1
|
Wang H, Sanghvi G, Arefpour A, Alkhayyat A, Soheily A, Jabbarzare S, Salahshour S, Alizadeh A, Baghaei S. Using hardystonite as a biomaterial in biomedical and bone tissue engineering applications. Tissue Cell 2024; 91:102551. [PMID: 39255743 DOI: 10.1016/j.tice.2024.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
Widespread adoption for substitutes of artificial bone grafts based on proper bioceramics has been generated in recent years. Among them, calcium-silicate-based bioceramics, which possess osteoconductive properties and can directly attach to biological organs, have attracted substantial attention for broad ranges of applications in bone tissue engineering. Approaches exist for a novel strategy to promote the drawbacks of bioceramics such as the incorporation of Zn2+, Mg2+, and Zr4+ ions into calcium-silicate networks, and the improvement of their physical, mechanical, and biological properties. Recently, hardystonite (Ca2ZnSi2O7) bioceramics, as one of the most proper calcium-silicate-based bioceramics, has presented excellent biocompatibility, bioactivity, and interaction. Due to its physical, mechanical, and biological behaviors and ability to be shaped utilizing a variety of fabrication techniques, hardystonite possesses the potential to be applied in biomedical and tissue engineering, mainly bone tissue engineering. A notable potential exists for the newly developed bioceramics to help therapies supply clinical outputs. The promising review paper has been presented by considering major aims to summarize and discuss the most applicable studies carried out for its physical, mechanical, and biological behaviors.
Collapse
Affiliation(s)
- Haoyu Wang
- Medical College, Xijing University, Xi'an, Shaanxi 710123, China; Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - Ahmadreza Arefpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ahmad Alkhayyat
- Department of computers Techniques engineering, College of technical engineering, The Islamic University, Najaf, Iraq; Department of computers Techniques engineering, College of technical engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of computers Techniques engineering, College of technical engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Soheily
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeid Jabbarzare
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Soheil Salahshour
- Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey; Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - As'ad Alizadeh
- Department of Mechanical Engineering, College of Engineering, Urmia University, Urmia, Iran
| | - Sh Baghaei
- Department of mechanical engineering, Khomeinishahr branch, Islamic Azad University, Khomeinishahr, Iran.
| |
Collapse
|
2
|
Wu T, Han L, Zhu Y, Zeng X, Kang Y, Zheng S, Wang Z, Wang J, Gao Y. Application of decalcified bone matrix in Salmon bone for tibial defect repair in rat model. Int J Artif Organs 2024; 47:783-792. [PMID: 39171422 DOI: 10.1177/03913988241269498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
AIM The optimal preparation conditions of Salmon decalcified bone matrix (S-DBM) were explored, and the properties of S-DBM bone particles and bone powder were studied respectively. The therapeutic effect of S-DBM on tibial defect in female Sprague Dawley (SD) rats was preliminarily verified. METHODS This study assessed the structural and functional similarities of Salmon bone DBM (S-DBM). The biocompatibility assessment was conducted using both in vivo and in vitro experiments, establishing an animal model featuring tibial defects in rats and on the L929 cell line, respectively. The control group, bovine DBM (bDBM), was compared to the S-DBM-treated tibial defect rats. Imaging and histology were used to study implant material changes, defect healing, osteoinductive repair, and degradation. RESULTS The findings of our study indicate that S-DBM exhibits favorable repairing effects on bone defects, along with desirable physicochemical characteristics, safety, and osteogenic activity. CONCLUSIONS The S-DBM holds significant potential as a medical biomaterial for treating bone defects, effectively fulfilling the clinical demands for materials used in bone tissue repair engineering.
