1
|
Tan Q, Chi Y, Su M, Zhou J, Zhou D, Zheng F, Man X, Sun S, Huang J, Li H. Potential predictive value of circulating tumor DNA (ctDNA) mutations for the efficacy of immune checkpoint inhibitors in advanced triple-negative breast cancer. Front Genet 2023; 14:1125970. [PMID: 37007962 PMCID: PMC10060982 DOI: 10.3389/fgene.2023.1125970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Background: In recent years, tumor immunotherapy has become a viable treatment option for triple negative breast cancer (TNBC). Among these, immune checkpoint inhibitors (ICIs) have demonstrated good efficacy in advanced TNBC patients with programmed death-ligand 1 (PD-L1) positive expression. However, only 63% of PD-L1-positive individuals showed any benefit from ICIs. Therefore, finding new predictive biomarkers will aid in identifying patients who are likely to benefit from ICIs. In this study, we used liquid biopsies and next-generation sequencing (NGS) to dynamically detect changes in circulating tumor DNA (ctDNA) in the blood of patients with advanced TNBC treated with ICIs and focused on its potential predictive value.Methods: From May 2018 to October 2020, patients with advanced TNBC treated with ICIs at Shandong Cancer Hospital were included prospectively. Patient blood samples were obtained at the pretreatment baseline, first response evaluation, and disease progression timepoints. Furthermore, 457 cancer-related genes were evaluated by NGS, and patients’ ctDNA mutations, gene mutation rates, and other indicators were determined and coupled with clinical data for statistical analysis.Results: A total of 11 TNBC patients were included in this study. The overall objective response rate (ORR) was 27.3%, with a 6.1-month median progression-free survival (PFS) (95% confidence interval: 3.877–8.323 months). Of the 11 baseline blood samples, 48 mutations were found, with the most common mutation types being frame shift indels, synonymous single-nucleotide variations (SNVs), frame indel missenses, splicing, and stop gains. Additionally, univariate Cox regression analysis revealed that advanced TNBC patients with one of 12 mutant genes (CYP2D6 deletion and GNAS, BCL2L1, H3F3C, LAG3, FGF23, CCND2, SESN1, SNHG16, MYC, HLA-E, and MCL1 gain) had a shorter PFS with ICI treatment (p < 0.05). To some extent, dynamic changes of ctDNA might indicate the efficacy of ICIs.Conclusion: Our data indicate that ICI efficacy in patients with advanced TNBC may be predicted by 12 mutant ctDNA genes. Additionally, dynamic alterations in peripheral blood ctDNA might be used to track the effectiveness of ICI therapy in those with advanced TNBC.
Collapse
Affiliation(s)
- Qiaorui Tan
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yajing Chi
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Medicine, Nankai University, Tianjin, China
| | - Mu Su
- Berry Oncology Corporation, Beijing, China
| | | | - Dongdong Zhou
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fangchao Zheng
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaochu Man
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shujuan Sun
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Huang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Huihui Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Huihui Li,
| |
Collapse
|
2
|
Serum LAPTM4B as a Potential Diagnostic and Prognostic Biomarker for Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6786351. [PMID: 36506911 PMCID: PMC9729050 DOI: 10.1155/2022/6786351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
Background Lysosome-associated protein transmembrane-4 beta (LAPTM4B) is an integral membrane protein overexpressed in various cancers and may function as a prognostic tumor marker. The present study is aimed at understanding the clinical significance of serum LAPTM4B in breast cancer (BC). Methods Serum LAPTM4B level was evaluated in 426 BC patients, 40 benign breast disease, and 80 healthy controls by ELISA. We used the receiver operator characteristic (ROC) curve to assess the diagnostic significance. 46 BC patients were recruited to monitor the dynamic change of serum LAPTM4B during adjuvant therapy (AT). In addition, sera from a subset of 330 patients undergoing AT, including anti-HER2 treatment, were collected to evaluate the association between LAPTM4B levels and AT efficacy. Descriptive and explorative statistical analyses were used to assess LAPTM4 B's potential as a diagnostic and prognostic marker in BC. Results Serum LAPTM4B level was significantly increased in BC patients than benign group and controls. It could well discriminate BC from healthy controls with diagnostic accuracy with an AUC of 0.912, a sensitivity of 85.9%, and a specificity of 83.8%. Compared with pre-AT, serum LAPTM4B concentration remarkably decreased after AT. In addition, patients in the invalid response group (PD + SD) showed higher LAPTM4B levels than the valid response group (PR + CR). Conclusion Our results proposed that serum LAPTM4B had a high diagnostic and prognostic impact as a circulating biomarker in BC.
