1
|
Heath H, Mogol AN, Santaliz Casiano A, Zuo Q, Madak-Erdogan Z. Targeting systemic and gut microbial metabolism in ER + breast cancer. Trends Endocrinol Metab 2024; 35:321-330. [PMID: 38220576 DOI: 10.1016/j.tem.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Estrogen receptor-positive (ER+) breast tumors have a better overall prognosis than ER- tumors; however, there is a sustained risk of recurrence. Mounting evidence indicates that genetic and epigenetic changes associated with resistance impact critical signaling pathways governing cell metabolism. This review delves into recent literature concerning the metabolic pathways regulated in ER+ breast tumors by the availability of nutrients and endocrine therapies and summarizes research on how changes in systemic and gut microbial metabolism can affect ER activity and responsiveness to endocrine therapy. As targeting of metabolic pathways using dietary or pharmacological approaches enters the clinic, we provide an overview of the supporting literature and suggest future directions.
Collapse
Affiliation(s)
- Hannah Heath
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ayca Nazli Mogol
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
2
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
3
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
4
|
Xia S, Lin Q. Estrogen Receptor Bio-Activities Determine Clinical Endocrine Treatment Options in Estrogen Receptor-Positive Breast Cancer. Technol Cancer Res Treat 2022; 21:15330338221090351. [PMID: 35450488 PMCID: PMC9036337 DOI: 10.1177/15330338221090351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In estrogen receptor positive (ER+) breast cancer therapy, estrogen receptors (ERs) are the major targeting molecules. ER-targeted therapy has provided clinical benefits for approximately 70% of all breast cancer patients through targeting the ERα subtype. In recent years, mechanisms underlying breast cancer occurrence and progression have been extensively studied and largely clarified. The PI3K/AKT/mTOR pathway, microRNA regulation, and other ER downstream signaling pathways are found to be the effective therapeutic targets in ER+ BC therapy. A number of the ER+ (ER+) breast cancer biomarkers have been established for diagnosis and prognosis. The ESR1 gene mutations that lead to endocrine therapy resistance in ER+ breast cancer had been identified. Mutations in the ligand-binding domain of ERα which encoded by ESR1 gene occur in most cases. The targeted drugs combined with endocrine therapy have been developed to improve the therapeutic efficacy of ER+ breast cancer, particularly the endocrine therapy resistance ER+ breast cancer. The combination therapy has been demonstrated to be superior to monotherapy in overall clinical evaluation. In this review, we focus on recent progress in studies on ERs and related clinical applications for targeted therapy and provide a perspective view for therapy of ER+ breast cancer.
Collapse
Affiliation(s)
- Song Xia
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, China
- Qiong Lin, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China.
| |
Collapse
|
5
|
Barazetti JF, Jucoski TS, Carvalho TM, Veiga RN, Kohler AF, Baig J, Al Bizri H, Gradia DF, Mader S, Carvalho de Oliveira J. From Micro to Long: Non-Coding RNAs in Tamoxifen Resistance of Breast Cancer Cells. Cancers (Basel) 2021; 13:3688. [PMID: 34359587 PMCID: PMC8345104 DOI: 10.3390/cancers13153688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality among women. Two thirds of patients are classified as hormone receptor positive, based on expression of estrogen receptor alpha (ERα), the main driver of breast cancer cell proliferation, and/or progesterone receptor, which is regulated by ERα. Despite presenting the best prognosis, these tumors can recur when patients acquire resistance to treatment by aromatase inhibitors or antiestrogen such as tamoxifen (Tam). The mechanisms that are involved in Tam resistance are complex and involve multiple signaling pathways. Recently, roles for microRNAs and lncRNAs in controlling ER expression and/or tamoxifen action have been described, but the underlying mechanisms are still little explored. In this review, we will discuss the current state of knowledge on the roles of microRNAs and lncRNAs in the main mechanisms of tamoxifen resistance in hormone receptor positive breast cancer. In the future, this knowledge can be used to identify patients at a greater risk of relapse due to the expression patterns of ncRNAs that impact response to Tam, in order to guide their treatment more efficiently and possibly to design therapeutic strategies to bypass mechanisms of resistance.
