1
|
Miyawaki A, Sakai S. Immobilization of laccases on mechanically ground silk fibroin nanofibers for enhanced stability. Int J Biol Macromol 2024; 282:136745. [PMID: 39433192 DOI: 10.1016/j.ijbiomac.2024.136745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Azo dyes in textile industry effluents pose significant health and environmental risks. Laccase is an enzyme capable of degrading azo dyes, offering an environmentally friendly solution for treating textile wastewater. However, laccases need to be immobilized on specific carriers to enable effective reuse in batch reactors and continuous operation in flow-through reactors. This study employed silk fibroin nanofibers (SFNFs) obtained by mechanically grinding degummed silkworm silk as sustainable carriers to immobilize laccases through carbodiimide-mediated crosslinking. The immobilized laccases (SFNF-laccases) exhibited improved pH tolerance in the range of pH 3.0-8.0 with a smaller reduction in activity compared to free laccases (SFNF-laccases: 32.9 %, free laccases: 50.4 %). The thermal stability of immobilized laccases was also improved, showing 19, 13, and 9 % higher activities than those of free laccases at 40, 50, and 60 °C, respectively. After 8 days of storage, the activity of SFNF-laccases was 79 % of their activity immediately after immobilization, whereas free laccases retained only 29 % of their initial activity. In addition, SFNF-laccases maintained 73 % of their original operational activity in a flow-through reactor after 8 days. These results demonstrate the great potential of mechanically ground SFNFs as carriers of laccase and the resulting SFNF-laccases in industrial wastewater treatment.
Collapse
Affiliation(s)
- Ayari Miyawaki
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
2
|
Hussain B, Zhu H, Xiang C, Mengfei L, Zhu B, Liu S, Ma H, Pu S. Evaluation of the immobilized enzymes function in soil remediation following polycyclic aromatic hydrocarbon contamination. ENVIRONMENT INTERNATIONAL 2024; 194:109106. [PMID: 39571295 DOI: 10.1016/j.envint.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 12/22/2024]
Abstract
The bioremediation of polycyclic aromatic hydrocarbon (PAHs) from soil utilizing microorganisms, enzymes, microbial consortiums, strains, etc. has attracted a lot of interest due to the environmentally friendly, and cost-effective features. Enzymes can efficiently break down PAHs in soil by hydroxylating the benzene ring, breaking the C-C bond, and catalyze the hydroxylation of a variety of benzene ring compounds via single-electron transfer oxidation. However, the practical application is limited by its instability and ease to loss function under harsh environmental conditions such as pH, temperature, and edaphic stress etc. Therefore, this paper focused on the techniques used to immobilize enzymes and remediate PAHs in soil. Moreover, previous research has not adequately covered this topic, despite the employment of several immobilized enzymes in aqueous solution cultures to remediate other types of organic pollutants. Bibliometric analysis further highlighted the research trends from 2000 to 2023 on this field of growing interest and identified important challenges regarding enzyme stability and interaction with soil matrices. The findings indicated that immobilized enzymes may catalyzed PAHs via oxidation of OH groups in benzene rings, and generate benzyl radicals (i.e., •OH and •O2) that undergo further reaction and release water. As a result, the intermediate products of PAHs further catalyze by enzyme and enzyme induced microbes producing carbon dioxide and water. Meanwhile efficiency, activity, lifetime, resilience, and sustainability of immobilized enzyme need to be further improved for the large-scale and field-scale clean-up of PAHs polluted soils. This could be possible by integrating enzyme-based with microbial and plant-based remediation strategies. It can be coupled with another line of research focused on using a new set of support materials that can be derived from natural resources.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Chunyu Xiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Luo Mengfei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
3
|
Zhou Y, Pan S. Assessment of the efficiency of immobilized degrading microorganisms in removing the organochlorine pesticide residues from agricultural soils. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1274. [PMID: 37801194 DOI: 10.1007/s10661-023-11891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023]
Abstract
To investigate the removal of organochlorine pesticide residues by immobilized degrading microbe, indigenous microorganisms from organochlorine pesticide (OCP)-contaminated soils in Chengdu plain, pot experiments were carried out to evaluate the potential of the immobilized complex microbial specific degrading microbe treated with sodium alginate (SA) composite carrier in decontaminating OCP-contaminated soils, and field experiments were also conducted to investigate the enhanced efficiency of immobilized microbial agents on the dissipation of OCPs in the contaminated plots for different cultivation usage. The results showed that the dissipation rate of OCPs in contaminated soils with initial concentrations of 122.24 μg/kg was 89.94% after the addition of 25 mg of immobilized microbial agents at the end of the 90 days of experiment, which was 6.1% higher than that of the compound microbial agents under the same environmental conditions, and the control group without the addition of microbial agents was only 1.18%, while the concentration of OCPs in contaminated soils with initial concentrations of 203.64 μg/kg only decreased to 65.29 μg/kg after the addition of 20 mg of compound microbial agents. In contrast, the soil concentration of immobilized microbial agent treatment group under the same conditions decreased to 52.15 μg/kg. During the field experiment, the enhanced efficiency of immobilized microbial agents on the degradation of OCPs in different cultivation usage was evidently different, showed that the concentration of OCPs in paddy fields (18.60%) > tea gardens (12.17%) ≥ orchards (11.41%) > vegetable fields (6.21%) ≥ dryland (4.79%), which was especially significant in stress environment. Overall, the immobilization treatment obviously improved the degradation potential of OCPs-specific degrading microbe, and the degree of improvement was related to the metabolic activity of the degrading microbe, the addition amount, remediation time, and habitat conditions.