Collapse
Affiliation(s)
- Tong Wu
- School of Life Sciences, Yantai University, Yantai, PR China
| | - Lei Han
- School of Life Sciences, Yantai University, Yantai, PR China
| | - Ye Zhu
- School of Life Sciences, Yantai University, Yantai, PR China
| | - Xiaojun Zeng
- School of Life Sciences, Yantai University, Yantai, PR China
| | - Yating Kang
- School of Life Sciences, Yantai University, Yantai, PR China
| | - Shuwen Zheng
- School of Life Sciences, Yantai University, Yantai, PR China
| | | | | | - Yonglin Gao
- School of Life Sciences, Yantai University, Yantai, PR China
| |
Collapse
|
3
|
Liu Z, Jiang X, Wang K, Zhou Y, Li T, Gao J, Wang L. Preparation of fish decalcified bone matrix and its bone repair effect in rats. Front Bioeng Biotechnol 2023; 11:1134992. [PMID: 36860886 PMCID: PMC9968849 DOI: 10.3389/fbioe.2023.1134992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Decalcified bone matrix has great potential and application prospects in the repair of bone defects due to its good biocompatibility and osteogenic activity. In order to verify whether fish decalcified bone matrix (FDBM) has similar structure and efficacy, this study used the principle of HCl decalcification to prepare the FDBM by using fresh halibut bone as the raw material, and then degreasing, decalcifying, dehydrating and freeze-drying it. Its physicochemical properties were analyzed by scanning electron microscopy and other methods, and then its biocompatibility was tested by in vitro and in vivo experiments. At the same time, an animal model of femoral defect in rats was established, and commercially available bovine decalcified bone matrix (BDBM) was used as the control group, and the area of femoral defect in rats was filled with the two materials respectively. The changes in the implant material and the repair of the defect area were observed by various aspects such as imaging and histology, and its osteoinductive repair capacity and degradation properties were studied. The experiments showed that the FDBM is a form of biomaterial with high bone repair capacity and lower economic cost than other related materials such as bovine decalcified bone matrix. FDBM is simpler to extract and the raw materials are more abundant, which can greatly improve the utilization of marine resources. Our results show that FDBM not only has a good repair effect on bone defects, but also has good physicochemical properties, biosafety and cell adhesion, and is a promising medical biomaterial for the treatment of bone defects, which can basically meet the clinical requirements for bone tissue repair engineering materials.
Collapse
Affiliation(s)
- Zichao Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaorui Jiang
- Department of Hand and foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Kai Wang
- Department of Hand and foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yongshun Zhou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Tingting Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Jianfeng Gao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China,*Correspondence: Jianfeng Gao, ; Lei Wang,
| | - Lei Wang
- The Affiliated Hospital of Weifang Medical University, Yantai, China,*Correspondence: Jianfeng Gao, ; Lei Wang,
| |
Collapse
|
4
|
Runci Anastasi M, Centofanti A, Arco A, Vermiglio G, Nicita F, Santoro G, Cascone P, Anastasi GP, Rizzo G, Cutroneo G. Histological and Immunofluorescence Study of Discal Ligaments in Human Temporomandibular Joint. J Funct Morphol Kinesiol 2020; 5:jfmk5040090. [PMID: 33467305 PMCID: PMC7804866 DOI: 10.3390/jfmk5040090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The temporomandibular joint (TMJ) is a bilateral synovial articulation stabilized by several anatomical structures such as ligaments. The existence of articular capsule reinforcement structures have been described in the lateral and medial sides of disc which have been defined as collateral ligaments, lateral and medial. Despite that, some macroscopic observations support that these collateral ligaments do not belong to the articular capsule but they belong to the disc. By that, the aim of the present work was to evaluate morphological aspects of TMJ from cadaveric frozen heads by histological and immunofluorescence techniques in order to verify the origin and insertion of lateral and medial collateral ligaments. Results show that both lateral and medial ligaments origin from the disc and insert directly to the articular cartilage of mandibula condyle. These data open a new approach in the study of human TMJ.
Collapse
Affiliation(s)
- Michele Runci Anastasi
- I.R.C.C.S. (Istituto di Ricovero e Cura a Carattere Scientifico) Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy;
| | - Antonio Centofanti
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (A.A.); (F.N.); (G.S.); (G.P.A.); (G.R.)
| | - Alba Arco
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (A.A.); (F.N.); (G.S.); (G.P.A.); (G.R.)
| | - Giovanna Vermiglio
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (A.A.); (F.N.); (G.S.); (G.P.A.); (G.R.)