Collapse
Affiliation(s)
- Jéssica Fernanda Barazetti
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tayana Shultz Jucoski
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tamyres Mingorance Carvalho
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Rafaela Nasser Veiga
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Ana Flávia Kohler
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Jumanah Baig
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Hend Al Bizri
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Sylvie Mader
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jaqueline Carvalho de Oliveira
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| |
Collapse
|
6
|
Boér K, Rubovszky G, Rokszin G, Abonyi-Tóth Z, Földesi C, Dank M. Demographic Characteristics and Treatment Patterns Among Patients Receiving Palbociclib for HR+/HER2- Advanced Breast Cancer: A Nationwide Real-World Experience. Onco Targets Ther 2021; 14:3971-3981. [PMID: 34234466 PMCID: PMC8257075 DOI: 10.2147/ott.s309862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/12/2021] [Indexed: 11/23/2022] Open
Abstract
Background This nationwide retrospective study reports data on the real-world use of the selective cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor palbociclib in a large population of advanced breast cancer (ABC) patients during a 2-year period in Hungary. Methods All patients with ABC who received palbociclib between May 1, 2017 and June 30, 2019 were included in the analysis. Patient demographic and clinical characteristics, disease-related factors and treatment patterns were examined during the early access program and in the regular reimbursement period. Results Altogether, 962 patients were included (mean age: 60.6 years). A total of 399 patients (41%) were treated with palbociclib plus aromatase inhibitors (P+AI), and 563 patients (59%) received palbociclib and fulvestrant (P+F). The most commonly prescribed AI was letrozole (n=359; 90%). Of those with metastatic disease (n=733; 76%), 241 patients (33%) had visceral metastases and 449 (61%) had bone-only disease. The majority of patients (79%) received palbociclib as first- or second-line therapy for ABC. The starting dose of palbociclib was 125 mg in 98% of patients; dose reductions were required in 32% of patients receiving P+AI and 31% of those treated with P+F. At the time of data collection, palbociclib therapy was ongoing in 270 patients (68%) in the P+AI group and 245 patients (44%) in the P+F group. Conclusions This nationwide analysis is the first to provide insights into the real-world use of palbociclib in a large patient population from a Central-Eastern European country. The findings confirm the good tolerability of palbociclib with similar dose reduction rates to those reported from registration trials.
Collapse
Affiliation(s)
- Katalin Boér
- Department of Medical Oncology, Szent Margit Hospital, Budapest, Hungary
| | - Gábor Rubovszky
- Chemotherapy Department B, National Institute of Oncology, Budapest, Hungary.,Department of Internal Medicine and Oncology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | | | - Zsolt Abonyi-Tóth
- RxTarget Ltd., Szolnok, Hungary.,University of Veterinary Medicine, Budapest, Hungary
| | | | - Magdolna Dank
- Department of Internal Medicine and Oncology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| |
Collapse
|
7
|
Giannoudis A, Malki MI, Rudraraju B, Mohhamed H, Menon S, Liloglou T, Ali S, Carroll JS, Palmieri C. Activating transcription factor-2 (ATF2) is a key determinant of resistance to endocrine treatment in an in vitro model of breast cancer. Breast Cancer Res 2020; 22:126. [PMID: 33198803 PMCID: PMC7667764 DOI: 10.1186/s13058-020-01359-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Activating transcription factor-2 (ATF2), a member of the leucine zipper family of DNA binding proteins, has been implicated as a tumour suppressor in breast cancer. However, its exact role in breast cancer endocrine resistance is still unclear. We have previously shown that silencing of ATF2 leads to a loss in the growth-inhibitory effects of tamoxifen in the oestrogen receptor (ER)-positive, tamoxifen-sensitive MCF7 cell line and highlighted that this multi-faceted transcription factor is key to the effects of tamoxifen in an endocrine sensitive model. In this work, we explored further the in vitro role of ATF2 in defining the resistance to endocrine treatment. MATERIALS AND METHODS We knocked down ATF2 in TAMR, LCC2 and LCC9 tamoxifen-resistant breast cancer cell lines as well as the parental tamoxifen sensitive MCF7 cell line and investigated the effects on growth, colony formation and cell migration. We also performed a microarray gene expression profiling (Illumina Human HT12_v4) to explore alterations in gene expression between MCF7 and TAMRs after ATF2 silencing and confirmed gene expression changes by quantitative RT-PCR. RESULTS By silencing ATF2, we observed a significant growth reduction of TAMR, LCC2 and LCC9 with no such effect observed with the parental MCF7 cells. ATF2 silencing was also associated with a significant inhibition of TAMR, LCC2 and LCC9 cell migration and colony formation. Interestingly, knockdown of ATF2 enhanced the levels of ER and ER-regulated genes, TFF1, GREB1, NCOA3 and PGR, in TAMR cells both at RNA and protein levels. Microarray gene expression identified a number of genes known to mediate tamoxifen resistance, to be differentially regulated by ATF2 in TAMR in relation to the parental MCF7 cells. Moreover, differential pathway analysis confirmed enhanced ER activity after ATF2 knockdown in TAMR cells. CONCLUSION These data demonstrate that ATF2 silencing may overcome endocrine resistance and highlights further the dual role of this transcription factor that can mediate endocrine sensitivity and resistance by modulating ER expression and activity.