Collapse
Affiliation(s)
- Yuxiao Zhou
- Department of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Nanning, 530000, Guangxi, China
- Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science & Technology, Changsha, 410114, Hunan, China
| | - Shengwang Pan
- Department of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Nanning, 530000, Guangxi, China.
- Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science & Technology, Changsha, 410114, Hunan, China.
| |
Collapse
|
4
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fern'andez-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology-A review. Int J Biol Macromol 2023:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational frameworks, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fern'andez-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanizaci'on El Bosque, 28670 Villaviciosa de Od'on, Spain; Grupo de Investigaci'on en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
5
|
Fabbri F, Bischof S, Mayr S, Gritsch S, Jimenez Bartolome M, Schwaiger N, Guebitz GM, Weiss R. The Biomodified Lignin Platform: A Review. Polymers (Basel) 2023; 15:polym15071694. [PMID: 37050308 PMCID: PMC10096731 DOI: 10.3390/polym15071694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
A reliance on fossil fuel has led to the increased emission of greenhouse gases (GHGs). The excessive consumption of raw materials today makes the search for sustainable resources more pressing than ever. Technical lignins are mainly used in low-value applications such as heat and electricity generation. Green enzyme-based modifications of technical lignin have generated a number of functional lignin-based polymers, fillers, coatings, and many other applications and materials. These bio-modified technical lignins often display similar properties in terms of their durability and elasticity as fossil-based materials while also being biodegradable. Therefore, it is possible to replace a wide range of environmentally damaging materials with lignin-based ones. By researching publications from the last 20 years focusing on the latest findings utilizing databases, a comprehensive collection on this topic was crafted. This review summarizes the recent progress made in enzymatically modifying technical lignins utilizing laccases, peroxidases, and lipases. The underlying enzymatic reaction mechanisms and processes are being elucidated and the application possibilities discussed. In addition, the environmental assessment of novel technical lignin-based products as well as the developments, opportunities, and challenges are highlighted.
Collapse
|
6
|
Mesoporous Polymeric Ionic Liquid via Confined Polymerization for Laccase Immobilization towards Efficient Degradation of Phenolic Pollutants. Molecules 2023; 28:molecules28062569. [PMID: 36985542 PMCID: PMC10059984 DOI: 10.3390/molecules28062569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Laccase immobilization is a promising method that can be used for the recyclable treatment of refractory phenolic pollutants (e.g., chlorophenols) under mild conditions, but the method is still hindered by the trade-off limits of supports in terms of their high specific surface area and rich functional groups. Herein, confined polymerization was applied to create abundant amino-functionalized polymeric ionic liquids (PILs) featuring a highly specific surface area and mesoporous structure for chemically immobilizing laccase. Benefiting from this strategy, the specific surface area of the as-synthesized PILs was significantly increased by 60-fold, from 5 to 302 m2/g. Further, a maximum activity recovery of 82% towards laccase was recorded. The tolerance and circulation of the immobilized laccase under harsh operating conditions were significantly improved, and the immobilized laccase retained more than 84% of its initial activity after 15 days. After 10 cycles, the immobilized laccase was still able to maintain 80% of its activity. Compared with the free laccase, the immobilized laccase exhibited enhanced stability in the biodegradation of 2,4-dichlorophenol (2,4-DCP), recording around 80% (seven cycles) efficiency. It is proposed that the synergistic effect between PILs and laccase plays an important role in the enhancement of stability and activity in phenolic pollutant degradation. This work provides a strategy for the development of synthetic methods for PILs and the improvement of immobilized laccase stability.
