1
|
Jones L, Efron N, Bandamwar K, Barnett M, Jacobs DS, Jalbert I, Pult H, Rhee MK, Sheardown H, Shovlin JP, Stahl U, Stanila A, Tan J, Tavazzi S, Ucakhan OO, Willcox MDP, Downie LE. TFOS Lifestyle: Impact of contact lenses on the ocular surface. Ocul Surf 2023; 29:175-219. [PMID: 37149139 DOI: 10.1016/j.jtos.2023.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Several lifestyle choices made by contact lens wearers can have adverse consequences on ocular health. These include being non-adherent to contact lens care, sleeping in lenses, ill-advised purchasing options, not seeing an eyecare professional for regular aftercare visits, wearing lenses when feeling unwell, wearing lenses too soon after various forms of ophthalmic surgery, and wearing lenses when engaged in risky behaviors (e.g., when using tobacco, alcohol or recreational drugs). Those with a pre-existing compromised ocular surface may find that contact lens wear exacerbates ocular disease morbidity. Conversely, contact lenses may have various therapeutic benefits. The coronavirus disease-2019 (COVID-19) pandemic impinged upon the lifestyle of contact lens wearers, introducing challenges such as mask-associated dry eye, contact lens discomfort with increased use of digital devices, inadvertent exposure to hand sanitizers, and reduced use of lenses. Wearing contact lenses in challenging environments, such as in the presence of dust and noxious chemicals, or where there is the possibility of ocular trauma (e.g., sport or working with tools) can be problematic, although in some instances lenses can be protective. Contact lenses can be worn for sport, theatre, at high altitude, driving at night, in the military and in space, and special considerations are required when prescribing in such situations to ensure successful outcomes. A systematic review and meta-analysis, incorporated within the review, identified that the influence of lifestyle factors on soft contact lens dropout remains poorly understood, and is an area in need of further research. Overall, this report investigated lifestyle-related choices made by clinicians and contact lens wearers and discovered that when appropriate lifestyle choices are made, contact lens wear can enhance the quality of life of wearers.
Collapse
Affiliation(s)
- Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada.
| | - Nathan Efron
- School of Optometry and Vision Science, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Kalika Bandamwar
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Melissa Barnett
- University of California, Davis Eye Center, Sacramento, CA, USA
| | - Deborah S Jacobs
- Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA
| | - Isabelle Jalbert
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Heiko Pult
- Dr Heiko Pult Optometry & Vision Research, Weinheim, Germany
| | | | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | - Ulli Stahl
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | | | - Jacqueline Tan
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano-Bicocca, Milan, Italy
| | | | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Ponzini E, Recchioni A, Cheloni R, Zeri F, Tavazzi S. Physical Properties and Interaction With the Ocular Surface of Water-Gradient Contact Lenses. Eye Contact Lens 2023; 49:152-159. [PMID: 36811833 DOI: 10.1097/icl.0000000000000974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
ABSTRACT Since the introduction of silicone hydrogel contact lenses, many silicone-hydrogel materials have been produced, including water-gradient contact lenses with a silicone hydrogel core and a thin hydrogel outer layer (e.g., delefilcon A, verofilcon A, and lehfilcon A). Their properties have been investigated in various studies assessing both the chemical-physical characteristics and the comfort, but the overall picture is not always consistent. In this study, water-gradient technology is reviewed by looking at basic physical properties both in vitro and in vivo and at the interaction with the human ocular surface. Surface and bulk dehydration, surface wetting and dewetting, shear stress, interaction with tear components and with other environmental compounds, and comfort are discussed.
Collapse
Affiliation(s)
- Erika Ponzini
- Materials Science Department (E.P., F.Z., S.T.), University of Milano Bicocca, Via R. Cozzi 55-I-20125 Milan, Italy; COMiB Research Center (E.P., F.Z., S.T.), University of Milano Bicocca, Via R. Cozzi 55-I-20125 Milan, Italy; Academic Unit of Ophthalmology (A.R.), Institute of Inflammation and Ageing, University of Birmingham, UK; Birmingham and Midland Eye Centre (A.R.), Birmingham, UK; Optometry & Vision Sciences Group (A.R.), School of Life & Health Sciences, Aston University, Birmingham, 8UK; UCL Institute of Ophthalmology (R.C.), London, UK; and College of Health and Life Sciences (F.Z.), Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | | | | | | | | |
Collapse
|
3
|
Teeranachaideekul V, Boribalnukul P, Morakul B, Junyaprasert VB. Influence of Vegetable Oils on In Vitro Performance of Lutein-Loaded Lipid Carriers for Skin Delivery: Nanostructured Lipid Carriers vs. Nanoemulsions. Pharmaceutics 2022; 14:pharmaceutics14102160. [PMID: 36297595 PMCID: PMC9612128 DOI: 10.3390/pharmaceutics14102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
Nanostructured lipid carriers (NLC) were prepared from solid lipid (glyceryl monostearate, GMS) and vegetable oils, including palm oil (PO), rice bran oil (RBO) or virgin coconut oil (VCO), at different ratios (95:5, 90:10 and 80:20), while nanoemulsions (NE) were prepared with sole vegetable oils. After production, the particle size of the lutein-free NLC and NE was found to be between 100 and 150 nm and increased after loading with lutein. An increase in oil loading in NLC reduced the particle size and resulted in a less ordered lipid matrix and an increase in % entrapment efficiency. From the stability study, it was observed that the types of oils and oil content in the lipid matrix had an impact on the chemical stability of lutein. Regarding the release study, lutein-loaded NE showed higher release than lutein-loaded NLC. Both NLC and NE prepared from VCO exhibited higher release than those prepared from PO and RBO, respectively (p < 0.05). In contrast, among the formulations of NLC and NE, both lutein-loaded NLC and NE prepared from RBO showed the highest permeation through the human epidermis due to the skin enhancement effect of RBO. Based on all the results, the lipid nanocarriers composed of RBO could effectively enhance the chemical stability of lutein and promote drug penetration into the skin.
