1
|
Tian Z, Dong X, Sun Y, Shi Q. De novo design and discovery of broad-spectrum affinity peptide ligands for influenza A vaccines. J Chromatogr A 2025; 1750:465937. [PMID: 40194500 DOI: 10.1016/j.chroma.2025.465937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Seasonal Influenza viruses, owing to their continued evolution and high level of contagion, present a significant threat to public health around world each year. Vaccination remains the most effective strategy for preventing complications of influenza virus infection, particularly for vulnerable populations such as elderly individuals, children, and individuals with underlying health conditions. In this study, we described the de novo design for the discovery of affinity ligands targeting the conserved receptor binding site (RBS) of the influenza virus hemagglutinin (HA). Based on three-round of molecular docking, three candidate peptides, pep1, pep3 and pep4, with top-rankings were identified. Molecular dynamic simulation and per-residue decomposition further revealed the different binding mechanisms of the three peptides with HA and the key residue's contribution to the binding. The result of microscale thermophoresis indicated that the three peptides had broad-spectrum affinity for various influenza A strains and, among them, pep1 had the highest binding affinity for HA (Kd = 0.58-0.73 μmol/L). By coupling pep1 onto Sepharose gels, the affinity gel was applied to the evaluation of the chromatographic performance in the purification of HA and influenza A vaccine from mimic egg- and mammalian-based feedstocks. A recovery of 68.3 %-72.2 % at the purity of 95.9 %-97.2 % was obtained in vaccine purification, demonstrating the excellent feature of the peptide ligand. This work provided new insight into the rational design of broad-spectrum affinity peptide targeting HA and the result has potential application in the production of influenza vaccines.
Collapse
Affiliation(s)
- Zengquan Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Synthetic Biology (Tianjin University), Tianjin 300350, China.; Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin 300350, China.; Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Synthetic Biology (Tianjin University), Tianjin 300350, China.; Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin 300350, China.; Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China..
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Synthetic Biology (Tianjin University), Tianjin 300350, China.; Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin 300350, China.; Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China..
| |
Collapse
|
2
|
Ma J, Tian Z, Shi Q, Dong X, Sun Y. Affinity chromatography for virus-like particle manufacturing: Challenges, solutions, and perspectives. J Chromatogr A 2024; 1721:464851. [PMID: 38574547 DOI: 10.1016/j.chroma.2024.464851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The increasing medical application of virus-like particles (VLPs), notably vaccines and viral vectors, has increased the demand for commercial VLP production. However, VLP manufacturing has not yet reached the efficiency level achieved for recombinant protein therapeutics, especially in downstream processing. This review provides a comprehensive analysis of the challenges associated with affinity chromatography for VLP purification with respect to the diversity and complexity of VLPs and the associated upstream and downstream processes. The use of engineered affinity ligands and matrices for affinity chromatography is first discussed. Although several representative affinity ligands are currently available for VLP purification, most of them have difficulty in balancing ligand universality, ligand selectivity and mild operation conditions. Then, phage display technology and computer-assisted design are discussed as efficient methods for the rapid discovery of high-affinity peptide ligands. Finally, the VLP purification by affinity chromatography is analyzed. The process is significantly influenced by virus size and variation, ligand type and chromatographic mode. To address the updated regulatory requirements and epidemic outbreaks, technical innovations in affinity chromatography and process intensification and standardization in VLP purification should be promoted to achieve rapid process development and highly efficient VLP manufacturing, and emphasis is given to the discovery of universal ligands, applications of gigaporous matrices and platform technology. It is expected that the information in this review can provide a better understanding of the affinity chromatography methods available for VLP purification and offer useful guidance for the development of affinity chromatography for VLP manufacturing in the decades to come.