Collapse
|
7
|
Bakar B, Birhanlı E, Ulu A, Boran F, Yeşilada Ö, Ateş B. Immobilization of Trametes trogii laccase on polyvinylpyrrolidone-coated magnetic nanoparticles for biocatalytic degradation of textile dyes. BIOCATAL BIOTRANSFOR 2023. [DOI: 10.1080/10242422.2023.2173006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Büşra Bakar
- Department of Chemistry, Faculty of Arts and Science, Biochemistry and Biomaterials Research Laboratory, İnönü University, Malatya, Turkey
| | - Emre Birhanlı
- Department of Biology, Faculty of Arts and Science, Biotechnology Research Laboratory, İnönü University, Malatya, Turkey
| | - Ahmet Ulu
- Department of Chemistry, Faculty of Arts and Science, Biochemistry and Biomaterials Research Laboratory, İnönü University, Malatya, Turkey
| | - Filiz Boran
- Department of Biology, Faculty of Arts and Science, Biotechnology Research Laboratory, İnönü University, Malatya, Turkey
| | - Özfer Yeşilada
- Department of Biology, Faculty of Arts and Science, Biotechnology Research Laboratory, İnönü University, Malatya, Turkey
| | - Burhan Ateş
- Department of Chemistry, Faculty of Arts and Science, Biochemistry and Biomaterials Research Laboratory, İnönü University, Malatya, Turkey
| |
Collapse
|
8
|
Maftoon H, Taravati A, Tohidi F. Immobilization of laccase on carboxyl-functionalized chitosan-coated magnetic nanoparticles with improved stability and reusability. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-022-03029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Bilal M, Iqbal HM. Nanoengineered ligninolytic enzymes for sustainable lignocellulose biorefinery. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2022; 38:100697. [DOI: 10.1016/j.cogsc.2022.100697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
10
|
Enhancing laccase stability and activity for dyes decolorization using ZIF-8@MWCNT nanocomposite. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Awais M, Kamal S, Ijaz F, Rafique M, Rehman S. Improved Catalytic Performance of Aspergillus flavus Laccase Immobilized on the Zinc Ferrite Nanoparticles. Catal Letters 2022. [DOI: 10.1007/s10562-022-04067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Birhanlı E, Noma SAA, Boran F, Ulu A, Yeşilada Ö, Ateş B. Design of laccase-metal-organic framework hybrid constructs for biocatalytic removal of textile dyes. CHEMOSPHERE 2022; 292:133382. [PMID: 34954196 DOI: 10.1016/j.chemosphere.2021.133382] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
This study aims to present a simple and effective carrier matrix to immobilize laccase as opposed to complex and tedious immobilization processes and also to use it in the removal of textile dyes. For this purpose, Cobalt (Co) and Copper (Cu) based metal-organic frameworks (MOFs) were prepared and laccase was immobilized on two different MOFs via encapsulation. The characterization outcomes showed that laccase was well immobilized into MOF supports. Optimum pH and temperature were found for Lac/Co-MOF (pH 4.5 at 50 °C) and Lac/Cu-MOF (pH 5.0 at 50 °C). The Km (0.03 mM) and Vmax (97.4 μmol/min) values of Lac/Cu-MOF were lower than those of Lac/Co-MOF (Km = 0.13 mM, Vmax = 230.7 μmol/min). The immobilized laccases showed good reusability as well as improved resistance to temperature denaturation and high storage stability. For instance, the Lac/Co-MOF and Lac/Cu-MOF retained more than 58% activity after 4 weeks of storage at room temperature. Meanwhile, Lac/Co-MOF and Lac/Cu-MOF maintained 56.5% and 55.8% of their initial activity, respectively, after 12 reuse cycles. Moreover, thermal deactivation kinetic studies of immobilized laccases displayed lower k value, higher t1/2, and enhancement of thermodynamic parameters, which means better thermostability. Finally, the decolorization activities for the Lac/Co-MOF were 78% and 61% at the 5th cycle for Reactive Blue 171 and Reactive Blue 198, respectively. In conclusion, it can be inferred that the MOFs are more sustainable and beneficial support for laccase immobilization and they can be efficient for removing textile dyes from industrial wastes.
