1
|
Topham B, Hock B, Phillips E, Wiggins G, Currie M. The Role of Innate Priming in Modifying Tumor-associated Macrophage Phenotype. FRONT BIOSCI-LANDMRK 2024; 29:418. [PMID: 39735978 DOI: 10.31083/j.fbl2912418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 12/31/2024]
Abstract
Tumor-associated macrophages (TAMs) are innate immune cells that exert far reaching influence over the tumor microenvironment (TME). Depending on cues within the local environment, TAMs may promote tumor angiogenesis, cancer cell invasion and immunosuppression, or, alternatively, inhibit tumor progression via neoantigen presentation, tumoricidal reactive oxygen species generation and pro-inflammatory cytokine secretion. Therefore, TAMs have a pivotal role in determining tumor progression and response to therapy. TAM phenotypes are driven by cytokines and physical cues produced by tumor cells, adipocytes, fibroblasts, pericytes, immune cells, and other cells within the TME. Research has shown that TAMs can be primed by environmental stimuli, adding another layer of complexity to the environmental context that determines TAM phenotype. Innate priming is a functional consequence of metabolic and epigenetic reprogramming of innate cells by a primary stimulant, resulting in altered cellular response to future secondary stimulation. Innate priming offers a novel target for development of cancer immunotherapy and improved prognosis of disease, but also raises the risk of exacerbating existing inflammatory pathologies. This review will discuss the mechanisms underlying innate priming including metabolic and epigenetic modification, its relevance to TAMs and tumor progression, and possible clinical implications for cancer treatment.
Collapse
Affiliation(s)
- Ben Topham
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| | - Barry Hock
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| | - George Wiggins
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| | - Margaret Currie
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand
| |
Collapse
|
2
|
Meléndez-Vázquez NM, Gomez-Manzano C, Godoy-Vitorino F. Oncolytic Virotherapies and Adjuvant Gut Microbiome Therapeutics to Enhance Efficacy Against Malignant Gliomas. Viruses 2024; 16:1775. [PMID: 39599889 PMCID: PMC11599061 DOI: 10.3390/v16111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant brain tumor. Current standard-of-care treatments offer limited benefits for patient survival. Virotherapy is emerging as a novel strategy to use oncolytic viruses (OVs) for the treatment of GBM. These engineered and non-engineered viruses infect and lyse cancer cells, causing tumor destruction without harming healthy cells. Recent advances in genetic modifications to OVs have helped improve their targeting capabilities and introduce therapeutic genes, broadening the therapeutic window and minimizing potential side effects. The efficacy of oncolytic virotherapy can be enhanced by combining it with other treatments such as immunotherapy, chemotherapy, or radiation. Recent studies suggest that manipulating the gut microbiome to enhance immune responses helps improve the therapeutic efficacy of the OVs. This narrative review intends to explore OVs and their role against solid tumors, especially GBM while emphasizing the latest technologies used to enhance and improve its therapeutic and clinical responses.
Collapse
Affiliation(s)
- Natalie M. Meléndez-Vázquez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| |
Collapse
|
3
|
Song Q, Xu Y, Zhang M, Wu L, Liu S, Lv Y, Hu T, Zhao J, Zhang X, Xu X, Li Q, Zhou M, Zhang X, Lu P, Yu G, Zhao C, Yang J. A β-1,3/1,6-glucan enhances anti-tumor effects of PD1 antibody by reprogramming tumor microenvironment. Int J Biol Macromol 2024; 279:134660. [PMID: 39134196 DOI: 10.1016/j.ijbiomac.2024.134660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024]
Abstract
Checkpoint blockades have emerged as a frontline approach in cancer management, designed to enhance the adaptive immune response against tumors. However, its clinical efficacy is limited to a narrow range of tumor types, which necessitates the exploration of novel strategies that target another main branch of the immune system. One such potential strategy is the therapeutic modulation of pattern recognition receptors (PRRs) pathways in innate immune cells, which have shown promise in tumor eradication. Previously, a β-1,3/1,6-glucan with high purity from Durvillaea antarctica (BG136) was reported by our group to exhibit pan-antitumor effects. In the current study, we systemically studied the antitumor activity of BG136 in combination with anti-PD1 antibody in MC38 syngeneic tumor model in vivo. Integrated transcriptomic and metabolomic analyses suggested that BG136 enhanced the antitumor immunity of anti-PD1 antibody by reprogramming the tumor microenvironment to become more proinflammatory. In addition, an increase in innate and adaptive immune cell infiltration and activation, enhanced lipid metabolism, and a decrease in ascorbate and aldarate metabolism were also found. These findings provide mechanistic insights that support the potent antitumor efficacy of BG136 when combined with immune checkpoint inhibitor antibodies.
Collapse
Affiliation(s)
- Qiaoling Song
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Yuting Xu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Minghui Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Lijuan Wu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Shan Liu
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Youjing Lv
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Ting Hu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Jun Zhao
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xiaonan Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xiaohan Xu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Quancai Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Mingming Zhou
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xinxin Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Peizhe Lu
- Department of Neuroscience, University of Michigan, Ann Arbor, MI 48103, USA
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Chenyang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China.
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China.
| |
Collapse
|
4
|
Wang M, Pan J, Xiang W, You Z, Zhang Y, Wang J, Zhang A. β-glucan: a potent adjuvant in immunotherapy for digestive tract tumors. Front Immunol 2024; 15:1424261. [PMID: 39100668 PMCID: PMC11294916 DOI: 10.3389/fimmu.2024.1424261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
The immunotherapy for gastrointestinal tumors, as a significant research direction in the field of oncology treatment in recent years, has garnered extensive attention due to its potential therapeutic efficacy and promising clinical application prospects. Recent advances in immunotherapy notwithstanding, challenges persist, such as side effects, the complexity of the tumor immune microenvironment, variable patient responses, and drug resistance. Consequently, there is a pressing need to explore novel adjunctive therapeutic modalities. β-glucan, an immunomodulatory agent, has exhibited promising anti-tumor efficacy in preclinical studies involving colorectal cancer, pancreatic cancer, and gastric cancer, while also mitigating the adverse reactions associated with chemotherapy and enhancing patients' quality of life. However, further clinical and fundamental research is warranted to comprehensively evaluate its therapeutic potential and underlying biological mechanisms. In the future, β-glucan holds promise as an adjunctive treatment for gastrointestinal tumors, potentially bringing significant benefits to patients.