- Correspondence:
| | - Fabiana Nicita
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (A.A.); (F.N.); (G.S.); (G.P.A.); (G.R.)
| | - Giuseppe Santoro
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (A.A.); (F.N.); (G.S.); (G.P.A.); (G.R.)
| | - Piero Cascone
- Department of Maxillo-Facial Surgery, University of Roma La Sapienza, 00185 Rome, Italy;
| | - Giuseppe Pio Anastasi
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (A.A.); (F.N.); (G.S.); (G.P.A.); (G.R.)
| | - Giuseppina Rizzo
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (A.C.); (A.A.); (F.N.); (G.S.); (G.P.A.); (G.R.)
| | - Giuseppina Cutroneo
- Department of Clinic and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| |
Collapse
|
5
|
Immunofluorescence Evaluation of Myf5 and MyoD in Masseter Muscle of Unilateral Posterior Crossbite Patients. J Funct Morphol Kinesiol 2020; 5:jfmk5040080. [PMID: 33467295 PMCID: PMC7739332 DOI: 10.3390/jfmk5040080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A unilateral posterior crossbite is a malocclusion where the low activity of the affected masseter muscle is compensated by the contralateral muscle hypertrophy. It is still unknown if, in the same condition, myogenesis with new fibre formation takes place. AIM the aim of the present study was to evaluate the expression of myogenesis markers, such as Myf5 and MyoD, in masseter muscles of unilateral posterior crossbite patients. MATERIALS AND METHODS biopsies from fifteen surgical patients with unilateral posterior crossbites have been analysed by immunofluorescence reactions. The results show the expression of Myf5 and MyoD in the contralateral muscle but not in the ipsilateral one. Moreover, statistical analysis shows the higher number of satellite cells in the contralateral side if compared to the ipsilateral one. CONCLUSIONS these results suggest that in contralateral muscle, hyperplastic events take place, as well as hypertrophy.
Collapse
|
6
|
Dentoalveolar Fractures: New Orthodontic Protocol Proposal and Pilot Study. J Craniofac Surg 2020; 31:e755-e760. [PMID: 33136902 DOI: 10.1097/scs.0000000000006682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The goal of fracture treatment that includes the dentoalveolar process is to obtain the anatomic bone healing and the pre-injury occlusion restoration with functional and aesthetic recovery, avoiding dental or periodontal lesions. Fractures activates, in the damaged tissue, the Regional Acceleratory Phenomenon, a physiological healing process that can also be activated during orthodontic overloads. Orthodontic treatment in the traumatized area could exploit this phenomenon in order to sustain the cellular activity.The aim of this study is to propose a treatment protocol for dentoalveolar fractures based on the use of orthodontics in order to sustain the physiological healing process known as Regional Acceleratory Phenomenon.The authors present 2 cases of an 18 year old woman and 23 year old man affected by dentoalveolar fracture. The operative protocol the authors applied foresaw three steps of treatment: orthodontic brackets application, surgery, orthodontic treatment.The patients showed complete healing at the 3 months follow-up and were treated up to 18 months for further orthodontic treatment.The operative protocol proposed by the Authors appears to be a rational choice since it allows a single orthodontic device to be an "active splinting system", with fast application time, good acceptance by the patient, low complications rate; moreover, it produces any planned dental movements for further orthodontic treatments.
Collapse
|
7
|
Zou W, Li X, Li N, Guo T, Cai Y, Yang X, Liang J, Sun Y, Fan Y. A comparative study of autogenous, allograft and artificial bone substitutes on bone regeneration and immunotoxicity in rat femur defect model. Regen Biomater 2020; 8:rbaa040. [PMID: 33732488 PMCID: PMC7947581 DOI: 10.1093/rb/rbaa040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Repair and reconstruction of large bone defect were often difficult, and bone substitute materials, including autogenous bone, allogenic bone and artificial bone, were common treatment strategies. The key to elucidate the clinical effect of these bone repair materials was to study their osteogenic capacity and immunotoxicological compatibility. In this paper, the mechanical properties, micro-CT imaging analysis, digital image analysis and histological slice analysis of the three bone grafts were investigated and compared after different time points of implantation in rat femur defect model. Autogenous bone and biphasic calcium phosphate particular artificial bone containing 61.4% HA and 38.6% β-tricalcium phosphate with 61.64% porosity and 0.8617 ± 0.0068 g/cm3 density (d ≤ 2 mm) had similar and strong bone repair ability, but autogenous bone implant materials caused greater secondary damage to experimental animals; allogenic bone exhibited poor bone defect repair ability. At the early stage of implantation, the immunological indexes such as Immunoglobulin G, Immunoglobulin M concentration and CD4 cells' population of allogenic bone significantly increased in compared with those of autologous bone and artificial bone. Although the repair process of artificial bone was relatively inefficient than autologous bone graft, the low immunotoxicological indexes and acceptable therapeutic effects endowed it as an excellent alternative material to solve the problems with insufficient source and secondary trauma of autogenous bone.
