PDMDES) Membrane for Enhancing Alcohol Pervaporation Recovery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39560999 DOI: 10.1021/acsami.4c17781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
In the present study, a zeolitic imidazolate framework with mixed ligands, ZIF-8-90, was synthesized and embedded into an ultrathin polydimethyldiethoxysilane (PDMDES) matrix to prepare a ZIF-8-90/PDMDES mixed matrix membrane (MMM) for the enhanced recovery of alcohols from dilute aqueous solutions via pervaporation, using a facile solution coating method. The synthesized ZIF-8-90 particles demonstrated superior hydrophobicity and thermal stability compared to those of both ZIF-8 and ZIF-90 particles. Furthermore, the hydrophobicity, thermal stability, and sorption ability for alcohols of the ZIF-8-90/PDMDES MMM were significantly improved, attributed to the incorporation of mixed-ligand ZIF-8-90. Notably, the MMMs displayed two distinct cross-sectional morphologies: (1) ZIF-8-90 particles enveloped by PDMDES polymer forming filler bulges and (2) an accumulation of ZIF-8-90 particles resembling a brick-wall-like structure. The MMM incorporating 2.5 wt % ZIF-8-90 exhibited the optimal performance among the fabricated MMMs with various ZIF-8-90 loadings, spanning from 0 to 3.2 wt %. The effects of feed concentrations and operation temperatures were systematically investigated. The best pervaporation performance was achieved using the 2.5 wt % ZIF-8-90-filled MMM, effectively separating a 5.0 wt % ethanol/water mixture at 60 °C, yielding a distinguished total flux of 7.70 kg·m-2·h-1, an improved separation factor of 9.96, and an extraordinarily high PSI of 68.99 kg·m-2·h-1. Comparative analyses highlighted the superior pervaporation performance of the ZIF-8-90/PDMDES MMM over ZIF-8/PDMDES MMM, ZIF-90/PDMDES MMM, and other MMMs, underscoring its potential for practical applications in alcohol recovery.
Collapse
Affiliation(s)
- Xiaole Chen
- College of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710000, China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qulan Zhou
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yafei Zhang
- College of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710000, China
| | - Linyu Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Na Li
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Xu LH, Li SH, Mao H, Li Y, Zhang AS, Wang S, Liu WM, Lv J, Wang T, Cai WW, Sang L, Xie WW, Pei C, Li ZZ, Feng YN, Zhao ZP. Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation. Science 2022; 378:308-313. [PMID: 36264816 DOI: 10.1126/science.abo5680] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-performance pervaporation membranes have potential in industrial separation applications, but overcoming the permeability-selectivity trade-off is a challenge. We report a strategy to create highly flexible metal-organic framework nanosheet (MOF-NS) membranes with a faveolate structure on polymer substrates for alcohol-water separation. The controlled growth followed by a surface-coating method effectively produced flexible and defect-free superhydrophobic MOF-NS membranes. The reversible deformation of the flexible MOF-NS and the vertical interlamellar pathways were captured with electron microscopy. Molecular simulations confirmed the structure and revealed transport mechanism. The ultrafast transport channels in MOF-NS exhibited an ultrahigh flux and a separation factor of 8.9 in the pervaporation of 5 weight % ethanol-water at 40°C, which can be used for biofuel recovery. MOF-NS and polydimethylsiloxane synergistically contribute to the separation performance.
Collapse
Affiliation(s)
- Li-Hao Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Shen-Hui Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Heng Mao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Ao-Shuai Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Wei-Min Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Jing Lv
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Wei-Wei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Le Sang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Wen-Wen Xie
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Chan Pei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Zheng-Zheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Ying-Nan Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Zhi-Ping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| |
Collapse
|
3
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Regulatable pervaporation performance of Zn-MOFs/polydimethylsiloxane mixed matrix pervaporation membranes. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Li J, Huang M, Wei P, Zhang Y, Zhao X, Liu C, Zhou Z, Zhang L. Comprehensive analysis on anomalous phenomenon of
ethanol‐soluble
poly(vinyl butyral) membrane for ethanol recovery via pervaporation. AIChE J 2022. [DOI: 10.1002/aic.17560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junjun Li
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Mi Huang
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Ping Wei
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Yaqin Zhang
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Xuean Zhao
- Department of Physics Zhejiang University Hangzhou China
| | - Chunbo Liu
- Key Laboratory of Tobacco Chemistry of Yunnan, R&D Center China Tobacco Yunnan Industrial Co., Ltd Kunming China
| | - Zhijun Zhou
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Lin Zhang
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| |
Collapse
|
6
|
Liu G, Guo Y, Meng B, Wang Z, Liu G, Jin W. Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
|
8
|
Lewis A, Chen T, Butt FS, Wei X, Radacsi N, Fan X, Huang Y. Facile fabrication of zeolitic imidazolate framework hollow fibre membranes via a novel scalable continuous fluid circulation process. NANOSCALE 2021; 13:14644-14655. [PMID: 34558583 DOI: 10.1039/d1nr03112k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel continuous fluid circulation system was designed and employed for the impregnation seeding and fabrication of zeolitic imidazolate framework (ZIF) crystals on the internal surface of polymeric hollow fibre membranes. Application of impregnation seeding has been proven effective to decrease crystal size, consequently increasing surface roughness and wettability of the membrane. Evaluation of the as-synthesised membrane demonstrated excellent separation efficiencies (>99%) of surfactant stabilised oil-in-water emulsions. Owing to the simple impregnation strategy assisted by the continuous fluid circulation, the active ZIF layer formed was visibly thinner and denser than typical seeding techniques, hence a high pure water flux of >1150 L m-2 h-1 bar-1 was achieved. The membranes were highly selective and ultra-permeable to water, however, almost impermeable to oils in a water environment, e.g., n-hexane, n-heptane, chloroform and dichloromethane, as well as their emulsion mixtures, with a separation efficiency higher than 99%. Besides, this new continuous fluid circulation method was also found promising for the synthesis of other types of ZIF on hollow fibre membranes.
Collapse
Affiliation(s)
- Allana Lewis
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| | - Ting Chen
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| | - Fraz Saeed Butt
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| | - Xiuming Wei
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| | - Xianfeng Fan
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| | - Yi Huang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, Scotland, UK.
| |
Collapse
|
9
|
Impact of crosslinking on organic solvent nanofiltration performance in polydimethylsiloxane composite membrane: Probed by in-situ low-field nuclear magnetic resonance spectroscopy. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Enhanced permeance for PDMS organic solvent nanofiltration membranes using modified mesoporous silica nanoparticles. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118257] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|