Collapse
Affiliation(s)
- Meiyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jinhua Pan
- Department of Ophthalmology, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Wu Xiang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zilong You
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yue Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Ajmal A, Alkhatabi HA, Alreemi RM, Alamri MA, Khalid A, Abdalla AN, Alotaibi BS, Wadood A. Prospective virtual screening combined with bio-molecular simulation enabled identification of new inhibitors for the KRAS drug target. BMC Chem 2024; 18:57. [PMID: 38528576 DOI: 10.1186/s13065-024-01152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Lung cancer is a disease with a high mortality rate and it is the number one cause of cancer death globally. Approximately 12-14% of non-small cell lung cancers are caused by mutations in KRASG12C. The KRASG12C is one of the most prevalent mutants in lung cancer patients. KRAS was first considered undruggable. The sotorasib and adagrasib are the recently approved drugs that selectively target KRASG12C, and offer new treatment approaches to enhance patient outcomes however drug resistance frequently arises. Drug development is a challenging, expensive, and time-consuming process. Recently, machine-learning-based virtual screening are used for the development of new drugs. In this study, we performed machine-learning-based virtual screening followed by molecular docking, all atoms molecular dynamics simulation, and binding energy calculations for the identifications of new inhibitors against the KRASG12C mutant. In this study, four machine learning models including, random forest, k-nearest neighbors, Gaussian naïve Bayes, and support vector machine were used. By using an external dataset and 5-fold cross-validation, the developed models were validated. Among all the models the performance of the random forest (RF) model was best on the train/test dataset and external dataset. The random forest model was further used for the virtual screening of the ZINC15 database, in-house database, Pakistani phytochemicals, and South African Natural Products database. A total of 100 ns MD simulation was performed for the four best docking score complexes as well as the standard compound in complex with KRASG12C. Furthermore, the top four hits revealed greater stability and greater binding affinities for KRASG12C compared to the standard drug. These new hits have the potential to inhibit KRASG12C and may help to prevent KRAS-associated lung cancer. All the datasets used in this study can be freely available at ( https://github.com/Amar-Ajmal/Datasets-for-KRAS ).
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Hind A Alkhatabi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21959, Saudi Arabia
| | - Roaa M Alreemi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21959, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra Univesity, Al- Quwayiyah, Riyadh, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
6
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Hu S, Xiang D, Zhang X, Zhang L, Wang S, Jin K, You L, Huang J. The mechanisms and cross-protection of trained innate immunity. Virol J 2022; 19:210. [PMID: 36482472 PMCID: PMC9733056 DOI: 10.1186/s12985-022-01937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
In recent years, the traditional cognition of immunological memory being specific to adaptive immunity has been challenged. Innate immunity can mount enhanced responsiveness upon secondary stimulation, and a phenomenon is termed trained innate immunity. Trained innate immunity is orchestrated by distinct metabolic and epigenetic reprogramming in both circulating myeloid cells and myeloid progenitor cells in bone marrow, leading to long-term resistance to related and non-related pathogens infections. The induction of trained innate immunity can also polarize innate immune cells towards a hyperresponsive phenotype in the tumor microenvironment to exert antitumor effects. This review will discuss the current understanding of innate immune memory and the mechanisms during the induction of innate immunity, including signaling pathways, metabolic changes, and epigenetic rewriting. We also provide an overview of cross-protection against infectious diseases and cancers based on trained innate immunity.
Collapse
Affiliation(s)
- Shiwei Hu
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Danhong Xiang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Xinlu Zhang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Lan Zhang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Shengjie Wang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Keyi Jin
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Liangshun You
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Jian Huang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,grid.13402.340000 0004 1759 700XDepartment of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| |
Collapse
|
8
|
Feng Y, Ye Z, Song F, He Y, Liu J. The Role of TAMs in Tumor Microenvironment and New Research Progress. Stem Cells Int 2022; 2022:5775696. [PMID: 36004381 PMCID: PMC9395242 DOI: 10.1155/2022/5775696] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are an important part of tumor microenvironment (TME) and play a key role in TME, participating in the process of tumor occurrence, growth, invasion, and metastasis. Among them, metastasis to tumor tissue is the key step of malignant development of tumor. In this paper, the latest progress in the role of TAMs in the formation of tumor microenvironment is summarized. It is particularly noteworthy that cell and animal experiments show that TAMs can provide a favorable microenvironment for the occurrence and development of tumors. At the same time, clinical pathological experiments show that the accumulation of TAMs in tumor is related to poor clinical efficacy. Finally, this paper discusses the feasibility of TAMs-targeted therapy as a new indirect cancer therapy. This paper provides a theoretical basis for finding a potentially effective macrophage-targeted tumor therapy.
Collapse
Affiliation(s)
- Yawei Feng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiqiang Ye
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Furong Song
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yufeng He
- Department of Intensive Care Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Chen C, Man N, Liu F, Martin GM, Itonaga H, Sun J, Nimer SD. Epigenetic and transcriptional regulation of innate immunity in cancer. Cancer Res 2022; 82:2047-2056. [PMID: 35320354 DOI: 10.1158/0008-5472.can-21-3503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Innate immune cells participate in the detection of tumor cells via complex signaling pathways mediated by pattern-recognition receptors, such as Toll-like receptors (TLR) and NOD-like receptors (NLR). These pathways are finely tuned via multiple mechanisms, including epigenetic regulation. It is well established that hematopoietic progenitors generate innate immune cells that can regulate cancer cell behavior, and the disruption of normal hematopoiesis in pathologic states may lead to altered immunity and the development of cancer. In this review, we discuss the epigenetic and transcriptional mechanisms that underlie the initiation and amplification of innate immune signaling in cancer. We also discuss new targeting possibilities for cancer control that exploit innate immune cells and signaling molecules, potentially heralding the next generation of immunotherapy.