Collapse
Affiliation(s)
- Jing Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zengquan Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
3
|
ZHOU L, WANG Z, REN X, LIU D, ZHANG L, ZHANG W. [Preparation technology comparison and performance evaluation of different protein A affinity chromatographic materials]. Se Pu 2024; 42:410-419. [PMID: 38736384 PMCID: PMC11089455 DOI: 10.3724/sp.j.1123.2024.01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 05/14/2024] Open
Abstract
Protein A affinity chromatographic materials are widely used in clinical medicine and biomedicine because of their specific interactions with immunoglobulin G (IgG). Both the characteristics of the matrix, such as its structure and morphology, and the surface modification method contribute to the affinity properties of the packing materials. The specific, orderly, and oriented immobilization of protein A can reduce its steric hindrance with the matrix and preserve its bioactive sites. In this study, four types of affinity chromatographic materials were obtained using agarose and polyglycidyl methacrylate (PGMA) spheres as substrates, and multifunctional epoxy and maleimide groups were used to fix protein A. The effects of the ethylenediamine concentration, reaction pH, buffer concentration, and other conditions on the coupling efficiency of protein A and adsorption performance of IgG were evaluated. Multifunctional epoxy materials were prepared by converting part of the epoxy groups of the agarose and PGMA matrices into amino groups using 0.2 and 1.6 mol/L ethylenediamine, respectively. Protein A was coupled to the multifunctional epoxy materials using 5 mmol/L borate buffer (pH 8) as the reaction solution. When protein A was immobilized on the substrates by maleimide groups, the agarose and PGMA substrates were activated with 25% (v/v) ethylenediamine for 16 h to convert all epoxy groups into amino groups. The maleimide materials were then converted into amino-modified materials by adding 3 mg/mL 3-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) dissolved in dimethyl sulfoxide (DMSO) and then suspended in 5 mmol/L borate buffer (pH 8). The maleimide groups reacted specifically with the C-terminal of the sulfhydryl group of recombinant protein A to achieve highly selective fixation on both the agarose and PGMA substrates. The adsorption performance of the affinity materials for IgG was improved by optimizing the bonding conditions of protein A, such as the matrix type, matrix particle size, and protein A content, and the adsorption properties of each affinity material for IgG were determined. The column pressure of the protein A affinity materials prepared using agarose or PGMA as the matrix via the maleimide method was subsequently evaluated at different flow rates. The affinity materials prepared with PGMA as the matrix exhibited superior mechanical strength compared with the materials prepared with agarose. Moreover, an excellent linear relationship between the flow rate and column pressure of 80 mL/min was observed for this affinity material. Subsequently, the effect of the particle size of the PGMA matrix on the binding capacity of IgG was investigated. Under the same protein A content, the dynamic binding capacity of the affinity materials on the PGMA matrix was higher when the particle size was 44-88 μm than when other particle sizes were used. The properties of the affinity materials prepared using the multifunctional epoxy and maleimide-modified materials were compared by synthesizing affinity materials with different protein A coupling amounts of 1, 2, 4, 6, 8, and 10 mg/mL. The dynamic and static binding capacities of each material for bovine IgG were then determined. The prepared affinity material was packed into a chromatographic column to purify IgG from bovine colostrum. Although all materials showed specific adsorption selectivity for IgG, the affinity material prepared by immobilizing protein A on the PGMA matrix with maleimide showed significantly better performance and achieved a higher dynamic binding capacity at a lower protein grafting amount. When the protein grafting amount was 15.71 mg/mL, the dynamic binding capacity of bovine IgG was 32.23 mg/mL, and the dynamic binding capacity of human IgG reached 54.41 mg/mL. After 160 cycles of alkali treatment, the dynamic binding capacity of the material reached 94.6% of the initial value, indicating its good stability. The developed method is appropriate for the production of protein A affinity chromatographic materials and shows great potential in the fields of protein immobilization and immunoadsorption material synthesis.
Collapse
|
4
|
Hu L, Chen Z, Li T, Ye X, Luo Q, Lai W. Comparison of oriented and non-oriented antibody conjugation with AIE fluorescence microsphere for the immunochromatographic detection of enrofloxacin. Food Chem 2023; 429:136816. [PMID: 37459713 DOI: 10.1016/j.foodchem.2023.136816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
Antibodies and labels were typically non-oriented conjugated in conventional immunochromatographic assays (ICAs). In this work, a C-terminal cysteine-tagged recombinant protein A (rPA) was conjugated in an oriented manner onto aggregation-induced emission fluorescence microsphere (AIEFM). The Fc fragment of anti-enrofloxacin monoclonal antibody (anti-ENR mAb) was then conjugated onto the rPA. The resulting oriented mAb-AIEFM probe was used in an ENR-ICA for the rapid detection of ENR, a widely abused animal drug. The ENR-ICA with the oriented probe saved 66.7% of anti-ENR mAb and 25% of ENR-bovine serum albumin, and had a limit of detection of 0.035 ng/mL, compared with 0.079 ng/mL for the non-oriented probe. The corresponding linear ranges of the ENR-ICA based on the oriented and non-oriented probes were 0.25-10 ng/mL and 0.1-2.5 ng/mL, respectively. This novel ICA based on the oriented probe has the potential to be used for sensitive and rapid detection in food safety.
