1
|
Kumari L, Yadav R, Kumar Y, Bhatia A. Role of tight junction proteins in shaping the immune milieu of malignancies. Expert Rev Clin Immunol 2024; 20:1305-1321. [PMID: 39126381 DOI: 10.1080/1744666x.2024.2391915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Tight junctions (TJs) and their constituent proteins play pivotal roles in cellular physiology and anatomy by establishing functional boundaries within and between neighboring cells. While the involvement of TJ proteins, such as claudins, in cancer is extensively studied, studies highlighting their interaction with immune system are still meager. Studies indicate that alterations in cytokines and immune cell populations can affect TJ proteins, compromising TJ barrier function and exacerbating pro-inflammatory conditions, potentially leading to epithelial cell malignancy. Disrupted TJs in established tumors may foster a pro-tumor immune microenvironment, facilitating tumor progression, invasion, epithelial-to-mesenchymal transition and metastasis. Although previous literature contains many studies describing the involvement of TJs in pathogenesis of malignancies their role in modulating the immune microenvironment of tumors is just beginning to be unleashed. AREAS COVERED This article for the first time attempts to discern the importance of interaction between TJs and immune microenvironment in malignancies. To achieve the above aim a thorough search of databases like PubMed and Google Scholar was conducted to identify the recent and relevant articles on the topic. EXPERT OPINION Breaking the vicious cycle of dysbiosis/infections/chemical/carcinogen-induced inflammation-TJ remodeling-malignancy-TJ dysregulation-more inflammation can be used as a strategy to complement the effect of immunotherapies in various malignancies.
Collapse
Affiliation(s)
- Laxmi Kumari
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Reena Yadav
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Post Graduate Institute of medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
2
|
Kumari L, Sreedharanunni S, Dahiya D, Dey P, Bhatia A. High prevalence of chromosome 17 in breast cancer micronuclei: a means to get rid of tumor suppressors? Hum Cell 2024; 38:5. [PMID: 39438374 DOI: 10.1007/s13577-024-01143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Micronuclei (MN), defined as small extra-nuclear chromatin bodies enclosed by a nuclear envelope, serve as noticeable markers of chromosomal instability (CIN). The MN have been used for breast cancer (BC) screening, diagnosis, and prognosis. However, more recently they have gained attention as seats for active chromosomal rearrangements. BC subtypes exhibit differential CIN levels and aggressiveness. This study aimed to investigate MN chromosomal contents across BC subtypes, exploring its potential role in aggressiveness and pathogenesis. Immunostaining of BC cells was performed with anti-centromeric antibody followed by confocal microscopy. Further, fluorescence in situ hybridization (FISH) was done to check the presence of specific chromosomes in the MN. The real time PCR was also done from the RNA isolated from MN to check the expression of TP53 gene. BC cell lines (CLs) showed the presence of both centromere-positive ( +) and -negative ( -) MN, with significant variation in frequency among hormone and human epidermal growth factor receptor positive and triple-negative (TN) BC cells. FISH targeting chromosomes 1, 3, 8, 11, and 17 detected centromeric signals for all the above chromosomes in MN with a relatively higher prevalence of chromosome 17 in all the CLs. Out of all the CLs, TNBC cells demonstrated the highest frequency of centromere + and chromosome 17 + MN. TP53 expression could also be demonstrated inside the MN by FISH and real time PCR. Patient sample imprints also confirmed the presence of chromosome 17 in MN with polysomy of the same in corresponding nuclei. The high prevalence of chromosome 17 in BC MN may connote the importance of its rearrangements in the pathogenesis of BC. Further, the higher prevalence of chromosome 17 and 1 signals in TNBC MN point towards the significance of pathogenetic events involving the genes located in these chromosomes in evolution of this more aggressive phenotype.
Collapse
Affiliation(s)
- Laxmi Kumari
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranab Dey
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
3
|
Tabariès S, Robert A, Marcil A, Ling B, Acchione M, Lippens J, Pagé M, Fortin A, Meury L, Coutu M, Annis MG, Girondel C, Navarre J, Jaramillo M, Moraitis AN, Siegel PM. Anti-Claudin-2 Antibody-Drug Conjugates for the Treatment of Colorectal Cancer Liver Metastasis. Mol Cancer Ther 2024; 23:1459-1470. [PMID: 38902871 DOI: 10.1158/1535-7163.mct-23-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
We have previously demonstrated that Claudin-2 is required for colorectal cancer (CRC) liver metastasis. The expression of Claudin-2 in primary CRC is associated with poor survival and highly expressed in liver metastases. Claudin-2 also promotes breast cancer liver metastasis by enabling seeding and cancer cell survival. These observations support Claudin-2 as a potential therapeutic target for managing patients with liver metastases. Antibody-drug conjugates (ADC) are promising antitumor therapeutics, which combine the specific targeting ability of monoclonal antibodies with the potent cell killing activity of cytotoxic drugs. Herein, we report the generation of 28 anti-Claudin-2 antibodies for which the binding specificities, cross-reactivity with claudin family members, and cross-species reactivity were assessed by flow cytometry analysis. Multiple drug conjugates were tested, and PNU was selected for conjugation with anti-Claudin-2 antibodies binding either extracellular loop 1 or 2. Anti-Claudin-2 ADCs were efficiently internalized and were effective at killing Claudin-2-expressing CRC cancer cells in vitro. Importantly, PNU-conjugated-anti-Claudin-2 ADCs impaired the development of replacement-type CRC liver metastases in vivo, using established CRC cell lines and patient-derived xenograft (PDX) models of CRC liver metastases. Results suggest that the development of ADCs targeting Claudin-2 is a promising therapeutic strategy for managing patients with CRC liver-metastatic disease who present replacement-type liver metastases.