Collapse
Affiliation(s)
- Chuan Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Gloria Mas Martin
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Hidehiro Itonaga
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jun Sun
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
10
|
Gruijs M, Sewnath CAN, Egmond MV. Therapeutic exploitation of neutrophils to fight cancer. Semin Immunol 2021; 57:101581. [PMID: 34922817 DOI: 10.1016/j.smim.2021.101581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Antibody-based immunotherapy is a promising strategy in cancer treatment. Antibodies can directly inhibit tumor growth, induce complement-dependent cytotoxicity and induce Fc receptor-mediated elimination of tumor cells by macrophages and natural killer cells. Until now, however, neutrophils have been largely overlooked as potential effector cells, even though they are the most abundant type of immune cells in the circulation. Neutrophils display heterogeneity, especially in the context of cancer. Therefore, their role in cancer is debated. Nevertheless, neutrophils possess natural anti-tumor properties and appropriate stimulation, i.e. specific targeting via antibody therapy, induces potent tumor cell killing, especially via targeting of the immunoglobulin A Fc receptor (FcαRI, CD89). In this review we address the mechanisms of tumor cell killing by neutrophils and the role of neutrophils in induction of anti-tumor immunity. Moreover, possibilities for therapeutic targeting are discussed.
Collapse
Affiliation(s)
- Mandy Gruijs
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Celine A N Sewnath
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam - Amsterdam Institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Cao X, Cordova AF, Li L. Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chem Rev 2021; 122:3414-3458. [PMID: 34870969 DOI: 10.1021/acs.chemrev.1c00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.
Collapse
|
12
|
Spacek J, Vocka M, Zavadova E, Konopasek B, Petruzelka L. Immunomodulation with β-glucan from Pleurotus ostreatus in patients with endocrine-dependent breast cancer. Immunotherapy 2021; 14:31-40. [PMID: 34784798 DOI: 10.2217/imt-2021-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To evaluate the effect of pleuran (β-glucan from Pleurotus ostreatus) administration on the immune profile of patients with endocrine-dependent breast cancer (clinical stages I-II) in clinical and imaging remission. Methodology: Antitumor cellular immunity (CD19+, CD3+, CD4+ and CD8+ T lymphocytes, and natural killer cells) of 195 patients (49 in the pleuran group and 146 in the control group) was measured by flow cytometry. Results: We observed a significant increase in the absolute number of CD3+, CD19+, CD4+ and CD8+ T lymphocytes in the pleuran group compared with the control group. Conclusion: Our results suggest potential benefit of continuous pleuran administration on immune rehabilitation of cellular antitumor immunity and better prognosis in breast cancer patients in remission.
Collapse
Affiliation(s)
- Jan Spacek
- Department of Oncology, First Faculty of Medicine, Charles University & General University Hospital in Prague, U Nemocnice 2, Praha 2, 128 08, Czech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of Medicine, Charles University & General University Hospital in Prague, U Nemocnice 2, Praha 2, 128 08, Czech Republic
| | - Eva Zavadova
- Department of Oncology, First Faculty of Medicine, Charles University & General University Hospital in Prague, U Nemocnice 2, Praha 2, 128 08, Czech Republic
| | - Bohuslav Konopasek
- Department of Oncology, First Faculty of Medicine, Charles University & General University Hospital in Prague, U Nemocnice 2, Praha 2, 128 08, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, First Faculty of Medicine, Charles University & General University Hospital in Prague, U Nemocnice 2, Praha 2, 128 08, Czech Republic
| |
Collapse
|
13
|
Doleschel D, Hoff S, Koletnik S, Rix A, Zopf D, Kiessling F, Lederle W. Regorafenib enhances anti-PD1 immunotherapy efficacy in murine colorectal cancers and their combination prevents tumor regrowth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:288. [PMID: 34517894 PMCID: PMC8436536 DOI: 10.1186/s13046-021-02043-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023]
Abstract
Background Patients with advanced colorectal cancer (CRC) have a poor prognosis. Combinations of immunotherapies and anti-angiogenic agents are currently being evaluated in clinical trials. In this study, the multikinase inhibitor regorafenib (REG) was combined with an anti-programmed cell death protein 1 (aPD1) antibody in syngeneic murine microsatellite-stable (MSS) CT26 and hypermutated MC38 colon cancer models to gain mechanistic insights into potential drug synergism. Methods Growth and progression of orthotopic CT26 and subcutaneous MC38 colon cancers were studied under treatment with varying doses of REG and aPD1 alone or in combination. Sustained effects were studied after treatment discontinuation. Changes in the tumor microenvironment were assessed by dynamic contrast-enhanced MRI, and histological and molecular analyses. Results In both models, REG and aPD1 combination therapy significantly improved anti-tumor activity compared with single agents. However, in the CT26 model, the additive benefit of aPD1 only became apparent after treatment cessation. The combination treatment efficiently prevented tumor regrowth and completely suppressed liver metastasis, whereas the anti-tumorigenic effects of REG alone were abrogated soon after drug discontinuation. During treatment, REG significantly reduced the infiltration of immunosuppressive macrophages and regulatory T (Treg) cells into the tumor microenvironment. aPD1 significantly enhanced intratumoral IFNγ levels. The drugs synergized to induce sustained M1 polarization and durable reduction of Treg cells, which can explain the sustained tumor suppression. Conclusions This study highlights the synergistic immunomodulatory effects of REG and aPD1 combination therapy in mediating a sustained inhibition of colon cancer regrowth, strongly warranting clinical evaluation in CRC, including MSS tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02043-0.
Collapse
Affiliation(s)
- Dennis Doleschel
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sabine Hoff
- Research and Development, Preclinical Research Oncology, Bayer AG, Berlin, Germany
| | - Susanne Koletnik
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Dieter Zopf
- Research and Development, Preclinical Research Oncology, Bayer AG, Berlin, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Wiltrud Lederle
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
14
|
Edible Mushrooms and Beta-Glucans: Impact on Human Health. Nutrients 2021; 13:nu13072195. [PMID: 34202377 PMCID: PMC8308413 DOI: 10.3390/nu13072195] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
Mushroom cell walls are rich in β-glucans, long or short-chain polymers of glucose subunits with β-1,3 and β-1,6 linkages, that are responsible for the linear and branching structures, respectively. β-glucans from cereals, at variance, have no 1,6 linkages nor branching structures. Both immunomodulatory and anti-inflammatory effects of mushrooms have been described using purified β-glucans or fungi extracts on cellular and experimental models; their potential clinical use has been tested in different conditions, such as recurrent infections of the respiratory tract or complications of major surgery. Another promising application of β-glucans is on cancer, as adjuvant of conventional chemotherapy. β-glucans may protect the cardiovascular system, ameliorating glucose, lipid metabolism, and blood pressure: these activities, observed for oat and barley β-glucans, require confirmation in human studies with mushroom β-glucans. On the other hand, mushrooms may also protect the cardiovascular system via a number of other components, such as bioactive phenolic compounds, vitamins, and mineral elements. The growing knowledge on the mechanism(s) and health benefits of mushrooms is encouraging the development of a potential clinical use of β-glucans, and also to further document their role in preserving health and prevent disease in the context of healthy lifestyles.
