1
|
Shi T, Sun X, Yuan Q, Wang J, Shen X. Exploring the role of flavin-dependent monooxygenases in the biosynthesis of aromatic compounds. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:46. [PMID: 38520003 PMCID: PMC10958861 DOI: 10.1186/s13068-024-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Hydroxylated aromatic compounds exhibit exceptional biological activities. In the biosynthesis of these compounds, three types of hydroxylases are commonly employed: cytochrome P450 (CYP450), pterin-dependent monooxygenase (PDM), and flavin-dependent monooxygenase (FDM). Among these, FDM is a preferred choice due to its small molecular weight, stable expression in both prokaryotic and eukaryotic fermentation systems, and a relatively high concentration of necessary cofactors. However, the catalytic efficiency of many FDMs falls short of meeting the demands of large-scale production. Additionally, challenges arise from the limited availability of cofactors and compatibility issues among enzyme components. Recently, significant progress has been achieved in improving its catalytic efficiency, but have not yet detailed and informative viewed so far. Therefore, this review emphasizes the advancements in FDMs for the biosynthesis of hydroxylated aromatic compounds and presents a summary of three strategies aimed at enhancing their catalytic efficiency: (a) Developing efficient enzyme mutants through protein engineering; (b) enhancing the supply and rapid circulation of critical cofactors; (c) facilitating cofactors delivery for enhancing FDMs catalytic efficiency. Furthermore, the current challenges and further perspectives on improving catalytic efficiency of FDMs are also discussed.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
2
|
Liu XY, Wang YN, Du JS, Chen BH, Liu KY, Feng L, Xiang GS, Zhang SY, Lu YC, Yang SC, Zhang GH, Hao B. Biosynthetic pathway of prescription bergenin from Bergenia purpurascens and Ardisia japonica. FRONTIERS IN PLANT SCIENCE 2024; 14:1259347. [PMID: 38239219 PMCID: PMC10794647 DOI: 10.3389/fpls.2023.1259347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Bergenin is a typical carbon glycoside and the primary active ingredient in antitussive drugs widely prescribed for central cough inhibition in China. The bergenin extraction industry relies on the medicinal plant species Bergenia purpurascens and Ardisia japonica as their resources. However, the bergenin biosynthetic pathway in plants remains elusive. In this study, we functionally characterized a shikimate dehydrogenase (SDH), two O-methyltransferases (OMTs), and a C-glycosyltransferase (CGT) involved in bergenin synthesis through bioinformatics analysis, heterologous expression, and enzymatic characterization. We found that BpSDH2 catalyzes the two-step dehydrogenation process of shikimic acid to form gallic acid (GA). BpOMT1 and AjOMT1 facilitate the methylation reaction at the 4-OH position of GA, resulting in the formation of 4-O-methyl gallic acid (4-O-Me-GA). AjCGT1 transfers a glucose moiety to C-2 to generate 2-Glucosyl-4-O-methyl gallic acid (2-Glucosyl-4-O-Me-GA). Bergenin production ultimately occurs in acidic conditions or via dehydration catalyzed by plant dehydratases following a ring-closure reaction. This study for the first time uncovered the biosynthetic pathway of bergenin, paving the way to rational production of bergenin in cell factories via synthetic biology strategies.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Yi-Na Wang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Jiang-Shun Du
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Bi-Huan Chen
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Kun-Yi Liu
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Lei Feng
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Gui-Sheng Xiang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Shuang-Yan Zhang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Ying-Chun Lu
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Sheng-Chao Yang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Guang-Hui Zhang
- College of Agronomy and Biotechnology, National and Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Bing Hao
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Effendi SSW, Ng IS. Challenges and opportunities for engineered Escherichia coli as a pivotal chassis toward versatile tyrosine-derived chemicals production. Biotechnol Adv 2023; 69:108270. [PMID: 37852421 DOI: 10.1016/j.biotechadv.2023.108270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of high-volume fuels and high-value-added compounds. The shikimate pathway, an imperative pathway in most microorganisms, is branched with tyrosine as the rate-limiting step precursor of valuable aromatic substances. Such occurrence suggests the shikimate pathway as a promising route in developing microbial cell factories with multiple applications in the nutraceutical, pharmaceutical, and chemical industries. Therefore, an increasing number of studies have focused on this pathway to enable the biotechnological manufacture of pivotal and versatile aromatic products. With advances in genome databases and synthetic biology tools, genetically programmed Escherichia coli strains are gaining immense interest in the sustainable synthesis of chemicals. Engineered E. coli is expected to be the next bio-successor of fossil fuels and plants in commercial aromatics synthesis. This review summarizes successful and applicable genetic and metabolic engineering strategies to generate new chassis and engineer the iterative pathway of the tyrosine route in E. coli, thus addressing the opportunities and current challenges toward the realization of sustainable tyrosine-derived aromatics.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