Collapse
Affiliation(s)
- Athina Giannoudis
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - Mohammed Imad Malki
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Bharath Rudraraju
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, London, UK
| | - Hisham Mohhamed
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Knight Cancer Institute School of Medicine, Portland, USA
| | - Suraj Menon
- Cancer Research UK, Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, London, UK
| | - Jason S Carroll
- Cancer Research UK, Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Carlo Palmieri
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
8
|
Bayraktar S, Batoo S, Al-Hattab E, Basu S, Okuno S, Glück S. Future perspectives and challenges with CDK4/6 inhibitors in hormone receptor-positive metastatic breast cancer. Future Oncol 2020; 16:2661-2672. [PMID: 32805138 DOI: 10.2217/fon-2020-0234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There are three US FDA-approved CDK4/6 inhibitors: palbociclib, ribociclib and abemaciclib for patients with HR-positive, HER2-negative (HR+/HER2-) metastatic breast cancer (MBC). They are all equally effective, so the question becomes how to choose among these agents and how to sequence them. Other areas with active investigation include identifying predictive biomarkers for the selection of patients whom may benefit more from CDK4/6 inhibitors, deciding whether to continue CDK4/6 inhibitors after disease progression on CDK4/6 inhibitors, creating novel treatment combinations and expanding use beyond HR+/HER2- MBC. Here, we review the current use of and potential next directions for CDK4/6 inhibitors in the treatment of patients with HR+/HER2- MBC.
Collapse
Affiliation(s)
- Soley Bayraktar
- Department of Medicine, Division of Medical Oncology & Hematology, Mayo Clinic Health System, Eau Claire, WI, USA.,Department of Medicine, Division of Medical Oncology & Hematology, Biruni University School of Medicine, Istanbul, Turkey
| | - Sameer Batoo
- Department of Medicine, Division of Medical Oncology & Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Eyad Al-Hattab
- Department of Medicine, Division of Medical Oncology & Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Sandeep Basu
- Department of Medicine, Division of Medical Oncology & Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Scott Okuno
- Department of Medicine, Division of Medical Oncology & Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Stefan Glück
- Global Medical Affairs, Early Assets, Celgene Corporation, Summit, NJ, USA
| |
Collapse
|
9
|
Huang J, Huang P, Shao XY, Sun Y, Lei L, Lou CJ, Ye WW, Chen JQ, Cao WM, Huang Y, Zheng YB, Wang XJ, Chen ZH. Efficacy of fulvestrant 500 mg in Chinese postmenopausal women with advanced/recurrent breast cancer and factors associated with prolonged time-to-treatment failure: A retrospective case series. Medicine (Baltimore) 2020; 99:e20821. [PMID: 32702824 PMCID: PMC7373621 DOI: 10.1097/md.0000000000020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 11/26/2022] Open
Abstract
This study was to investigate the efficacy and safety of fulvestrant 500 mg for the treatment of hormone receptor positive advanced postmenopausal women, including ovarian ablation and investigated factors associated with prolonged time-to-treatment failure.Data from 60 women with metastatic breast cancer who were treated at Zhejiang Cancer Hospital. Patients received 500 mg (n = 60) between December 2011 and November 2012 were followed until November 2017. Main outcomes were clinical responses to fulvestrant, including best response, progressive disease, partial response, and stable disease lasting 12 months or more. Time to progression and time to progression-free-survival were also analyzed.Among the included 60 patients (mean age 47.18 years), 51 (85.0%) had received prior adjuvant therapy. During follow-up after fulvestrant treatment, the median PFS for the best response was derived as 7.0 months (inter-quartile = 4, 13.8 months). The observed median progression-free-survival time for best response was represented longer when fulvestrant was first-line treatment than when patients received prior endocrine and/or chemotherapy. Univariate analysis revealed that receiving either endocrine therapy only or endocrine therapy plus chemotherapy prior to fulvestrant treatment may be associated with median progression-free survival time to best response (P = .002, .026, .007, respectively).Fulvestrant treatment is safe and well-tolerated in women with hormone-sensitive advanced breast cancer, and first-line fulvestrant therapy increases progression-free-survival time, especially in patients without prior adjuvant treatment.