Collapse
|
3
|
Tang M, O'Grady S, Crown J, Duffy MJ. MYC as a therapeutic target for the treatment of triple-negative breast cancer: preclinical investigations with the novel MYC inhibitor, MYCi975. Breast Cancer Res Treat 2022; 195:105-115. [PMID: 35908121 PMCID: PMC9374613 DOI: 10.1007/s10549-022-06673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND MYC is one of the most frequently altered driver genes in triple-negative breast cancer (TNBC). The aim of this study was to evaluate targeting MYC for the treatment of TNBC. METHODS The anti-proliferative and apoptosis-inducing effects of the recently discovered MYC inhibitor, MYCi975 were investigated in a panel of 14 breast cancer cell lines representing the main molecular forms of breast cancer. RESULTS IC50 values for growth inhibition by MYCi975 varied from 2.49 to 7.73 µM. Response was inversely related to endogenous MYC levels as measured by western blotting (p = 0.047, r = - 0.5385) or ELISA (p = 0.001, r = - 0.767), i.e., response to MYCi975 decreased as endogenous MYC levels increased. MYCi975 also induced variable levels of apoptosis across the panel of cell lines, ranging from no detectable induction to 80% induction. Inhibition of proliferation and induction of apoptosis were greater in TNBC than in non-TNBC cell lines (p = 0.041 and p = 0.001, respectively). Finally, combined treatment with MYCi975 and either paclitaxel or doxorubicin resulted in enhanced cell growth inhibition. DISCUSSION Our findings open the possibility of targeting MYC for the treatment of TNBC. Based on our results, we suggest that trials use a combination of MYCi975 and either docetaxel or doxorubicin and include MYC as a putative therapy predictive biomarker.
Collapse
Affiliation(s)
- Minhong Tang
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Shane O'Grady
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
- Clinical Research Centre, St Vincent's University Hospital, Elm Park, Dublin, D04 T6F4, Ireland.
| |
Collapse
|
4
|
Iwase T, Harano K, Masuda H, Kida K, Hess KR, Wang Y, Dirix L, Van Laere SJ, Lucci A, Krishnamurthy S, Woodward WA, Layman RM, Bertucci F, Ueno NT. Quantitative hormone receptor (HR) expression and gene expression analysis in HR+ inflammatory breast cancer (IBC) vs non-IBC. BMC Cancer 2020; 20:430. [PMID: 32423453 PMCID: PMC7236459 DOI: 10.1186/s12885-020-06940-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/07/2020] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this study was to determine the prognostic role of hormone receptor (HR) on inflammatory breast cancer (IBC) to elucidate its aggressive biological behavior. Methods We evaluated the expression of estrogen receptor (ER) and progesterone receptor (PR) by immunohistochemical staining and determined the predictive and prognostic role of HR expression on 189 patients with HR+/HER2– IBC and 677 patients with HR+/HER2– stage III non-IBC. Furthermore, we performed gene expression (GE) analyses on 137 patients with HR+/HER2– IBC and 252 patients with HR+/HER2– non-IBC to detect genes that are specifically overexpressed in IBC. Results The expression of ER% was significantly associated with longer distant disease-free survival and overall survival. However, there was no significant relationship between ER% and neoadjuvant chemotherapy outcome. In the GE study, 84 genes were identified as significantly distinguishing HR+ IBC from non-IBC. Among the top 15 canonical pathways expressed in IBC, the ERK/MAPK, PDGF, insulin receptor, and IL-7 signaling pathways were associated with the ER signaling pathway. Upregulation of the MYC gene was observed in three of these four pathways. Furthermore, HR+/HER2– IBC had significantly higher MYC amplification, and the genetic alteration was associated with poor survival outcome. Conclusions Higher ER expression was significantly associated with improved survival in both HR+/HER2– IBC and HR+/HER2– stage III non-IBC patients. HR+/HER2– IBC had several activated pathways with MYC upregulation, and the genetic alteration was associated with poor survival outcome. The results indicate that MYC may be a key gene for understanding the biology of HR+/HER2– IBC.
