1
|
He Y, Chen J, Mo Z, Hu C, Li D, Tu J, Lin C, Wang Y, Liu D, Wang T. Controlling Diels-Alder reactions in catalytic pyrolysis of sawdust and polypropylene by coupling CO 2 atmosphere and Fe-modified zeolite for enhanced light aromatics production. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131547. [PMID: 37156047 DOI: 10.1016/j.jhazmat.2023.131547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Producing value-added light aromatics (BTEX) from solid waste streams holds excellent promise for resource recovery. Here we present a thermochemical conversion approach that enhanced BTEX production by coupling CO2 atmosphere and Fe-modified HZSM-5 zeolite to facilitate the Diels-Alder reactions in catalytic pyrolysis of sawdust and polypropylene. The Diels-Alder reactions between sawdust-derived furans and polypropylene-derived olefins could be controlled by tuning CO2 concentration and Fe loading amount. Sufficient CO2 (≥50%) with moderate Fe loading (10 wt%) were observed to produce more BTEX and fewer heavy fractions (C9+aromatics). To deepen the mechanistic understanding, quantification of polycyclic aromatic hydrocarbons (PAHs) and catalyst coke was further conducted. The co-use of CO2 atmosphere and Fe modification suppressed the appearance of low-, medium-, and high-membered ring PAHs by over 40%, decreased pyrolysis oil toxicity from 42.1 to 12.8 μg/goil TEQ, and transformed coke from "hard" to "soft". Based on the characterization of CO2 adsorption behavior, it was deduced that the introduced CO2 was activated by loaded Fe and reacted in situ with H2 generated during aromatization to expedite H-transfer. Meanwhile, BTEX recondensation was prevented through the Boudouard reactions of CO2 and water-gas reactions between the resulting water and carbon deposits. These synergistically enhanced the production of BTEX and suppressed the formation of heavy species, including PAHs and catalyst coke.
Collapse
Affiliation(s)
- Yao He
- School of Environmental Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Junjie Chen
- School of Environmental Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Ziming Mo
- School of Environmental Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Changsong Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Detao Li
- School of Environmental Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianhua Tu
- School of Environmental Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Chen Lin
- School of Environmental Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Wang
- School of Environmental Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Dongxia Liu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Tiejun Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Wang YL, Zhang XC, Zhan GG, Wang MM, Li WQ, Cao JP. Comparing the effects of hollow structure and mesoporous structure of ZSM-5 zeolites on catalytic performances in methanol aromatization. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|