Collapse
|
4
|
Miglio F, Ponzini E, Zeri F, Borghesi A, Tavazzi S. In vitro affinity for nicotine of soft contact lenses of different materials. Cont Lens Anterior Eye 2021; 45:101490. [PMID: 34294534 DOI: 10.1016/j.clae.2021.101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
Smoking is a risk factor for the development of microbial keratitis and corneal infiltrates in contact lens (CL) wearers. It is still unknown if this risk is directly associated with the presence of nicotine in the eye and if adherence of nicotine on the CL can enhance these effects. A better understanding of the interaction between nicotine and CL materials could offer insights to explain this risk associated with smoking. The aim of this work was to compare the affinity of nicotine to different soft CL materials. CLs from FDA groups I, II, IV, and V were incubated in a 2-mM nicotine solution for 24 h and then in a 0.9% saline solution for the next 24 h. The amount of absorbed and released nicotine per CL was deduced as a function of time (t) by ultraviolet (UV) spectrophotometry and normalised to the mass of the hydrated CL. The data were described by the equation y = b -a t-1, where a and b are constants, and b represents the mass reached at the plateau after ~ 10 min of exposure. Groups IV and V displayed the highest (0.80 ± 0.09 µg) and lowest (0.27 ± 0.08 µg) nicotine absorption per mg of hydrated CL, respectively. The CL affinity for nicotine could be ascribed to the interaction between the positive charge of nicotine pyrrolidine nitrogen and the negative charges of the CLs, especially for the ionic IV group.
Collapse
Affiliation(s)
- Federica Miglio
- University of Milano Bicocca, Materials Science Department, via R. Cozzi 55, I-20125 Milan, Italy; University of Milano Bicocca, COMiB Research Center, via R. Cozzi 55, I-20125 Milan, Italy
| | - Erika Ponzini
- University of Milano Bicocca, Materials Science Department, via R. Cozzi 55, I-20125 Milan, Italy; University of Milano Bicocca, COMiB Research Center, via R. Cozzi 55, I-20125 Milan, Italy.
| | - Fabrizio Zeri
- University of Milano Bicocca, Materials Science Department, via R. Cozzi 55, I-20125 Milan, Italy; University of Milano Bicocca, COMiB Research Center, via R. Cozzi 55, I-20125 Milan, Italy; School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alessandro Borghesi
- University of Milano Bicocca, Materials Science Department, via R. Cozzi 55, I-20125 Milan, Italy; University of Milano Bicocca, COMiB Research Center, via R. Cozzi 55, I-20125 Milan, Italy
| | - Silvia Tavazzi
- University of Milano Bicocca, Materials Science Department, via R. Cozzi 55, I-20125 Milan, Italy; University of Milano Bicocca, COMiB Research Center, via R. Cozzi 55, I-20125 Milan, Italy
| |
Collapse
|
5
|
Li F, Wen Y, Zhang Y, Zheng K, Ban J, Xie Q, Wen Y, Liu Q, Chen F, Mo Z, Liu L, Chen Y, Lu Z. Characterisation of 2-HP-β-cyclodextrin-PLGA nanoparticle complexes for potential use as ocular drug delivery vehicles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4097-4108. [PMID: 31663388 DOI: 10.1080/21691401.2019.1683567] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aim: 2-HP-β-cyclodextrin-PLGA nanoparticle complexes were prepared to enhance the aqueous humour delivery of Triamcinolone acetonide.Materials & methods: Drug-loaded 2-HP-β-CD/PLGA nanoparticle complexes prepared by adapting a quasi-emulsion solvent evaporation technique. In vitro drug release, in vitro transcorneal permeation study, histopathological study and in vivo transcorneal penetration of PLGA nanoparticles and 2-HP-β-CD/PLGA nanoparticle complexes were evaluated. Results: Particle size distributions of 2-HP-β-CD/PLGA nanoparticle complexes were 149.4 ± 3.7 nm and presented stable system. Corneal penetration studies revealed steady sustained drug release (First-order); 2-HP-β-CD/PLGA nanoparticle complexes increased ocular bioavailability by increasing dispersion in the tear film and improving drug release. Conclusion: 2-HP-β-CD/PLGA nanoparticle complex formulation is a promising alternative to conventional eye drops.
Collapse
Affiliation(s)
- Fan Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yuqin Wen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Kangyu Zheng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Junfeng Ban
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Qingchun Xie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yifeng Wen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Fohua Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zhenjie Mo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Lizhong Liu
- Department of Hospital Pharmacy, Ningbo 7 Hospital, Ningbo, People's Republic of China
| | - Yanzhong Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zhufen Lu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| |
Collapse
|