Collapse
Affiliation(s)
- Toshiaki Iwase
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kenichi Harano
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Hiroko Masuda
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kumiko Kida
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kenneth R Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Luc Dirix
- Department of Oncology, University of Antwerp, Prinsstraat 13, 2000, Antwerpen, Belgium
| | - Steven J Van Laere
- Department of Oncology, University of Antwerp, Prinsstraat 13, 2000, Antwerpen, Belgium
| | - Anthony Lucci
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Rachel M Layman
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - François Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, F-13009, Marseille, France
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA. .,Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Liu J, Hua RX, Fu W, Zhu J, Jia W, Zhang J, Zhou H, Cheng J, Xia H, Liu G, He J. MYC gene associated polymorphisms and Wilms tumor risk in Chinese children: a four-center case-control study. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:475. [PMID: 31700911 PMCID: PMC6803173 DOI: 10.21037/atm.2019.08.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Wilms tumor (WT) is a common embryonal malignancy in the kidney, ranking fourth in childhood cancer worldwide. MYC, a critical proto-oncogene, plays an important role in tumorigenesis. Single nucleotide polymorphisms in the MYC gene may lead to the deregulation of MYC proto-oncogene protein and thereby promote the initiation and development of tumors. METHODS Here, we assessed the association between MYC gene associated polymorphisms and WT susceptibility by performing a case-control study with 355 cases and 1070 controls. Two MYC gene associated polymorphisms (rs4645943 C > T, rs2070583 A > G) were genotyped by TaqMan technique. Odds ratios (ORs) and 95% confidence intervals (CIs) were used for evaluating the association between these two polymorphisms and WT susceptibility. RESULTS No significant association was detected between the selected polymorphisms and WT risk in the overall analysis as well as stratification analysis. CONCLUSIONS These results indicate that neither of two selected MYC gene associated polymorphisms might affect WT susceptibility in the Chinese population. Large well-designed studies with diverse ethnicities are warranted to verify these results.
Collapse
Affiliation(s)
- Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Rui-Xi Hua
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jinhong Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Clinical Laboratory, Molecular Epidemiology Laboratory, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
6
|
Guo Z, Wang Y, Zhao Y, Jin Y, An L, Xu H, Liu Z, Chen X, Zhou H, Wang H, Zhang W. A Functional 5'-UTR Polymorphism of MYC Contributes to Nasopharyngeal Carcinoma Susceptibility and Chemoradiotherapy Induced Toxicities. J Cancer 2019; 10:147-155. [PMID: 30662535 PMCID: PMC6329860 DOI: 10.7150/jca.28534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/24/2018] [Indexed: 02/05/2023] Open
Abstract
MYC is a transcription factor acting as a pivotal regulator of genes involved in cell cycle progression, apoptosis, differentiation and metabolism. In this study, we evaluated the association of MYC polymorphisms with nasopharyngeal carcinoma (NPC) risk and chemoradiotherapy induced toxicities among Chinese population. By using bioinformatic tools, five potential functional single nucleotide polymorphisms of MYC were genotyped in a case-control study with 684 NPC patients and 823 healthy controls. We found two SNPs rs4645948 (C>T) and rs2071346 (G>T) were significantly associated with increased risk of developing NPC (TT+CT vs CC, OR=1.557, P=3.34×10-4; TT+GT vs GG, OR=1.361, P=0.007, respectively). In addition, rs4645948 (C>T) was conferred with increased risk of anemia (CT vs CC, OR=2.152, P=0.001) and severe leukopenia (CT vs CC, OR=1.893, P=0.034) for NPC patients receiving chemoradiotherapy. We also found rs2071346 (G>T) variant genotype carriers were subjected to higher risk of anemia (GT vs GG, OR=1.665, P=0.022) and thrombocytopenia (GT vs GG, OR=1.685, P=0.035). Our results demonstrated that the relative expression of MYC was dramatically higher in NPC tissues compared to rhinitis tissues. Over-expression of MYC was positively correlated with advanced T stage, N stage, and late clinical stage. Notably, the expression of MYC in rs4645948 CT and TT genotypes carriers were significantly higher than CC genotype carriers. Luciferase reporter assay indicated that the T allele of rs4645948 led to significantly higher transcription activity of MYC compared to the C allele. These findings suggested that individual carrying the rs4645948 T allele may be at greater risk for NPC due to an increase of MYC transcriptional activity and an augment of MYC expression.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Youhong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Yu Zhao
