1
|
Kudo R, Safonov A, Jones C, Moiso E, Dry JR, Shao H, Nag S, da Silva EM, Yildirim SY, Li Q, O'Connell E, Patel P, Will M, Fushimi A, Benitez M, Bradic M, Fan L, Nakshatri H, Sudhan DR, Denz CR, Huerga Sanchez I, Reis-Filho JS, Goel S, Koff A, Weigelt B, Khan QJ, Razavi P, Chandarlapaty S. Long-term breast cancer response to CDK4/6 inhibition defined by TP53-mediated geroconversion. Cancer Cell 2024; 42:1919-1935.e9. [PMID: 39393354 DOI: 10.1016/j.ccell.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/02/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Inhibition of CDK4/6 kinases has led to improved outcomes in breast cancer. Nevertheless, only a minority of patients experience long-term disease control. Using a large, clinically annotated cohort of patients with metastatic hormone receptor-positive (HR+) breast cancer, we identify TP53 loss (27.6%) and MDM2 amplification (6.4%) to be associated with lack of long-term disease control. Human breast cancer models reveal that p53 loss does not alter CDK4/6 activity or G1 blockade but instead promotes drug-insensitive p130 phosphorylation by CDK2. The persistence of phospho-p130 prevents DREAM complex assembly, enabling cell-cycle re-entry and tumor progression. Inhibitors of CDK2 can overcome p53 loss, leading to geroconversion and manifestation of senescence phenotypes. Complete inhibition of both CDK4/6 and CDK2 kinases appears to be necessary to facilitate long-term response across genomically diverse HR+ breast cancers.
Collapse
Affiliation(s)
- Rei Kudo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA; Department of Surgery, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Anton Safonov
- Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Catherine Jones
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Enrico Moiso
- Department of Medicine, MSK, New York, NY 10065, USA; Department of Epidemiology and Biostatistics, MSK, New York, NY 10065, USA
| | | | - Hong Shao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Sharanya Nag
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Selma Yeni Yildirim
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Elizabeth O'Connell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Payal Patel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA
| | - Marie Will
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA; Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Clinical Genetics Service, Department of Medicine, MSK, New York, NY 10065, USA
| | - Atsushi Fushimi
- Department of Surgery, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Marimar Benitez
- Program in Molecular Biology, Sloan Kettering Institute, MSK, New York, NY 10065, USA
| | - Martina Bradic
- Program in Molecular Biology, Sloan Kettering Institute, MSK, New York, NY 10065, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Andrew Koff
- Program in Molecular Biology, Sloan Kettering Institute, MSK, New York, NY 10065, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, MSK, New York, NY 10065, USA
| | - Qamar J Khan
- Division of Medical Oncology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pedram Razavi
- Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSK), New York, NY 10065, USA; Breast Medicine Service, Department of Medicine, MSK, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
2
|
Shinkins B, Allen AJ, Karichu J, Garrison LP, Monz BU. Evidence Synthesis and Linkage for Modelling the Cost-Effectiveness of Diagnostic Tests: Preliminary Good Practice Recommendations. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2024; 22:131-144. [PMID: 38316713 PMCID: PMC10864520 DOI: 10.1007/s40258-023-00855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 02/07/2024]
Abstract
OBJECTIVES To develop preliminary good practice recommendations for synthesising and linking evidence of treatment effectiveness when modelling the cost-effectiveness of diagnostic tests. METHODS We conducted a targeted review of guidance from key Health Technology Assessment (HTA) bodies to summarise current recommendations on synthesis and linkage of treatment effectiveness evidence within economic evaluations of diagnostic tests. We then focused on a specific case study, the cost-effectiveness of troponin for the diagnosis of myocardial infarction, and reviewed the approach taken to synthesise and link treatment effectiveness evidence in different modelling studies. RESULTS The Australian and UK HTA bodies provided advice for synthesising and linking treatment effectiveness in diagnostic models, acknowledging that linking test results to treatment options and their outcomes is common. Across all reviewed models for the case study, uniform test-directed treatment decision making was assumed, i.e., all those who tested positive were treated. Treatment outcome data from a variety of sources, including expert opinion, were utilised for linked clinical outcomes. Preliminary good practice recommendations for data identification, integration and description are proposed. CONCLUSION Modelling the cost-effectiveness of diagnostic tests poses unique challenges in linking evidence on test accuracy to treatment effectiveness data to understand how a test impacts patient outcomes and costs. Upfront consideration of how a test and its results will likely be incorporated into patient diagnostic pathways is key to exploring the optimal design of such models. We propose some preliminary good practice recommendations to improve the quality of cost-effectiveness evaluations of diagnostics tests going forward.