Collapse
|
15
|
Patelli G, Tosi F, Amatu A, Mauri G, Curaba A, Patanè DA, Pani A, Scaglione F, Siena S, Sartore-Bianchi A. Strategies to tackle RAS-mutated metastatic colorectal cancer. ESMO Open 2021; 6:100156. [PMID: 34044286 PMCID: PMC8167159 DOI: 10.1016/j.esmoop.2021.100156] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
The RAS oncogene is among the most commonly mutated in cancer. RAS mutations are identified in about half of patients diagnosed with metastatic colorectal cancer (mCRC), conferring poor prognosis and lack of response to anti-epidermal growth factor receptor (EGFR) antibodies. In the last decades, several investigational attempts failed in directly targeting RAS mutations, thus RAS was historically regarded as 'undruggable'. Recently, novel specific KRASG12C inhibitors showed promising results in different solid tumors, including mCRC, renewing interest in this biomarker as a target. In this review, we discuss different strategies of RAS targeting in mCRC, according to literature data in both clinical and preclinical settings. We recognized five main strategies focusing on those more promising: direct RAS targeting, targeting the mitogen-activated protein kinase (MAPK) pathway, harnessing RAS through immunotherapy combinations, RAS targeting through metabolic pathways, and finally other miscellaneous approaches. Direct KRASG12C inhibition is emerging as the most promising strategy in mCRC as well as in other solid malignancies. However, despite good disease control rates, tumor response and duration of response are still limited in mCRC. At this regard, combinational approaches with anti-epidermal growth factor receptor drugs or checkpoint inhibitors have been proposed to enhance treatment efficacy, based on encouraging results achieved in preclinical studies. Besides, concomitant therapies increasing metabolic stress are currently under evaluation and expected to also provide remarkable results in RAS codon mutations apart from KRASG12C. In conclusion, based on hereby reported efforts of translational research, RAS mutations should no longer be regarded as 'undruggable' and future avenues are now opening for translation in the clinic in mCRC.
Collapse
Affiliation(s)
- G Patelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - F Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - A Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - G Mauri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - A Curaba
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - D A Patanè
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - A Pani
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - F Scaglione
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy; Clinical Pharmacology Unit, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - S Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - A Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy.
| |
Collapse
|
16
|
Okubo K, Brenner MD, Cullere X, Saggu G, Patchen ML, Bose N, Mihori S, Yuan Z, Lowell CA, Zhu C, Mayadas TN. Inhibitory affinity modulation of FcγRIIA ligand binding by glycosphingolipids by inside-out signaling. Cell Rep 2021; 35:109142. [PMID: 34010642 PMCID: PMC8218468 DOI: 10.1016/j.celrep.2021.109142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
The interaction of the human FcγRIIA with immune complexes (ICs) promotes neutrophil activation and thus must be tightly controlled to avoid damage to healthy tissue. Here, we demonstrate that a fungal-derived soluble β-1,3/1,6-glucan binds to the glycosphingolipid long-chain lactosylceramide (LacCer) to reduce FcγRIIA-mediated recruitment to immobilized ICs under flow, a process requiring high-affinity FcγRIIA-immunoglobulin G (IgG) interactions. The inhibition requires Lyn phosphorylation of SHP-1 phosphatase and the FcγRIIA immunotyrosine-activating motif. β-glucan reduces the effective 2D affinity of FcγRIIA for IgG via Lyn and SHP-1 and, in vivo, inhibits FcγRIIA-mediated neutrophil recruitment to intravascular IgG deposited in the kidney glomeruli in a glycosphingolipid- and Lyn-dependent manner. In contrast, β-glucan did not affect FcγR functions that bypass FcγR affinity for IgG. In summary, we have identified a pathway for modulating the 2D affinity of FcγRIIA for ligand that relies on LacCer-Lyn-SHP-1-mediated inhibitory signaling triggered by β-glucan, a previously described activator of innate immunity. Okubo et al. demonstrate that β-glucan binding to the glycosphingolipid lactosylceramide engages a Lyn kinase to SHP-1 phosphatase pathway that reduces FcγRIIA binding propensity for IgG, which suggests FcγRIIA affinity regulation by “inside-out” signaling. The β-glucan-lactosylceramide-Lyn axis prevents FcγRIIA-dependent neutrophil recruitment in vitro and to intravascular IgG deposits following glomerulonephritis.
Collapse
Affiliation(s)
- Koshu Okubo
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Brenner
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xavier Cullere
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Gurpanna Saggu
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | | | - Nandita Bose
- Biothera Pharmaceuticals, Inc., Eagan, Minnesota, MN 55121, USA
| | - Saki Mihori
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Zhou Yuan
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Cheng Zhu
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
van Steenwijk HP, Bast A, de Boer A. Immunomodulating Effects of Fungal Beta-Glucans: From Traditional Use to Medicine. Nutrients 2021; 13:1333. [PMID: 33920583 PMCID: PMC8072893 DOI: 10.3390/nu13041333] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
The importance of a well-functioning and balanced immune system has become more apparent in recent decades. Various elements have however not yet been uncovered as shown, for example, in the uncertainty on immune system responses to COVID-19. Fungal beta-glucans are bioactive molecules with immunomodulating properties. Insights into the effects and function of beta-glucans, which have been used in traditional Chinese medicine for centuries, advances with the help of modern immunological and biotechnological methods. However, it is still unclear into which area beta-glucans fit best: supplements or medicine? This review has highlighted the potential application of fungal beta-glucans in nutrition and medicine, reviewing their formulation, efficacy, safety profile, and immunomodulating effects. The current status of dietary fungal glucans with respect to the European scientific requirements for health claims related to the immune system and defense against pathogens has been reviewed. Comparing the evidence base of the putative health effects of fungal beta-glucan supplements with the published guidance documents by EFSA on substantiating immune stimulation and pathogen defense by food products shows that fungal beta-glucans could play a role in supporting and maintaining health and, thus, can be seen as a good health-promoting substance from food, which could mean that this effect may also be claimed if approved. In addition to these developments related to food uses of beta-glucan-containing supplements, beta-glucans could also hold a novel position in Western medicine as the concept of trained immunity is relatively new and has not been investigated to a large extent. These innovative concepts, together with the emerging success of modern immunological and biotechnological methods, suggest that fungal glucans may play a promising role in both perspectives, and that there are possibilities for traditional medicine to provide an immunological application in both medicine and nutrition.