Collapse
Affiliation(s)
- Sébastien Tabariès
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | - Alma Robert
- National Research Council Canada, Montréal, Canada
| | - Anne Marcil
- National Research Council Canada, Montréal, Canada
| | - Binbing Ling
- National Research Council Canada, Ottawa, Canada
| | | | | | - Martine Pagé
- National Research Council Canada, Montréal, Canada
| | - Annie Fortin
- National Research Council Canada, Montréal, Canada
| | - Luc Meury
- National Research Council Canada, Montréal, Canada
| | | | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | - Charlotte Girondel
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | - Julie Navarre
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | | | | | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| |
Collapse
|
4
|
Apostolova D, Apostolov G, Moten D, Batsalova T, Dzhambazov B. Claudin-12: guardian of the tissue barrier or friend of tumor cells. Tissue Barriers 2024:2387408. [PMID: 39087432 DOI: 10.1080/21688370.2024.2387408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Tight junctions (TJs) are an important component of cellular connectivity. Claudin family proteins, as a constituent of TJs, determine their barrier properties, cell polarity and paracellular permeability. Claudin-12 is an atypical member of the claudin family, as it belongs to the group of non-classical claudins that lack a PDZ-binding domain. It has been shown that claudin-12 is involved in paracellular Ca2+ transients and it is present in normal and hyperplastic tissues in addition to neoplastic tissues. Dysregulation of claudin-12 expression has been reported in various cancers, suggesting that this protein may play an important role in cancer cell migration, invasion, and metastasis. Some studies have shown that claudin-12 gene functions as a tumor suppressor, but others have reported that overexpression of claudin-12 significantly increases the metastatic properties of various tumor cells. Investigating this dual role of claudin-12 is of utmost importance and should therefore be studied in detail. The aim of this review is to provide an overview of the information available to date on claudin-12, including its structure, expression in various tissues and substances that may affect it, with a final focus on its role in cancer.
Collapse
Affiliation(s)
- Desislava Apostolova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Georgi Apostolov
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Dzhemal Moten
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
5
|
Arabi TZ, Fawzy NA, Sabbah BN, Ouban A. Claudins in genitourinary tract neoplasms: mechanisms, prognosis, and therapeutic prospects. Front Cell Dev Biol 2023; 11:1308082. [PMID: 38188015 PMCID: PMC10771851 DOI: 10.3389/fcell.2023.1308082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Genitourinary (GU) cancers are among the most prevalent neoplasms in the world, with bladder cancers constituting 3% of global cancer diagnoses. However, several pathogenetic mechanisms remain controversial and unclear. Claudins, for example, have been shown to play a significant role in several cancers of the human body. Their role in GU cancers has not been extensively studied. Aberrant expression of claudins -1, -2, -3, -4, -7, and -11 has been expressed in urothelial cell carcinomas. In prostate cancers, altered levels of claudins -1, -2, -3, -4, and -5 have been reported. Furthermore, the levels of claudins -1, -2, -3, -4, -6, -7, -8, and -10 have been studied in renal cell carcinomas. Specifically, claudins -7 and -8 have proven especially useful in differentiating between chromophobe renal cell carcinomas and oncocytomas. Several of these claudins also correlate with clinicopathologic parameters and prognosis in GU cancers. Although mechanisms underpinning aberrant expression of claudins in GU cancers are unclear, epigenetic changes, tumor necrosis factor-ɑ, and the p63 protein have been implicated. Claudins also provide therapeutic value through tailored immunotherapy via molecular subtyping and providing therapeutic targets, which have shown positive outcomes in preclinical studies. In this review, we aim to summarize the literature describing aberrant expression of claudins in urothelial, prostatic, and renal cell carcinomas. Then, we describe the mechanisms underlying these changes and the therapeutic value of claudins. Understanding the scope of claudins in GU cancers paves the way for several diagnostic, prognostic, and therapeutic innovations.
Collapse
Affiliation(s)
| | | | | | - Abderrahman Ouban
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Takasawa A, Takasawa K, Murata M, Osanai M, Sawada N. Emerging roles of transmembrane-type tight junction proteins in cancers. Pathol Int 2023; 73:331-340. [PMID: 37449777 DOI: 10.1111/pin.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
Tight junctions (TJs) are the most apical components of the cell-cell adhesion machinery in epithelial and endothelial cells and they play essential roles in homeostasis. Recent studies have revealed that aberrant expression of tight junction proteins (TJPs) is frequently observed in various type of cancers. Here we review cancer-associated aberrant expression of TJPs with focus on transmembrane-type TJPs including claudins, junctional adhesion molecule-A (JAM-A), and occludin. Some transmembrane-type TJPs are upregulated at the early neoplastic stage and their expression persists during dedifferentiation. Aberrant expression of TJPs contributes to proliferation, invasion, and dysregulated signaling of cancer cells. In addition to an increase in their expression level, their localization is altered from a TJ-restricted pattern to distribution throughout the whole cell membrane, making them suitable as therapeutic targets. Extracellular domains of transmembrane-type TJPs can be approached by target drugs not only from the lumen side (apical side) but also from the extracellular matrix side (basal side), including blood vessels. Aberrantly expressed TJPs are potential useful diagnostic markers as well as therapeutic targets for cancers.
Collapse
Affiliation(s)
- Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Diagnostic Pathology, Tokeidai Memorial Hospital, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|