Collapse
Affiliation(s)
- Emre Birhanlı
- Biotechnology Research Laboratory, Department of Biology, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey
| | - Samir Abbas Ali Noma
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey; Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey
| | - Filiz Boran
- Biotechnology Research Laboratory, Department of Biology, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey.
| | - Özfer Yeşilada
- Biotechnology Research Laboratory, Department of Biology, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey.
| |
Collapse
|
13
|
Immobilization Techniques on Bioprocesses: Current Applications Regarding Enzymes, Microorganisms, and Essential Oils. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Zheng L, Lin R, Luo D, Guo L, Zhang J. Effect of Mg
2+
additives on Nieuwland catalyst: The role of the second metal ionic radius. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ling Zheng
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
| | - Ruolin Lin
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
| | - Dingjie Luo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
| | - Liang Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
| | - Jinli Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi China
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
15
|
Hamid A, Zafar A, Liaqat I, Afzal MS, Peng L, Rauf MK, ul Haq I, ur-Rehman A, Ali S, Aftab MN. Effective utilization of magnetic nano-coupled cloned β-xylanase in saccharification process. RSC Adv 2022; 12:6463-6475. [PMID: 35424589 PMCID: PMC8982049 DOI: 10.1039/d1ra09275h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The β-xylanase gene (DCE06_04615) with 1041 bp cloned from Thermotoga naphthophila was expressed into E. coli BL21 DE3. The cloned β-xylanase was covalently bound to iron oxide magnetic nanoparticles coated with silica utilizing carbodiimide. The size of the immobilized MNPs (50 nm) and their binding with β-xylanase were characterized by Fourier-transform electron microscopy (FTIR) (a change in shift particularly from C–O to C–N) and transmission electron microscopy (TEM) (spherical in shape and 50 nm in diameter). The results showed that enzyme activity (4.5 ± 0.23 U per mL), thermo-stability (90 °C after 4 hours, residual activity of enzyme calculated as 29.89% ± 0.72), pH stability (91% ± 1.91 at pH 7), metal ion stability (57% ± 1.08 increase with Ca2+), reusability (13 times) and storage stability (96 days storage at 4 °C) of the immobilized β-xylanase was effective and superior. The immobilized β-xylanase exhibited maximal enzyme activity at pH 7 and 90 °C. Repeated enzyme assay and saccharification of pretreated rice straw showed that the MNP-enzyme complex exhibited 56% ± 0.76 and 11% ± 0.56 residual activity after 8 times and 13 times repeated usage. The MNP-enzyme complex showed 17.32% and 15.52% saccharification percentage after 1st and 8th time usage respectively. Immobilized β-xylanase exhibited 96% residual activity on 96 days' storage at 4 °C that showed excellent stability. The β-xylanase gene (DCE06_04615) with 1041 bp cloned from Thermotoga naphthophila was expressed into E. coli BL21 DE3.![]()
Collapse
Affiliation(s)
- Attia Hamid
- Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Asma Zafar
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Iram Liaqat
- Department of Zoology, Government College University Lahore, Pakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture University, Wuhan, China
| | | | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Asad ur-Rehman
- Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Sikander Ali
- Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| |
Collapse
|
16
|
Malhotra M, Suman SK. Laccase-mediated delignification and detoxification of lignocellulosic biomass: removing obstacles in energy generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58929-58944. [PMID: 33712950 DOI: 10.1007/s11356-021-13283-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The rising global population and worldwide industrialization have led to unprecedented energy demand that is causing fast depletion of fossil reserves. This has led to search for alternative energy sources that are renewable and environment friendly. Use of lignocellulosic biomass for energy generation is considered a promising approach as it does not compete with food supply. However, the lignin component of the biomass acts as a natural barrier that prevents its efficient utilization. In order to remove the lignin and increase the amount of fermentable sugars, the lignocellulosic biomass is pretreated using physical and chemical methods which are costly and hazardous for environment. Moreover, during the traditional pretreatment process, numerous inhibitory compounds are generated that adversely affect the growth of fermentative microbes. Alternatively, biological methods that use microbes and their enzymes disrupt lignin polymers and increase the accessibility of the carbohydrates for the sugar generation. Microbial laccases have been considered as an efficient biocatalyst for delignification and detoxification offering a green initiative for energy generation process. The present review aims to bring together recent studies in bioenergy generation using laccase biocatalyst in the pretreatment processes. The work provides an overview of the sustainable and eco-friendly approach of biological delignification and detoxification through whole-cell and enzymatic methods, use of laccase-mediator system, and immobilized laccases for this purpose. It also summarizes the advantages, associated challenges, and potential prospects to overcome the limitations.