Collapse
Affiliation(s)
- Bethany Shinkins
- Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
- Leeds Institute for Health Sciences, University of Leeds, Clarendon Way, Leeds, UK.
- NIHR Leeds In Vitro Diagnostics Co-operative (MIC), Leeds, UK.
| | - A Joy Allen
- Access and Innovation, Roche Diagnostics UK and Ireland, Burgess Hill, UK
| | - James Karichu
- Global Access & Policy, Roche Diagnostics Solutions, Pleasanton, California, USA
| | - Louis P Garrison
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, Seattle, USA
| | - Brigitta U Monz
- Global Access & Policy, Roche Diagnostics International AG, Forrenstrasse 2, 6343, Rotkreuz, Switzerland
| |
Collapse
|
3
|
Miyashita M, Bell JSK, Wenric S, Karaesmen E, Rhead B, Kase M, Kaneva K, De La Vega FM, Zheng Y, Yoshimatsu TF, Khramtsova G, Liu F, Zhao F, Howard FM, Nanda R, Beaubier N, White KP, Huo D, Olopade OI. Molecular profiling of a real-world breast cancer cohort with genetically inferred ancestries reveals actionable tumor biology differences between European ancestry and African ancestry patient populations. Breast Cancer Res 2023; 25:58. [PMID: 37231433 DOI: 10.1186/s13058-023-01627-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/27/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Endocrine-resistant HR+/HER2- breast cancer (BC) and triple-negative BC (TNBC) are of interest for molecularly informed treatment due to their aggressive natures and limited treatment profiles. Patients of African Ancestry (AA) experience higher rates of TNBC and mortality than European Ancestry (EA) patients, despite lower overall BC incidence. Here, we compare the molecular landscapes of AA and EA patients with HR+/HER2- BC and TNBC in a real-world cohort to promote equity in precision oncology by illuminating the heterogeneity of potentially druggable genomic and transcriptomic pathways. METHODS De-identified records from patients with TNBC or HR+/HER2- BC in the Tempus Database were randomly selected (N = 5000), with most having stage IV disease. Mutations, gene expression, and transcriptional signatures were evaluated from next-generation sequencing data. Genetic ancestry was estimated from DNA-seq. Differences in mutational prevalence, gene expression, and transcriptional signatures between AA and EA were compared. EA patients were used as the reference population for log fold-changes (logFC) in expression. RESULTS After applying inclusion criteria, 3433 samples were evaluated (n = 623 AA and n = 2810 EA). Observed patterns of dysregulated pathways demonstrated significant heterogeneity among the two groups. Notably, PIK3CA mutations were significantly lower in AA HR+/HER2- tumors (AA = 34% vs. EA = 42%, P < 0.05) and the overall cohort (AA = 28% vs. EA = 37%, P = 2.08e-05). Conversely, KMT2C mutation was significantly more frequent in AA than EA TNBC (23% vs. 12%, P < 0.05) and HR+/HER2- (24% vs. 15%, P = 3e-03) tumors. Across all subtypes and stages, over 8000 genes were differentially expressed between the two ancestral groups including RPL10 (logFC = 2.26, P = 1.70e-162), HSPA1A (logFC = - 2.73, P = 2.43e-49), ATRX (logFC = - 1.93, P = 5.89e-83), and NUTM2F (logFC = 2.28, P = 3.22e-196). Ten differentially expressed gene sets were identified among stage IV HR+/HER2- tumors, of which four were considered relevant to BC treatment and were significantly enriched in EA: ERBB2_UP.V1_UP (P = 3.95e-06), LTE2_UP.V1_UP (P = 2.90e-05), HALLMARK_FATTY_ACID_METABOLISM (P = 0.0073), and HALLMARK_ANDROGEN_RESPONSE (P = 0.0074). CONCLUSIONS We observed significant differences in mutational spectra, gene expression, and relevant transcriptional signatures between patients with genetically determined African and European ancestries, particularly within the HR+/HER2- BC and TNBC subtypes. These findings could guide future development of treatment strategies by providing opportunities for biomarker-informed research and, ultimately, clinical decisions for precision oncology care in diverse populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Fang Liu
- The University of Chicago, Chicago, IL, USA
| | | | | | - Rita Nanda
- The University of Chicago, Chicago, IL, USA
| | | | - Kevin P White
- Tempus Inc, Chicago, IL, USA
- National University Singapore, Queenstown, Singapore
| | | | | |
Collapse
|
4
|
Precision medicine: affording the successes of science. NPJ Precis Oncol 2023; 7:3. [PMID: 36599878 PMCID: PMC9812011 DOI: 10.1038/s41698-022-00343-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Science has made remarkable advances in understanding the molecular basis of disease, generating new and effective rationally-designed treatments at an accelerating rate. Ironically, the successes of science is creating a crisis in the affordability of equitable health care. The COVID-19 pandemic underscores both the value of science in health care, and the apparently inevitable tension between health and the economy. Drug development in ever-smaller target populations is a critical component of the rising costs of care. For structural and historical reasons, drug development is inefficient and poorly integrated across the public and private sectors. We postulate an alternative, integrated model in which governments and industry share the risks and benefits of drug development. The Australian government recently announced support for a AU$185 million innovative multi-stakeholder public-private partnership model for sustainable precision oncology, accelerating biomarker-dependent drug development through integrating clinical trials into the standard of care.