Collapse
Affiliation(s)
- Wen Zou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China.,Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Na Li
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Tianwei Guo
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Yongfu Cai
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Xiaoqin Yang
- Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China.,Sichuan Testing Centre for Biomaterials and Medical Devices, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, Sichuan, China
| |
Collapse
|
8
|
Militi A, Cutroneo G, Favaloro A, Matarese G, Di Mauro D, Lauritano F, Centofanti A, Cervino G, Nicita F, Bramanti A, Rizzo G. An immunofluorescence study on VEGF and extracellular matrix proteins in human periodontal ligament during tooth movement. Heliyon 2019; 5:e02572. [PMID: 31667410 PMCID: PMC6812246 DOI: 10.1016/j.heliyon.2019.e02572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 12/04/2022] Open
Abstract
The periodontal ligament (PDL) is a highly vascularized connective tissue surrounding the root of a tooth. In particular, the PDL is continuously exposed to mechanical stresses during the phases of mastication, and it provides physical, sensory, and trophic functions. It is known that the application of orthodontic force creates a change in periodontal structures. In fact, these forces generate a pressure on the ligament that closes the vessels. The aim of this study is to observe the modifications of vascular endothelial growth factor (VEGF) in the PDL and extracellular matrix proteins after application of a pre-calibrated and constant orthodontic force at different phases of treatment. We used a 50-g NiTi coiled spring and in vivo samples of PDL of maxillary and mandibular premolars of patients subjected to orthodontic treatment. These teeth were extracted at 1, 7, 14, 21, and 30 days, respectively, by application of force. The extraction of the PDL was effectuated by scarifying the radicular surface on the pressure and tension sides. The mechanical stress induced by the application of force caused an increase in the reactive type of metabolism of extracellular matrix proteins and modulation of neoangiogenesis until restoration.
Collapse
Affiliation(s)
- Angela Militi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Giuseppina Cutroneo
- Department of Clinic and Experimental Medicine, University of Messina, Italy
| | - Angelo Favaloro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Giovanni Matarese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Debora Di Mauro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Floriana Lauritano
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Antonio Centofanti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Gabriele Cervino
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Fabiana Nicita
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | | | - Giuseppina Rizzo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|
9
|
The Influence of Socioeconomic Factors on the Epidemiology of Maxillofacial Fractures in Southern Italy. J Craniofac Surg 2019; 29:2119-2123. [PMID: 29771827 DOI: 10.1097/scs.0000000000004603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Maxillofacial fractures represent a serious public health problem. Their epidemiology is extremely variable and its analysis is crucial to establish effective treatment and prevention of these injuries. The aim of this multicentric retrospective study was to analyze causes, demographics, incidence, characteristics of 987 patients diagnosed with maxillofacial trauma between 2011 and 2015 at Complex Operative Unit of Maxillofacial Surgery of Federico II University of Naples and Magna Graecia University of Catanzaro, Italy; 657 male and 310 female patients were admitted in the study. The most frequently observed fracture involved the mandible (399 patients, 35.4%), followed by zygomatic complex (337 patients, 29.9%), orbital walls (160 patients, 14.2%), and nasal bones (129 patients, 11.4%). The most frequent cause of fracture was assaults (30.4%), followed by road traffic injuries (27.2%), falls (23.2%), sport accidents (15.4%), and others causes (2.6%). Significant variations of etiology have been detected between the 2 hospitals in relationship with different migration flow trends and cultural and socioeconomic features. Epidemiological analysis of maxillofacial fractures is crucial to identify the trauma burden and to help in developing a more efficient system to plan resource allocation and to deliver care and preventive measures establishing clinical and research priorities for effective treatment and prevention of these injuries.