Collapse
|
10
|
Sammons S, Kornblum NS, Blackwell KL. Fulvestrant-Based Combination Therapy for Second-Line Treatment of Hormone Receptor-Positive Advanced Breast Cancer. Target Oncol 2019; 14:1-12. [PMID: 30136059 PMCID: PMC6407749 DOI: 10.1007/s11523-018-0587-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fulvestrant is recommended for patients with hormone receptor-positive (HR+) advanced breast cancer (ABC) who progress after aromatase inhibitor therapy. As most patients in this setting have already developed mechanisms of resistance to endocrine therapy, targeting biological pathways associated with endocrine resistance in combination with fulvestrant may improve outcomes. Therefore, evidence supporting a combinatorial treatment approach in the second-line setting was investigated based on a search of PubMed and ClinicalTrials.gov . Twenty-eight studies of targeted therapies plus fulvestrant as second-line treatment for HR+ ABC were identified, including three and six key randomized trials exploring cyclin-dependent kinase 4/6 (CDK4/6) inhibitors and phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitors plus fulvestrant respectively. Additional combinations with fulvestrant included inhibitors of epidermal growth factor receptors, androgen receptor, and the bromodomain and extra-terminal family of proteins. Across the studies reviewed with available data, the addition of targeted therapies to fulvestrant resulted in clinically meaningful improvements in progression-free survival compared with fulvestrant alone. While some challenging toxicities were observed, most adverse events could be effectively managed. Selection of second-line targeted therapy for use with fulvestrant should consider prior treatment as well as the mutation status of the tumor. In conclusion, available data indicate that fulvestrant combined with agents targeting mechanisms of endocrine resistance is a promising approach. The ongoing trials identified in this review will help further inform the selection of combination treatments with fulvestrant for HR+ ABC.
Collapse
Affiliation(s)
| | | | - Kimberly L. Blackwell
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA
- Present Address: Eli Lilly and Company, Indianapolis, IN 46285 USA
| |
Collapse
|
11
|
Zhang Y, Wang Z, Huang Y, Ying M, Wang Y, Xiong J, Liu Q, Cao F, Joshi R, Liu Y, Xu D, Zhang M, Yuan K, Zhou N, Koropatnick J, Min W. TdIF1: a putative oncogene in NSCLC tumor progression. Signal Transduct Target Ther 2018; 3:28. [PMID: 30345081 PMCID: PMC6194072 DOI: 10.1038/s41392-018-0030-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022] Open
Abstract
TdT-interacting factor 1 (TdIF1) is a ubiquitously expressed DNA- and protein-binding protein that directly binds to terminal deoxynucleotidyl transferase (TdT) polymerase. Little is known about the functional role of TdIF1 in cancer cellular signaling, nor has it previously been identified as aberrant in any type of cancer. We report here for the first time that TdIF1 is abundantly expressed in clinical lung cancer patients and that high expression of TdIF1 is associated with poor patient prognosis. We further established that TdIF1 is highly expressed in human non-small cell lung cancer (NSCLC) cell lines compared to a normal lung cell line. shRNA-mediated gene silencing of TdIF1 resulted in the suppression of proliferation and anchorage-independent colony formation of the A549 adenocarcinoma cell line. Moreover, when these TdIF1-silenced cells were used to establish a mouse xenograft model of human NSCLC, tumor size was greatly reduced. These data suggest that TdIF1 is a potent regulator of lung tumor development. Several cell cycle-related and tumor growth signaling pathways, including the p53 and HDAC1/2 pathways, were identified as participating in the TdIF1 signaling network by in silico analysis. Microarray, transcriptome and protein-level analyses validated p53 and HDAC1/2 modulation upon TdIF1 downregulation in an NSCLC cellular model. Moreover, several other cell cycle regulators were affected at the transcript level by TdIF1 silencing, including an increase in CDKN1A/p21 transcripts. Taken together, these results indicate that TdIF1 is a bona fide tumor-promoting factor in NSCLC and a potential target for therapy. A protein involved in the immune system also plays a role in the most common type of lung cancer. Weiping Min, of the University of Western Ontario in Canada, and international colleagues found, for the first time, that the protein TdIF1 is significantly upregulated in non-small cell lung cancer (NSCLC) tissues in patients. High expression levels of this protein were correlated with poor prognosis. NSCLC tumor tissues grown in mice where TdIF1 expression was ‘knocked down’ were significantly smaller than in those without TdIF1 knockdown. Further analyses showed the protein was involved in known cell signaling pathways with roles in NSCLC progression. The findings indicate TdIF1 should be further investigated as a biomarker of NSCLC or as a molecular target for its treatment.