4
|
Mermigka G, Vavouraki AI, Nikolaou C, Cheiladaki I, Vourexakis M, Goumas D, Ververidis F, Trantas E. An Engineered Plant Metabolic Pathway Results in High Yields of Hydroxytyrosol Due to a Modified Whole-Cell Biocatalysis in Bioreactor. Metabolites 2023; 13:1126. [PMID: 37999222 PMCID: PMC10672836 DOI: 10.3390/metabo13111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Hydroxytyrosol (HT) is a phenolic substance primarily present in olive leaves and olive oil. Numerous studies have shown its advantages for human health, making HT a potentially active natural component with significant added value. Determining strategies for its low-cost manufacturing by metabolic engineering in microbial factories is hence still of interest. The objective of our study was to assess and improve HT production in a one-liter bioreactor utilizing genetically modified Escherichia coli strains that had previously undergone fed-batch testing. Firstly, we compared the induction temperatures in small-scale whole-cell biocatalysis studies and then examined the optimal temperature in a large volume bioreactor. By lowering the induction temperature, we were able to double the yield of HT produced thereby, reaching 82% when utilizing tyrosine or L-DOPA as substrates. Hence, without the need to further modify our original strains, we were able to increase the HT yield.
Collapse
Affiliation(s)
- Glykeria Mermigka
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| | - Aikaterini I. Vavouraki
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Chrysoula Nikolaou
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Ioanna Cheiladaki
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Michail Vourexakis
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Dimitrios Goumas
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| | - Filippos Ververidis
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| | - Emmanouil Trantas
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| |
Collapse
|
5
|
Colleary C, O’Reilly S, Dolocan A, Toyoda JG, Chu RK, Tfaily MM, Hochella MF, Nesbitt SJ. Using Macro- and Microscale Preservation in Vertebrate Fossils as Predictors for Molecular Preservation in Fluvial Environments. BIOLOGY 2022; 11:biology11091304. [PMID: 36138783 PMCID: PMC9495945 DOI: 10.3390/biology11091304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Exceptionally preserved fossils retain soft tissues and often the biomolecules that were present in an animal during its life. The majority of terrestrial vertebrate fossils are not traditionally considered exceptionally preserved, with fossils falling on a spectrum ranging from very well-preserved to poorly preserved when considering completeness, morphology and the presence of microstructures. Within this variability of anatomical preservation, high-quality macro-scale preservation (e.g., articulated skeletons) may not be reflected in molecular-scale preservation (i.e., biomolecules). Excavation of the Hayden Quarry (HQ; Chinle Formation, Ghost Ranch, NM, USA) has resulted in the recovery of thousands of fossilized vertebrate specimens. This has contributed greatly to our knowledge of early dinosaur evolution and paleoenvironmental conditions during the Late Triassic Period (~212 Ma). The number of specimens, completeness of skeletons and fidelity of osteohistological microstructures preserved in the bone all demonstrate the remarkable quality of the fossils preserved at this locality. Because the Hayden Quarry is an excellent example of good preservation in a fluvial environment, we have tested different fossil types (i.e., bone, tooth, coprolite) to examine the molecular preservation and overall taphonomy of the HQ to determine how different scales of preservation vary within a single locality. We used multiple high-resolution mass spectrometry techniques (TOF-SIMS, GC-MS, FT-ICR MS) to compare the fossils to unaltered bone from extant vertebrates, experimentally matured bone, and younger dinosaurian skeletal material from other fluvial environments. FT-ICR MS provides detailed molecular information about complex mixtures, and TOF-SIMS has high elemental spatial sensitivity. Using these techniques, we did not find convincing evidence of a molecular signal that can be confidently interpreted as endogenous, indicating that very good macro- and microscale preservation are not necessarily good predictors of molecular preservation.
Collapse
Affiliation(s)
- Caitlin Colleary
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
- Cleveland Museum of Natural History, Cleveland, OH 44106, USA
- Correspondence:
| | - Shane O’Reilly
- Atlantic Technological University, ATU Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| | - Andrei Dolocan
- Texas Materials Institute, University of Texas at Austin, Austin, TX 78712, USA
| | - Jason G. Toyoda
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rosalie K. Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Malak M. Tfaily
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Environmental Science, University of Arizona, Tucson, AZ 87519, USA
| | - Michael F. Hochella
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
- Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | |
Collapse
|
6
|
|