Collapse
Affiliation(s)
- Hidde P. van Steenwijk
- Campus Venlo, Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, 5911 BV Venlo, The Netherlands;
| | - Aalt Bast
- Campus Venlo, University College Venlo, Maastricht University, 5911 BV Venlo, The Netherlands;
- Department of Pharmacology & Toxicology, Medicine and Life Sciences, Faculty of Health, Maastricht University, 5911 BV Venlo, The Netherlands
| | - Alie de Boer
- Campus Venlo, Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, 5911 BV Venlo, The Netherlands;
| |
Collapse
|
18
|
Antitumor effect of soluble β-glucan as an immune stimulant. Int J Biol Macromol 2021; 179:116-124. [PMID: 33667560 DOI: 10.1016/j.ijbiomac.2021.02.207] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022]
Abstract
β-glucans are linear polysaccharides of d-glucose monomers linked through β-glycosidic bonds and are widely present in nature. Different sources lead to their structural differences. β-glucan has long been acknowledged to be a safe and functional component. Its biological activities include lipid-lowering, hypoglycemic, antitumor and immune regulation etc. A large number of studies have shown that soluble β-glucan can bind to their receptors on the surface of immune cells, activates the pro-inflammatory response of innate immune cells, and enhances the host's antitumor defense. A variety of soluble β-glucans have been widely used in clinical antitumor studies as an immunostimulant to treat the cancer patient. In this paper, we reviewed the molecular structure, antitumor immune activities, structure-activity relationship and clinical trials of soluble β-glucans in order to provide the overall scene of β-glucans as immunostimulant to fight the cancer.
Collapse
|
19
|
The use of Hericium erinaceus and Trametes versicolor extracts in supportive treatment in oncology. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:1-16. [PMID: 32697746 DOI: 10.2478/acph-2021-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 01/19/2023]
Abstract
Substances available in nature with potential therapeutic effects are the subject of research that raises tremendous hopes for new challenges in medicine. Fungi are the most common organisms in the ecosystem and the most interesting in this respect. This review discusses two species of edible fungi, used for centuries in Eastern natural medicine, with the best-documented effect - Hericium erinaceus (He) and Trametes versicolor (Tv). The results of in vivo and in vitro studies conducted on mice and human cell lines demonstrate immunomodulatory, potentially, anticancer, anti-inflammatory and neuroregenerative effects of substances isolated from these fungi. The substances contained in the extracts of He and Tv seem to have immunomodulatory effects that may support chemotherapy. The use of these extracts is justified stronger than the other supportive treat ments based on supplements.
Collapse
|
20
|
Nguyen M, Tipping Smith S, Lam M, Liow E, Davies A, Prenen H, Segelov E. An update on the use of immunotherapy in patients with colorectal cancer. Expert Rev Gastroenterol Hepatol 2021; 15:291-304. [PMID: 33138649 DOI: 10.1080/17474124.2021.1845141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Colorectal cancer (CRC) is the third most common malignancy worldwide, with recent trends demonstrating increasing incidence amongst younger patients. Despite multiple treatment options, metastatic disease remains incurable. A new therapeutic strategy to harness the host immune system, specifically with immune checkpoint inhibitors, now has reported results from a number of clinical trials. Areas covered: This review will discuss in detail microsatellite instability (MSI) and other biomarkers for response to immunotherapy, summarize the pivotal clinical trials of immune checkpoint inhibitors in early-stage and metastatic MSI colorectal cancer, explore strategies to induce treatment responses in MSS CRC and highlight the emerging treatments and novel immune-based therapies under investigation. Expert opinion: Immunotherapy is now a standard of care for the proportion of CRC patients with MSI. While overall survival data are still awaited, the promise of profound and durable responses is highly anticipated. The lack of efficacy in MSS CRC is disappointing and strategies to convert these 'cold' tumors are needed. Further elucidation of optimal use of treatment sequences, combinations and novel agents will improve outcomes.
Collapse
Affiliation(s)
- Mike Nguyen
- Medical Oncology, St Vincent's Hospital Melbourne , Fitzroy, Australia
| | | | - Marissa Lam
- Medical Oncology, Monash Medical Centre , Clayton, Australia
| | - Elizabeth Liow
- Medical Oncology, Monash Medical Centre , Clayton, Australia
| | - Amy Davies
- Medical Oncology, Monash Medical Centre , Clayton, Australia
| | - Hans Prenen
- Oncology Department, University Hospital Antwerp , Antwerp, Belgium
| | - Eva Segelov
- Medical Oncology, Monash Medical Centre , Clayton, Australia.,Faculty of Medicine, Monash University , Clayton, Australia
| |
Collapse
|
21
|
An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions. Methods Mol Biol 2021; 2097:139-171. [PMID: 31776925 DOI: 10.1007/978-1-0716-0203-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumors have a complex ecosystem in which behavior and fate are determined by the interaction of diverse cancerous and noncancerous cells at local and systemic levels. A number of studies indicate that various immune cells participate in tumor development (Fig. 1). In this review, we will discuss interactions among T lymphocytes (T cells), B cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, and myeloid-derived suppressor cells (MDSCs). In addition, we will touch upon attempts to either use or block subsets of immune cells to target cancer.