Collapse
Affiliation(s)
- Manisha Malhotra
- CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, 248005, India
| | - Sunil Kumar Suman
- CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, 248005, India.
| |
Collapse
|
17
|
Magnetic Nanomaterials as Biocatalyst Carriers for Biomass Processing: Immobilization Strategies, Reusability, and Applications. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7100133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental concerns, along with oil shortages, have increased industrial interest in biomass conversion to produce biofuels and other valuable chemicals. A green option in biomass processing is the use of enzymes, such as cellulases, hemicellulases, and ligninolytic (laccase and peroxidases), which have outstanding specificity toward their substrates and can be reused if immobilized onto magnetic nanocarriers. Numerous studies report the biocatalysts’ performance after covalent binding or adsorption on differently functionalized magnetic nanoparticles (MNPs). Functionalization strategies of MNPs include silica-based surfaces obtained through a sol–gel process, graphene oxide-based nanocomposites, polymer-coated surfaces, grafting polymer brushes, and others, which have been emphasized in this review of the immobilization and co-immobilization of enzymes used for biomass conversion. Careful analysis of the parameters affecting the performance of enzyme immobilization for new hybrid matrices has enabled us to achieve wider tolerance to thermal or chemical stress by these biosystems during saccharification. Additionally, it has enabled the application of immobilized laccase to remove toxic organic compounds from lignin, among other recent advances addressed here related to the use of reusable magnetic carriers for bioderived chemical manufacturing.
Collapse
|
18
|
Bilal M, Ashraf SS, Cui J, Lou WY, Franco M, Mulla SI, Iqbal HMN. Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases-A review. Int J Biol Macromol 2021; 166:352-373. [PMID: 33129906 DOI: 10.1016/j.ijbiomac.2020.10.195] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/24/2020] [Indexed: 02/08/2023]
Abstract
In the recent past, numerous new types of nanostructured carriers, as support matrices, have been engineered to advance the traditional enzyme immobilization strategies. The current research aimed to develop a robust enzyme-based biocatalytic platform and its effective deployment in the industrial biotechnology sectors at large and catalysis area, in particular, as low-cost biocatalytic systems. Suitable coordination between the target enzyme molecules and surface pendent multifunctional entities of nanostructured carriers has led an effective and significant contribution in myriad novel industrial, biotechnological, and biomedical applications. As compared to the immobilization on planar two-dimensional (2-D) surface, the unique physicochemical, structural and functional attributes of nano-engineered matrices, such as high surface-to-volume ratio, surface area, robust chemical and mechanical stability, surface pendant functional groups, outstanding optical, thermal, and electrical characteristics, resulted in the concentration of the immobilized entity being substantially higher, which is highly requisite from applied bio-catalysis perspective. Besides inherited features, nanostructured materials-based enzyme immobilization aided additional features, such as (1) ease in the preparation or green synthesis route, (2) no or minimal use of surfactants and harsh reagents, (3) homogeneous and well-defined core-shell nanostructures with thick enzyme shell, and (4) nano-size can be conveniently tailored within utility limits, as compared to the conventional enzyme immobilization. Moreover, the growing catalytic needs can be fulfilled by multi-enzymes co-immobilization on these nanostructured materials-based support matrices. This review spotlights the unique structural and functional attributes of several nanostructured materials, including carbon nanotubes, graphene, and its derivate constructs, nanoparticles, nanoflowers, and metal-organic frameworks as robust matrices for laccase immobilization. The later half of the review focuses on the applied perspective of immobilized laccases for the degradation of emergent contaminants, biosensing cues, and lignin deconstruction and high-value products.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - S Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, 45654-370 Ilhéus, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560064, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|