Collapse
Affiliation(s)
- Yujuan Zhang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,3Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Zhigang Wang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yanqing Huang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Muying Ying
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yifan Wang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Juan Xiong
- 5Department of Preventive Medicine, School of Medicine, Shenzhen University, Shenzhen, China
| | - Qi Liu
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Fan Cao
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Rakesh Joshi
- 4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Yanling Liu
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Derong Xu
- 6Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Meng Zhang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Keng Yuan
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Nanjin Zhou
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - James Koropatnick
- 4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Weiping Min
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| |
Collapse
|
12
|
Keup C, Mach P, Aktas B, Tewes M, Kolberg HC, Hauch S, Sprenger-Haussels M, Kimmig R, Kasimir-Bauer S. RNA Profiles of Circulating Tumor Cells and Extracellular Vesicles for Therapy Stratification of Metastatic Breast Cancer Patients. Clin Chem 2018; 64:1054-1062. [DOI: 10.1373/clinchem.2017.283531] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/27/2018] [Indexed: 12/16/2022]
Abstract
Abstract
BACKGROUND
Liquid biopsies are discussed to provide surrogate markers for therapy stratification and monitoring. We compared messenger RNA (mRNA) profiles of circulating tumor cells (CTCs) and extracellular vesicles (EVs) in patients with metastatic breast cancer (MBC) to estimate their utility in therapy management.
METHODS
Blood was collected from 35 hormone receptor-positive/HER2-negative patients with MBC at the time of disease progression and at 2 consecutive staging time points. CTCs were isolated from 5 mL of blood by positive immunomagnetic selection, and EVs from 4 mL of plasma by a membrane affinity-based procedure. mRNA was reverse transcribed, preamplified, and analyzed for 18 genes by multimarker quantitative polymerase chain reaction (qPCR) assays. RNA profiles were normalized to healthy donor controls (n = 20), and results were correlated with therapy outcome.
RESULTS
There were great differences in mRNA profiles of EVs and CTCs, with only 5% (21/403) of positive signals identical in both fractions. Transcripts involved in the PI3K signaling pathway were frequently overexpressed in CTCs, and AURKA, PARP1, and SRC signals appeared more often in EVs. Of all patients, 40% and 34% showed ERBB2 and ERBB3 signals, respectively, in CTCs, which was significantly associated with disease progression (P = 0.007). Whereas MTOR signals in CTCs significantly correlated with response (P = 0.046), signals in EVs indicated therapy failure (P = 0.011). The presence of AURKA signals in EVs seemed to be a marker for the indication of unsuccessful treatment of bone metastasis.