Collapse
|
22
|
Hu A, Chen X, Bi Q, Xiang Y, Jin R, Ai H, Nie Y. A parallel and cascade control system: magnetofection of miR125b for synergistic tumor-association macrophage polarization regulation and tumor cell suppression in breast cancer treatment. NANOSCALE 2020; 12:22615-22627. [PMID: 33150908 DOI: 10.1039/d0nr06060g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polarization regulation of tumor-association macrophages (TAMs) is a promising treatment method for tumors, but aiming at TAMs alone shows unsatisfactory therapeutic efficiency. Therefore, we designed a parallel and cascade control system for both macrophage polarization and tumor cell inhibition. The system is composed of cationic lipopeptides with an arginine-rich periphery (RLS) and anionic magnetic nanoparticles (MNPs) for fleet transfection of miR-125b. Based on the highly efficient magnetofection, miR-125b successfully shows a parallel effect on both M1, promoting polarization by targeting interferon regulatory factor 4 (IRF4) in macrophages, and tumor cell inhibition, by targeting ETS proto-oncogene 1 and cyclin- J. The cascading effect on M1-associated genes is upregulated by up to two orders of magnitude, while M2-associated genes are downregulated. Meanwhile, MNPs also have an effect on the TAM polarization and 4T1 tumor cell inhibition via inflammatory related gene expression and Fenton reaction. Further mimicking the co-culture of RAW264.7 and 4T1 cells in vitro confirmed the synergistic therapy effect. In the treatment of orthotopic breast cancer in mice, considerable M1 macrophage polarization was observed in the RM125b treated group, showing distinct tumor-suppressive effects, with a tumor weight reduction of 60% and tumor metastasis suppression of 50%.
Collapse
Affiliation(s)
- Ao Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bickett TE, Karam SD. Tuberculosis-Cancer Parallels in Immune Response Regulation. Int J Mol Sci 2020; 21:ijms21176136. [PMID: 32858811 PMCID: PMC7503600 DOI: 10.3390/ijms21176136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis and cancer are two diseases with proclivity for the development of resistance to the host immune system. Mechanisms behind resistance can be host derived or disease mediated, but they usually depend on the balance of pro-inflammatory to anti-inflammatory immune signals. Immunotherapies have been the focus of efforts to shift that balance and drive the response required for diseases eradication. The immune response to tuberculosis has widely been thought to be T cell dependent, with the majority of research focused on T cell responses. However, the past decade has seen greater recognition of the importance of the innate immune response, highlighting factors such as trained innate immunity and macrophage polarization to mycobacterial clearance. At the same time, there has been a renaissance of immunotherapy treatments for cancer since the first checkpoint inhibitor passed clinical trials, in addition to work highlighting the importance of innate immune responses to cancer. However, there is still much to learn about host-derived responses and the development of resistance to new cancer therapies. This review examines the similarities between the immune responses to cancer and tuberculosis with the hope that their commonalities will facilitate research collaboration and discovery.
Collapse
|
24
|
Mulder WJM, Ochando J, Joosten LAB, Fayad ZA, Netea MG. Therapeutic targeting of trained immunity. Nat Rev Drug Discov 2020; 18:553-566. [PMID: 30967658 DOI: 10.1038/s41573-019-0025-4] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immunotherapy is revolutionizing the treatment of diseases in which dysregulated immune responses have an important role. However, most of the immunotherapy strategies currently being developed engage the adaptive immune system. In the past decade, both myeloid (monocytes, macrophages and dendritic cells) and lymphoid (natural killer cells and innate lymphoid cells) cell populations of the innate immune system have been shown to display long-term changes in their functional programme through metabolic and epigenetic programming. Such reprogramming causes these cells to be either hyperresponsive or hyporesponsive, resulting in a changed immune response to secondary stimuli. This de facto innate immune memory, which has been termed 'trained immunity', provides a powerful 'targeting framework' to regulate the delicate balance of immune homeostasis, priming, training and tolerance. In this Opinion article, we set out our vision of how to target innate immune cells and regulate trained immunity to achieve long-term therapeutic benefits in a range of immune-related diseases. These include conditions characterized by excessive trained immunity, such as inflammatory and autoimmune disorders, allergies and cardiovascular disease and conditions driven by defective trained immunity, such as cancer and certain infections.
Collapse
Affiliation(s)
- Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands. .,Department of Medical Biochemistry, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, Netherlands.
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Transplant Immunology Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands. .,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
25
|
Kapitanova KS, Naumenko VA, Garanina AS, Melnikov PA, Abakumov MA, Alieva IB. Advances and Challenges of Nanoparticle-Based Macrophage Reprogramming for Cancer Immunotherapy. BIOCHEMISTRY (MOSCOW) 2019; 84:729-745. [PMID: 31509725 DOI: 10.1134/s0006297919070058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite the progress of modern medicine, oncological diseases are still among the most common causes of death of adult populations in developed countries. The current therapeutic approaches are imperfect, and the high mortality of oncological patients under treatment, the lack of personalized strategies, and severe side effects arising as a result of treatment force seeking new approaches to therapy of malignant tumors. During the last decade, cancer immunotherapy, an approach that relies on activation of the host antitumor immune response, has been actively developing. Cancer immunotherapy is the most promising trend in contemporary fundamental and practical oncology, and restoration of the pathologically altered tumor microenvironment is one of its key tasks, in particular, the reprogramming of tumor macrophages from the immunosuppressive M2-phenotype into the proinflammatory M1-phenotype is pivotal for eliciting antitumor response. This review describes the current knowledge about macrophage classification, mechanisms of their polarization, their role in formation of the tumor microenvironment, and strategies for changing the functional activity of M2-macrophages, as well as problems of targeted delivery of immunostimulatory signals to tumor macrophages using nanoparticles.