- Key Laboratory of Translational Radiation Oncology, Hunan Province; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P.R. China
| | - Yi Jin
- Key Laboratory of Translational Radiation Oncology, Hunan Province; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P.R. China
| | - Liang An
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Heng Xu
- Department of Laboratory Medicine, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610000, P.R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| |
Collapse
|
7
|
Rusz O, Papp O, Vízkeleti L, Molnár BÁ, Bende KC, Lotz G, Ács B, Kahán Z, Székely T, Báthori Á, Szundi C, Kulka J, Szállási Z, Tőkés AM. LAPTM4B gene copy number gain is associated with inferior response to anthracycline-based chemotherapy in hormone receptor negative breast carcinomas. Cancer Chemother Pharmacol 2018; 82:139-147. [PMID: 29770955 DOI: 10.1007/s00280-018-3602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/12/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE To determine the associations between lysosomal-associated transmembrane protein 4b (LAPTM4B) gene copy number and response to different chemotherapy regimens in hormone receptor negative (HR-) primary breast carcinomas. PATIENTS AND METHODS Two cohorts were analyzed: (1) 69 core biopsies from HR-breast carcinomas treated with neoadjuvant chemotherapy (anthracycline based in 72.5% of patients and non-anthracycline based in 27.5% of patients). (2) Tissue microarray (TMA) of 74 HR-breast carcinomas treated with adjuvant therapy (77.0% of the patients received anthracycline, 17.6% of the patients non-anthracycline-based therapy, and in 5.4% of the cases, no treatment data are available). Interphase FISH technique was applied on pretreatment core biopsies (cohort I) and on TMAs (cohort II) using custom-made dual-labelled FISH probes (LAPTM4B/CEN8q FISH probe Abnova Corp.). RESULTS In the neoadjuvant cohort in the anthracycline-treated group, we observed a significant difference (p = 0.029) of average LAPTM4B copy number between the non-responder and pathological complete responder groups (4.1 ± 1.1 vs. 2.6 ± 0.1). In the adjuvant setting, the anthracycline-treated group of metastatic breast carcinomas was characterized by higher LAPTM4B copy number comparing to the non-metastatic ones (p = 0.046). In contrast, in the non-anthracycline-treated group of patients, we did not find any LAPTM4B gene copy number differences between responder vs. non-responder groups or between metastatic vs. non-metastatic groups. CONCLUSION Our results confirm the possible role of the LAPTM4B gene in anthracycline resistance in HR- breast cancer. Analyzing LAPTM4B copy number pattern may support future treatment decision.
Collapse
Affiliation(s)
- Orsolya Rusz
- Department of Oncotherapy, University of Szeged, Korányi fasor 12, Szeged, 6720, Hungary
| | - Orsolya Papp
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, 1091, Hungary
| | - Laura Vízkeleti
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, 1091, Hungary.,MTA-SE-NAP B Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Béla Ákos Molnár
- 1st Department of Surgery, Semmelweis University, Üllői út 78, Budapest, 1082, Hungary
| | - Kristóf Csaba Bende
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, 1091, Hungary
| | - Gábor Lotz
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, 1091, Hungary
| | - Balázs Ács
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, 1091, Hungary
| | - Zsuzsanna Kahán
- Department of Oncotherapy, University of Szeged, Korányi fasor 12, Szeged, 6720, Hungary
| | - Tamás Székely
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, 1091, Hungary
| | - Ágnes Báthori
- Department of Pathology, University of Szeged, Állomás u. 2, Szeged, 6725, Hungary
| | - Csilla Szundi
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, 1091, Hungary
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, 1091, Hungary
| | - Zoltán Szállási
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, 1091, Hungary.,MTA-SE-NAP B Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.,Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet 208, 2800, Lyngby, Denmark.,Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Harvard University, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Anna-Mária Tőkés
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, 1091, Hungary.
| |
Collapse
|