CONCLUSIONS
These results emphasize the potential of CTCs and EVs for therapy monitoring and the need for critical evaluation of the implementation of any liquid biopsy in clinical practice.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University Hospital of Essen, Germany
| | - Bahriye Aktas
- Department of Gynecology and Obstetrics, University Hospital of Essen, Germany
- Department of Gynecology, University Hospital of Leipzig, Germany
| | - Mitra Tewes
- Department of Internal Medicine (Cancer Research), University Hospital of Essen, Germany
| | | | | | | | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Germany
| | | |
Collapse
|
13
|
Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther 2018; 186:1-24. [DOI: 10.1016/j.pharmthera.2017.12.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Brufsky AM, Dickler MN. Estrogen Receptor-Positive Breast Cancer: Exploiting Signaling Pathways Implicated in Endocrine Resistance. Oncologist 2018; 23:528-539. [PMID: 29352052 DOI: 10.1634/theoncologist.2017-0423] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
Advancements in molecular profiling and endocrine therapy (ET) have led to more focused clinical attention on precision medicine. These advances have expanded our understanding of breast cancer (BC) pathogenesis and hold promising implications for the future of therapy. The estrogen receptor-α is a predominant endocrine regulatory protein in the breast and in estrogen-induced BC. Successful targeting of proteins and genes within estrogen receptor (ER) nuclear and nonnuclear pathways remains a clinical goal. Several classes of antiestrogenic agents are available for patients with early, advanced, or metastatic BC, including selective ER modulators, aromatase inhibitors, and a selective ER degrader. Clinical development is focused upon characterizing the efficacy and tolerability of inhibitors that target the phosphatidylinositol 3 kinase (PI3K)/akt murine thymoma viral oncogene (AKT)/mammalian target of rapamycin inhibitor (mTOR) signaling pathway or the cyclin-dependent kinase 4/6 (CDK4/6) cell cycle pathway in women with hormone receptor-positive, human epidermal growth receptor 2-negative BC who have demonstrated disease recurrence or progression. De novo and acquired resistance remain a major challenge for women with BC receiving antiestrogenic therapy. Therefore, sequential combination of targeted ET is preferred in these patients, and the ever-increasing understanding of resistance mechanisms may better inform the selection of future therapy. This review describes the intricate roles of the PI3K/AKT/mTOR and CDK4/6 pathways in intracellular signaling and the use of endocrine and endocrine-based combination therapy in BC. IMPLICATIONS FOR PRACTICE The foundational strategy for treating hormone receptor-positive, human epidermal growth receptor 2-negative, advanced breast cancer includes the use of endocrine therapy either alone or in combination with targeted agents. The use of combination therapy aims to downregulate cell-signaling pathways with the intent of minimizing cellular "crosstalk," which can otherwise result in continued tumorigenesis or progression through redundant pathways. This review provides the clinician with the molecular rationale and clinical evidence for these treatments and refers to evidence-based guidelines to inform the decision-making process.
Collapse
Affiliation(s)
- Adam M Brufsky
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Maura N Dickler
- Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Weill Cornell Medical College, New York City, New York, USA
| |
Collapse
|
15
|
Amanatullah DF, Tamaresis JS, Chu P, Bachmann MH, Hoang NM, Collyar D, Mayer AT, West RB, Maloney WJ, Contag CH, King BL. Local estrogen axis in the human bone microenvironment regulates estrogen receptor-positive breast cancer cells. Breast Cancer Res 2017; 19:121. [PMID: 29141657 PMCID: PMC5688761 DOI: 10.1186/s13058-017-0910-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Approximately 70% of all breast cancers express the estrogen receptor, and are regulated by estrogen. While the ovaries are the primary source of estrogen in premenopausal women, most breast cancer is diagnosed following menopause, when systemic levels of this hormone decline. Estrogen production from androgen precursors is catalyzed by the aromatase enzyme. Although aromatase expression and local estrogen production in breast adipose tissue have been implicated in the development of primary breast cancer, the source of estrogen involved in the regulation of estrogen receptor-positive (ER+) metastatic breast cancer progression is less clear. METHODS Bone is the most common distant site of breast cancer metastasis, particularly for ER+ breast cancers. We employed a co-culture model using trabecular bone tissues obtained from total hip replacement (THR) surgery specimens to study ER+ and estrogen receptor-negative (ER-) breast cancer cells within the human bone microenvironment. Luciferase-expressing ER+ (MCF-7, T-47D, ZR-75) and ER- (SK-BR-3, MDA-MB-231, MCF-10A) breast cancer cells were cultured directly on bone tissue fragments or in bone tissue-conditioned media, and monitored over time with bioluminescence imaging (BLI). Bone tissue-conditioned media were generated in the presence vs. absence of aromatase inhibitors, and testosterone. Bone tissue fragments were analyzed for aromatase expression by immunohistochemistry. RESULTS ER+ breast cancer cells were preferentially sustained in co-cultures with bone tissues and bone tissue-conditioned media relative to ER- cells. Bone fragments analyzed by immunohistochemistry revealed expression of the aromatase enzyme. Bone tissue-conditioned media generated in the presence of testosterone had increased estrogen levels and heightened capacity to stimulate ER+ breast cancer cell proliferation. Pretreatment of cultured bone tissues with aromatase inhibitors, which inhibited estrogen production, reduced the capacity of conditioned media to stimulate ER+ cell proliferation. CONCLUSIONS These results suggest that a local estrogen signaling axis regulates ER+ breast cancer cell viability and proliferation within the bone metastatic niche, and that aromatase inhibitors modulate this axis. Although endocrine therapies are highly effective in the treatment of ER+ breast cancer, resistance to these treatments reduces their efficacy. Characterization of estrogen signaling networks within the bone microenvironment will identify new strategies for combating metastatic progression and endocrine resistance.