Collapse
Affiliation(s)
- K S Kapitanova
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - V A Naumenko
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.
| | - A S Garanina
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - P A Melnikov
- Serbsky Federal Medical Research Center of Psychiatry and Narcology, Department of Fundamental and Applied Neurobiology, Ministry of Health of the Russian Federation, Moscow, 119034, Russia
| | - M A Abakumov
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.,Russian National Research Medical University, Department of Medical Nanobiotechnology, Moscow, 117997, Russia
| | - I B Alieva
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
26
|
Geller A, Shrestha R, Yan J. Yeast-Derived β-Glucan in Cancer: Novel Uses of a Traditional Therapeutic. Int J Mol Sci 2019; 20:E3618. [PMID: 31344853 PMCID: PMC6695648 DOI: 10.3390/ijms20153618] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
An increased understanding of the complex mechanisms at play within the tumor microenvironment (TME) has emphasized the need for the development of strategies that target immune cells within the TME. Therapeutics that render the TME immune-reactive have a vast potential for establishing effective cancer interventions. One such intervention is β-glucan, a natural compound with immune-stimulatory and immunomodulatory potential that has long been considered an important anti-cancer therapeutic. β-glucan has the ability to modulate the TME both by bridging the innate and adaptive arms of the immune system and by modulating the phenotype of immune-suppressive cells to be immune-stimulatory. New roles for β-glucan in cancer therapy are also emerging through an evolving understanding that β-glucan is involved in a concept called trained immunity, where innate cells take on memory phenotypes. Additionally, the hollow structure of particulate β-glucan has recently been harnessed to utilize particulate β-glucan as a delivery vesicle. These new concepts, along with the emerging success of combinatorial approaches to cancer treatment involving β-glucan, suggest that β-glucan may play an essential role in future strategies to prevent and inhibit tumor growth. This review emphasizes the various characteristics of β-glucan, with an emphasis on fungal β-glucan, and highlights novel approaches of β-glucan in cancer therapy.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jun Yan
- Immuno-Oncology Program, Division of Immunotherapy, Department of Surgery, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
27
|
Heemskerk N, van Egmond M. Monoclonal antibody-mediated killing of tumour cells by neutrophils. Eur J Clin Invest 2018; 48 Suppl 2:e12962. [PMID: 29855035 PMCID: PMC6282585 DOI: 10.1111/eci.12962] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Neutrophils represent the most abundant population of circulating cytotoxic effector cells. Moreover, their number can be easily increased by treatment with granulocyte-colony stimulating factor or granulocyte macrophage-colony stimulating factor, without the need for ex vivo expansion. Because neutrophils express Fc receptors, they have the potential to act as effector cells during monoclonal antibody therapy of cancer. Additionally, as neutrophils play a role in the regulation of adaptive immune responses, exploiting neutrophils in mAb therapy may result in long-term antitumour immunity. There is limited evidence that neutrophils play a prominent role in current immunoglobulin G-based immunotherapy. However, as IgA induces neutrophil recruitment, novel therapeutic strategies that aim to target the IgA Fc receptor FcαRI may fully unleash the potential of enlisting neutrophils as cytotoxic effector cells in antibody therapy of cancer.
Collapse
Affiliation(s)
- Niels Heemskerk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Shi X, Shiao SL. The role of macrophage phenotype in regulating the response to radiation therapy. Transl Res 2018; 191:64-80. [PMID: 29175267 PMCID: PMC6018060 DOI: 10.1016/j.trsl.2017.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/23/2017] [Accepted: 11/11/2017] [Indexed: 12/14/2022]
Abstract
Increasing experimental and clinical evidence has revealed a critical role for myeloid cells in the development and progression of cancer. The ability of monocytes and macrophages to regulate inflammation allows them to manipulate the tumor microenvironment to support the growth and development of malignant cells. Recent studies have shown that macrophages can exist in several functional states depending on the microenvironment they encounter in the tissue. These functional phenotypes influence not only the genesis and propagation of tumors, but also the efficacy of cancer therapies, particularly radiation. Early classification of the macrophage phenotypes, or "polarization states," identified 2 major states, M1 and M2, that have cytotoxic and wound repair capacity, respectively. In the context of tumors, classically activated or M1 macrophages driven by interferon-gamma support antitumor immunity while alternatively activated or M2 macrophages generated in part from interleukin-4 exposure hinder antitumor immunity by suppressing cytotoxic responses against a tumor. In this review, we discuss the role that the functional phenotype of a macrophage population plays in tumor development. We will then focus specifically on how macrophages and myeloid cells regulate the tumor response to radiation therapy.
Collapse
Affiliation(s)
- Xiaoshan Shi
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Stephen L Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
29
|
Yang L, Zhang Y. Tumor-associated macrophages, potential targets for cancer treatment. Biomark Res 2017; 5:25. [PMID: 28804638 PMCID: PMC5549387 DOI: 10.1186/s40364-017-0106-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
The fact that various immune cells, including macrophages, can be found in tumor tissues has long been known. With the introduction of concept that macrophages differentiate into a classically or alternatively activated phenotype, the role of tumor-associated macrophages (TAMs) is now beginning to be elucidated. TAMs act as "protumoral macrophages", contributing to disease progression. As the relationship between TAMs and malignant tumors becomes clearer, TAMs are beginning to be seen as potential therapeutic targets in these cases. In this review, we will discuss how TAMs can be used as therapeutic targets of cancer in clinics.
Collapse
Affiliation(s)
- Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan Province 450052 China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan Province 450052 China.,School of Life Sciences, Zhengzhou University, No.100 Kexue Road, Zhengzhou, Henan Province 450001 China
| |
Collapse
|
30
|
Sawa-Wejksza K, Kandefer-Szerszeń M. Tumor-Associated Macrophages as Target for Antitumor Therapy. Arch Immunol Ther Exp (Warsz) 2017; 66:97-111. [PMID: 28660349 PMCID: PMC5851686 DOI: 10.1007/s00005-017-0480-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
It is well known that the microenvironment of solid tumors is rich in inflammatory cells that influence tumor growth and development. Macrophages, called tumor-associated macrophages (TAMs), are the most abundant immune cell population present in tumor tissue. Several studies have demonstrated that the density of TAMs is associated with a poor prognosis and positively correlates with tumor growth. Several studies have proved that TAMs may activate and protect tumor stem cells, stimulate their proliferation as well as promote angiogenesis and metastasis. Furthermore, TAMs-derived cytokines and other proteins, such as CCL-17, CCL-22, TGF-β, IL-10, arginase 1, and galectin-3, make a significant contribution to immunosuppression. Since TAMs influence various aspects of cancer progression, there are many attempts to use them as a target for immunotherapy. The numerous studies have shown that the primary tumor growth and the number of metastatic sites can be significantly decreased by decreasing the population of macrophages in tumor tissue, for example, by blocking recruitment of monocytes or eliminating TAMs already present in the tumor tissue. Moreover, there are attempts at reprogramming TAMs into proinflammatory M1 macrophages or neutralizing the protumoral products of TAMs. Another approach uses TAMs for anticancer drug delivery into the tumor environment. In this review, we would like to summarize the clinical and preclinical trials that were focused on macrophages as a target for anticancer therapies.