Collapse
Affiliation(s)
- Liwen Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Zhenzhen Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Ting Li
- Ganjiang Traditional Chinese Medicine Innovation Center, Nanchang 330115, PR China
| | - Xianlong Ye
- Ganjiang Traditional Chinese Medicine Innovation Center, Nanchang 330115, PR China
| | - Qi Luo
- Jiangxi Ceneral Institute of Testing and Certification, Nanchang 330052, PR China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
5
|
Huang H, Dong X, Sun Y, Shi Q. Biomimetic affinity chromatography for antibody purification: Host cell protein binding and impurity removal. J Chromatogr A 2023; 1707:464305. [PMID: 37607431 DOI: 10.1016/j.chroma.2023.464305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Peptide affinity chromatography has received increasing attention as an alternative to protein A chromatography in antibody purification. However, its lower selectivity than protein A chromatography has impeded its success in practical applications. In particular, efficient removal of contaminants, including host cell proteins (HCPs) and DNA, is a great challenge for peptide affinity chromatography in monoclonal antibody (mAb) manufacturing. In this work, a biomimetic peptide ligand (bPL), FYWHCLDE, was coupled onto Sepharose 6 Fast Flow (SepFF) to synthesize a peptide affinity gel, SepFF-bPL, for the investigation of the binding mechanism of HCP as well as the feasibility of antibody capture. The results showed that the SepFF-bPL column exhibited effective removal of mAb aggregates as well as mAb capture from feedstocks of various origins, whereas poor removal of HCP and DNA was found. Mechanistic studies of HCP binding indicated that electrostatic interactions dominated HCP binding on the SepFF-bPL gel and that ionic conductivity had a significant influence on HCP binding at low salt concentrations. Thus, combined chromatin extraction and anion exchange adsorption were introduced prior to SepFF-bPL chromatography for initial contaminant removal to reduce mAb aggregation induced by HCP and the loading burden of contaminants in SepFF-bPL chromatography. A proof-of-concept study of the purification train demonstrated a high recovery of mAb (68.7%) and low levels of HCP (23 ppm) and DNA (below the limit of detection) in the final product, which were acceptable for the mandatory requirements in clinical applications. This research provided a deep understanding of HCP binding on the peptide affinity column and led to the development of an effective purification train.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Hamacek HSDR, Bresolin ITL, Fioravante IF, Bueno SMA. Synthesis and characterization of chitosan-polyacrylamide cryogels for the purification of human IgG by IMAC. Process Biochem 2023; 131:199-209. [DOI: 10.1016/j.procbio.2023.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Chu X, Yang X, Shi Q, Dong X, Sun Y. Kinetic and molecular insight into immunoglobulin G binding to immobilized recombinant protein A of different orientations. J Chromatogr A 2022; 1671:463040. [DOI: 10.1016/j.chroma.2022.463040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
|
8
|
Dual-recognition membrane Adsorbers combining hydrophobic charge-induction chromatography with surface imprinting via multicomponent reaction. J Chromatogr A 2022; 1668:462918. [DOI: 10.1016/j.chroma.2022.462918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022]
|
9
|
Mravljak R, Stantič M, Bizjak O, Podgornik A. Noninvasive method for determination of immobilized protein A. J Chromatogr A 2022; 1671:462976. [DOI: 10.1016/j.chroma.2022.462976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
10
|
Peptide Affinity Chromatography Applied to Therapeutic Antibodies Purification. Int J Pept Res Ther 2021; 27:2905-2921. [PMID: 34690622 PMCID: PMC8525457 DOI: 10.1007/s10989-021-10299-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
The interest in therapeutic monoclonal antibodies (mAbs) has significantly grown in the pharmaceutical industry, exceeding 100 FDA mAbs approved. Although the upstream processing of their industrial production has been significantly improved in the last years, the downstream processing still depends on immobilized protein A affinity chromatography. The high cost, low capacity and short half-life of immobilized protein A chromatography matrices, encouraged the design of alternative short-peptide ligands for mAb purification. Most of these peptides have been obtained by screening combinatorial peptide libraries. These low-cost ligands can be easily produced by solid-phase peptide synthesis and can be immobilized on chromatographic supports, thus obtaining matrices with high capacity and selectivity. Furthermore, matrices with immobilized peptide ligands have longer half-life than those with protein A due to the higher stability of the peptides. In this review the design and synthesis of peptide ligands, their immobilization on chromatographic supports and the evaluation of the affinity supports for their application in mAb purification is described.
Collapse
|
11
|
|