Collapse
Affiliation(s)
- Derek F. Amanatullah
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Pavilion C, 4th Floor, Redwood City, CA 94063-6342 USA
| | - John S. Tamaresis
- Department of Biomedical Data Science, Stanford University School of Medicine, Redwood Building, Room T101F (MC 5405), Stanford, CA 94305 USA
| | - Pauline Chu
- Department of Pathology, Stanford University School of Medicine, Edwards, Room 264, 1291 Welch Road, Stanford, CA 94305-5324 USA
| | - Michael H. Bachmann
- Department of Pediatrics, Stanford University School of Medicine, 150E Clark Center, 318 Campus Drive, Stanford, CA 94305-5427 USA
- Present address: Departments of Biomedical Engineering, and Microbiology & Molecular Genetics, Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI 44823 USA
| | - Nhat M. Hoang
- Research IT, Stanford University School of Medicine, 3172 Porter Drive, Palo Alto, CA 94304 USA
| | - Deborah Collyar
- Patient Advocates in Research (PAIR), Danville, CA 94506 USA
| | - Aaron T. Mayer
- Department of Bioengineering, Stanford University School of Medicine, 153E Clark Center, 318 Campus Drive, Stanford, CA 94305 USA
| | - Robert B. West
- Department of Pathology, Stanford University School of Medicine, Edwards, Room 264, 1291 Welch Road, Stanford, CA 94305-5324 USA
| | - William J. Maloney
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Pavilion C, 4th Floor, Redwood City, CA 94063-6342 USA
| | - Christopher H. Contag
- Department of Pediatrics, Stanford University School of Medicine, 150E Clark Center, 318 Campus Drive, Stanford, CA 94305-5427 USA
- Present address: Departments of Biomedical Engineering, and Microbiology & Molecular Genetics, Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI 44823 USA
| | - Bonnie L. King
- Department of Pediatrics, Stanford University School of Medicine, 150E Clark Center, 318 Campus Drive, Stanford, CA 94305-5427 USA
| |
Collapse
|
16
|
Brufsky AM. Long-term management of patients with hormone receptor-positive metastatic breast cancer: Concepts for sequential and combination endocrine-based therapies. Cancer Treat Rev 2017; 59:22-32. [PMID: 28719836 DOI: 10.1016/j.ctrv.2017.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/21/2017] [Indexed: 12/21/2022]
Abstract
Treatment options for hormone receptor-positive (HR-positive) metastatic breast cancer (MBC) continue to increase in parallel with expanding knowledge about the complex biology of breast cancer subtypes and resistance mechanisms to endocrine therapy. For patients with HR-positive MBC, there are now an unprecedented number of endocrine-based treatment options that can improve long-term outcomes, while preserving or optimizing quality of life, and that can be used before selecting more cytotoxic chemotherapeutic regimens. In addition to antiestrogens, steroidal and nonsteroidal aromatase inhibitors, the selective estrogen-receptor degrader, fulvestrant, and new endocrine-based combinations provide significant and clinically meaningful improvements in outcomes in the first line setting and beyond. Also, new clinical scenarios and indications for monotherapy endocrine and targeted therapies continue to be explored. Patients have several therapeutic options when their disease progresses or becomes resistant, although the optimal sequencing of these therapies remains unclear. Ongoing research in the resistant/refractory setting is anticipated to continue improving the outlook for these patients. This review will discuss current and investigational approaches to sequential single-agent endocrine and endocrine-based combination therapy for the long-term management of patients with HR-positive, human epidermal growth factor receptor 2-negative MBC.
Collapse
Affiliation(s)
- Adam M Brufsky
- University of Pittsburgh, School of Medicine, 300 Halket Street, Suite 4628, Pittsburgh, PA 15213, United States.
| |
Collapse
|