Collapse
Affiliation(s)
- Katarzyna Sawa-Wejksza
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Martyna Kandefer-Szerszeń
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
31
|
Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 2017; 10:58. [PMID: 28241846 PMCID: PMC5329931 DOI: 10.1186/s13045-017-0430-2] [Citation(s) in RCA: 620] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
The fact that various immune cells, including macrophages, can be found in tumor tissues has long been known. With the introduction of concept that macrophages differentiate into a classically or alternatively activated phenotype, the role of tumor-associated macrophages (TAMs) is now beginning to be elucidated. TAMs act as “protumoral macrophages,” contributing to disease progression. TAMs can promote initiation and metastasis of tumor cells, inhibit antitumor immune responses mediated by T cells, and stimulate tumor angiogenesis and subsequently tumor progression. As the relationship between TAMs and malignant tumors becomes clearer, TAMs are beginning to be seen as potential biomarkers for diagnosis and prognosis of cancers, as well as therapeutic targets in these cases. In this review, we will discuss the origin, polarization, and role of TAMs in human malignant tumors, as well as how TAMs can be used as diagnostic and prognostic biomarkers and therapeutic targets of cancer in clinics.
Collapse
Affiliation(s)
- Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China. .,Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China. .,School of Life Science, Zhengzhou University, No.100 Kexue Road, Zhengzhou, 450001, Henan Province, China.
| |
Collapse
|
32
|
Imprime PGG-Mediated Anti-Cancer Immune Activation Requires Immune Complex Formation. PLoS One 2016; 11:e0165909. [PMID: 27812183 PMCID: PMC5094785 DOI: 10.1371/journal.pone.0165909] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/19/2016] [Indexed: 11/19/2022] Open
Abstract
Imprime PGG (Imprime), an intravenously-administered, soluble β-glucan, has shown compelling efficacy in multiple phase 2 clinical trials with tumor targeting or anti-angiogenic antibodies. Mechanistically, Imprime acts as pathogen-associated molecular pattern (PAMP) directly activating innate immune effector cells, triggering a coordinated anti-cancer immune response. Herein, using whole blood from healthy human subjects, we show that Imprime-induced anti-cancer functionality is dependent on immune complex formation with naturally-occurring, anti-β glucan antibodies (ABA). The formation of Imprime-ABA complexes activates complement, primarily via the classical complement pathway, and is opsonized by iC3b. Immune complex binding depends upon Complement Receptor 3 and Fcg Receptor IIa, eliciting phenotypic activation of, and enhanced chemokine production by, neutrophils and monocytes, enabling these effector cells to kill antibody-opsonized tumor cells via the generation of reactive oxygen species and antibody-dependent cellular phagocytosis. Importantly, these innate immune cell changes were not evident in subjects with low ABA levels but could be rescued with exogenous ABA supplementation. Together, these data indicate that pre-existing ABA are essential for Imprime-mediated anti-cancer immune activation and suggest that pre-treatment ABA levels may provide a plausible patient selection biomarker to delineate patients most likely to benefit from Imprime-based therapy.
Collapse
|
33
|
Barton C, Vigor K, Scott R, Jones P, Lentfer H, Bax HJ, Josephs DH, Karagiannis SN, Spicer JF. Beta-glucan contamination of pharmaceutical products: How much should we accept? Cancer Immunol Immunother 2016; 65:1289-1301. [PMID: 27473075 PMCID: PMC5069311 DOI: 10.1007/s00262-016-1875-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
Abstract
Beta-glucans are large polysaccharides produced by a range of prokaryotic and eukaryotic organisms. They have potential immunostimulatory properties and have been used with therapeutic intent as anti-microbial and anti-tumour agents. A range of other potentially beneficial effects have been described, and oral forms of beta-glucans are widely available over-the-counter and online. Parenteral formulations are popular in parts of Asia and are the subject of ongoing trials, worldwide. Beta-glucans are also potential contaminants of pharmaceutical products, and high levels have been described in some blood products. However, little is known about the clinical effects of such contamination, considerable uncertainty exists over the level at which immunostimulation may occur, and there are no guidelines available on acceptable levels. We encountered beta-glucan contamination of one of our products, and we suspect that others may encounter similar issues since the origin of beta-glucan contamination includes commonly used filters and solutions applied in the manufacture of biotherapeutic agents. It is likely that regulators will increasingly enquire about beta-glucan levels in pharmaceutical products, especially those with an immunomodulatory mechanism of action. Here, we review the literature on beta-glucans in pharmaceutical products and propose an acceptable level for therapeutic agents for parenteral use.
Collapse
Affiliation(s)
- Claire Barton
- Cancer Research UK Centre for Drug Development, Cancer Research UK, Angel Building, 407 St John Street, London, EC1V 4AD, UK.
| | - Kim Vigor
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Robert Scott
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Paul Jones
- Cancer Research UK Centre for Drug Development, Cancer Research UK, Angel Building, 407 St John Street, London, EC1V 4AD, UK
| | - Heike Lentfer
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, EN6 3LD, UK
| | - Heather J Bax
- Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, St. John's Institute of Dermatology, King's College London, 9th Floor, Guy's Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals, King's College London, 9th Floor, Guy's Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- Division of Cancer Studies, Department of Research Oncology, Faculty of Life Sciences and Medicine, King's College London, 3rd Floor Bermondsey Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Debra H Josephs
- Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, St. John's Institute of Dermatology, King's College London, 9th Floor, Guy's Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals, King's College London, 9th Floor, Guy's Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- Division of Cancer Studies, Department of Research Oncology, Faculty of Life Sciences and Medicine, King's College London, 3rd Floor Bermondsey Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Sophia N Karagiannis
- Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, St. John's Institute of Dermatology, King's College London, 9th Floor, Guy's Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals, King's College London, 9th Floor, Guy's Tower Wing, Guy's Hospital, London, SE1 9RT, UK
| | - James F Spicer
- Division of Cancer Studies, Department of Research Oncology, Faculty of Life Sciences and Medicine, King's College London, 3rd Floor Bermondsey Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|