Collapse
|
10
|
Evaluation of the Effectiveness of Esterified Hyaluronic Acid Fibers on Bone Regeneration in Rat Calvarial Defects. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3874131. [PMID: 30050929 PMCID: PMC6046155 DOI: 10.1155/2018/3874131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/03/2018] [Indexed: 01/26/2023]
Abstract
Hyaluronic acid (HA) constitutes one of the major components of the extracellular matrix domain in almost all mammals. The aim of this study was to evaluate the regenerative capacity of HA matrix in rat calvarial bone defects and compare with those of different combinations of resorbable collagen membrane (M) and bovine-derived xenograft (G). Twenty-four 3-month-old male Sprague-Dawley rats weighing 200-250 g were included. Control group was created by leaving one defect empty from 2 critical size defects with 5 mm diameter formed in the calvarial bones of 8 rats. In the same rats, the other defect was treated with HA matrix alone. One of the 2 defects formed in other 8 rats was treated with HA+G and the other with HA+M. One of the 2 defects formed in the remaining 8 rats was treated with G+M and the other with HA+G+M. The animals were sacrificed at 4 weeks. Histologic, histomorphometric, and immunohistochemical analyses were performed. Both HA matrix alone and its combinations with G and M supported new bone formation (NBF). However, NBF was significantly greater in G+M and HA+G+M groups compared to control and HA alone (P<0.001). Bone morphogenetic protein-2 was expressed with varying degrees in all groups, without any difference among them. Within the limitations of the present study, HA matrix, used alone or in combination with G and M, did not contribute significantly to bone regeneration in rat calvarial bone defects.
Collapse
|
11
|
Cicciù M, Cervino G, Herford AS, Famà F, Bramanti E, Fiorillo L, Lauritano F, Sambataro S, Troiano G, Laino L. Facial Bone Reconstruction Using both Marine or Non-Marine Bone Substitutes: Evaluation of Current Outcomes in a Systematic Literature Review. Mar Drugs 2018; 16:E27. [PMID: 29342834 PMCID: PMC5793075 DOI: 10.3390/md16010027] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/12/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022] Open
Abstract
The aim of the present investigation was to systematically analyse the literature on the facial bone reconstruction defect using marine collagen or not and to evaluate a predictable treatment for their clinical management. The revision has been performed by searched MEDLINE and EMBASE databases from 2007 to 2017. Clinical trials and animal in vitro studies that had reported the application of bone substitutes or not for bone reconstruction defect and using marine collagen or other bone substitute material were recorded following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The first selection involved 1201 citations. After screening and evaluation of suitability, 39 articles were added at the revision process. Numerous discrepancies among the papers about bone defects morphology, surgical protocols, and selection of biomaterials were found. All selected manuscripts considered the final clinical success after the facial bone reconstruction applying bone substitutes. However, the scientific evidence regarding the vantage of the appliance of a biomaterial versus autologous bone still remains debated. Marine collagen seems to favor the dimensional stability of the graft and it could be an excellent carrier for growth factors.
Collapse
Affiliation(s)
- Marco Cicciù
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina of University, 98100 Messina, Italy.
| | - Gabriele Cervino
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina of University, 98100 Messina, Italy.
| | - Alan Scott Herford
- Department of Maxillofacial Surgery, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Fausto Famà
- Department of Human Pathology, University of Messina, 98100 Messina, Italy.
| | - Ennio Bramanti
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina of University, 98100 Messina, Italy.
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina of University, 98100 Messina, Italy.
| | - Floriana Lauritano
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina of University, 98100 Messina, Italy.
| | | | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy.
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", 80121 Naples, Italy.
| |
Collapse
|
12
|
Sodium-DNA for Bone Tissue Regeneration: An Experimental Study in Rat Calvaria. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7320953. [PMID: 29082254 PMCID: PMC5610838 DOI: 10.1155/2017/7320953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022]
Abstract
Surgical techniques in dental and maxillofacial surgery request fast bone tissue regeneration, so there is a significant need to improve therapy for bone regeneration. Several studies have recently underlined the importance of nucleotides and nucleosides to increase cell proliferation and activity; in particular, the ability of polydeoxyribonucleotide (PDRN) to induce growth and activity of human osteoblasts was demonstrated. Sodium-DNA is the deoxyribonucleic acid (DNA) extracted from the gonadic tissue of male sturgeon and then purified, depolymerized, and neutralized with sodium hydroxide. To date, there are no evidences about the use of Sodium-DNA for bone tissue regeneration. Consequently, our question is about the efficacy of Sodium-DNA in bone healing. For testing the role of Sodium-DNA in bone healing we used a rat calvarial defect model. Sodium-DNA at different concentrations used alone or in association with Fibrin and/or Bio-Oss was used for healing treatments and the bone healing process was evaluated by histomorphometric and immunohistochemical analyses. Our results suggested a positive effect of Sodium-DNA in bone regeneration, providing a useful protocol and a model for the future clinical evaluation of its osteogenic properties.
Collapse
|