Collapse
|
5
|
Leibowitz BD, Dougherty BV, Bell JSK, Kapilivsky J, Michuda J, Sedgewick AJ, Munson WA, Chandra TA, Dry JR, Beaubier N, Igartua C, Taxter T. Validation of genomic and transcriptomic models of homologous recombination deficiency in a real-world pan-cancer cohort. BMC Cancer 2022; 22:587. [PMID: 35643464 PMCID: PMC9148513 DOI: 10.1186/s12885-022-09669-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Background With the introduction of DNA-damaging therapies into standard of care cancer treatment, there is a growing need for predictive diagnostics assessing homologous recombination deficiency (HRD) status across tumor types. Following the strong clinical evidence for the utility of DNA-sequencing-based HRD testing in ovarian cancer, and growing evidence in breast cancer, we present analytical validation of the Tempus HRD-DNA test. We further developed, validated, and explored the Tempus HRD-RNA model, which uses gene expression data from 16,750 RNA-seq samples to predict HRD status from formalin-fixed paraffin-embedded tumor samples across numerous cancer types. Methods Genomic and transcriptomic profiling was performed using next-generation sequencing from Tempus xT, Tempus xO, Tempus xE, Tempus RS, and Tempus RS.v2 assays on 48,843 samples. Samples were labeled based on their BRCA1, BRCA2 and selected Homologous Recombination Repair pathway gene (CDK12, PALB2, RAD51B, RAD51C, RAD51D) mutational status to train and validate HRD-DNA, a genome-wide loss-of-heterozygosity biomarker, and HRD-RNA, a logistic regression model trained on gene expression. Results In a sample of 2058 breast and 1216 ovarian tumors, BRCA status was predicted by HRD-DNA with F1-scores of 0.98 and 0.96, respectively. Across an independent set of 1363 samples across solid tumor types, the HRD-RNA model was predictive of BRCA status in prostate, pancreatic, and non-small cell lung cancer, with F1-scores of 0.88, 0.69, and 0.62, respectively. Conclusions We predict HRD-positive patients across many cancer types and believe both HRD models may generalize to other mechanisms of HRD outside of BRCA loss. HRD-RNA complements DNA-based HRD detection methods, especially for indications with low prevalence of BRCA alterations. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09669-z.
Collapse
|
6
|
Salem ME, El-Refai SM, Sha W, Puccini A, Grothey A, George TJ, Hwang JJ, O'Neil B, Barrett AS, Kadakia KC, Musselwhite LW, Raghavan D, Van Cutsem E, Tabernero J, Tie J. Landscape of KRASG12C, Associated Genomic Alterations, and Interrelation With Immuno-Oncology Biomarkers in KRAS-Mutated Cancers. JCO Precis Oncol 2022; 6:e2100245. [PMID: 35319967 PMCID: PMC8966967 DOI: 10.1200/po.21.00245] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Promising single-agent activity from sotorasib and adagrasib in KRASG12C-mutant tumors has provided clinical evidence of effective KRAS signaling inhibition. However, comprehensive analysis of KRAS-variant prevalence, genomic alterations, and the relationship between KRAS and immuno-oncology biomarkers is lacking.
Collapse
Affiliation(s)
| | | | - Wei Sha
- Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Alberto Puccini
- University of Genoa, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | | | | - Jimmy J Hwang
- Levine Cancer Institute, Atrium Health, Charlotte, NC
| | | | | | | | | | | | - Eric Van Cutsem
- University Hospitals Gasthuisberg, Leuven & KULeuven, Leuven, Belgium
| | - Josep Tabernero
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain
| | - Jeanne Tie
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Walter + Eliza Hall Institute of Medical Research, Melbourne, Australia
| |
Collapse
|