1
|
Singh KR, Singh P, Singh J, Pandey SS. Nanobioengineered Al 2O 3 Core-Shell Nanoparticle Preparation Using Bauhinia Variegate Plant Extract for Efficient Photocatalysis and Electrochemical Sensing. ACS APPLIED BIO MATERIALS 2024. [PMID: 39467769 DOI: 10.1021/acsabm.4c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Core-shell-based nanomaterials have garnered considerable attention in the recent past not only in catalytic applications but also in their potentiality in selective and efficient sensing. Present research reports the first and successful biosynthesis of the core (c-Al2O3)-shell nanoparticles (NPs) using Bauhinia variegate blossom extract as reducing and capping agents. The synthesized c-Al2O3 NPs were characterized and utilized to fabricate nanobioengineered electrodes on indium tin oxide (ITO) substrates via electrophoretic deposition. Electrochemical analysis, including cyclic voltammetry and differential pulse voltammetry, revealed quasi-reversible processes with high electron-transfer rates (Ks = 0.66 s-1) and a diffusion coefficient (D = 5.84 × 10-2 cm2 s-1). The electrode exhibited a very high sensitivity (23.44 μA μM-1 cm-2) and a low detection limit (0.463 μM) for sodium azide (NaN3) over two linear ranges of 1-6 and 8-20 μM. Additionally, c-Al2O3 NPs demonstrated the effective photocatalytic degradation of crystal violet dye under visible light, following pseudo-first-order kinetics. The fabricated electrode showed excellent selectivity, stability, and reproducibility, highlighting its potential for environmental monitoring and clinical diagnostics.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Pooja Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484886, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
2
|
Thanaraj S, Mitthun ANK, Geetha Sravanthy P, Carmelin DS, Surya M, Saravanan M. Green Synthesis of Aluminum Oxide Nanoparticles Using Clerodendrum phlomidis and Their Antibacterial, Anti-inflammatory, and Antioxidant Activities. Cureus 2024; 16:e52279. [PMID: 38357054 PMCID: PMC10864816 DOI: 10.7759/cureus.52279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Clerodendrum phlomidis plays a significant role in many indigenous medical systems, and it can be mostly found in Southeast Asia. The objective of the study was to synthesize and characterize the biosynthesized aluminum oxide nanoparticles (AlO-NPs) using C. phlomidis and analyze their antibacterial (bactericidal), antioxidant, and anti-inflammatory activities. METHODS The extract was prepared by the autoclave-assisted method, and the AlO-NPs were synthesized by the green synthesis method. The biosynthesized AlO-NPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray (EDX) analysis. The antibacterial property was assessed by the Kirby-Bauer well diffusion method, and the antioxidant activity was checked by DPPH (2,2-diphenyl-1-picrylhydrazyl) activity compared with the control L-ascorbic acid. Anti-inflammatory activity was evaluated by an albumin denaturation assay, and diclofenac was used as a control. IBM SPSS Statistics for Windows, Version 21.0 was used for the statistical analysis. Results: An absorption peak at a wavelength of 380 nm was detected by UV-Vis spectroscopy analysis. It proves that AlO-NPs have been successfully produced by the green synthesis method. The results of the FT-IR study demonstrated the existence of numerous chemicals and functional groups in the 500-3500 cm-1 range. AlO-NPs from the plant extract were subjected to FE-SEM analysis, which revealed an aggregated or spherically cluster-like structure. The sample's elemental makeup, which revealed that it included 38% aluminum and 28% oxygen, was identified with the help of the EDX, and this verified the high purity of the AlO-NPs. The results of the antibacterial activity of AlO-NPs revealed that there was a zone of inhibition for Enterococcus faecalis; however, there was no zone of inhibition for Streptococcus mutans. The synthesized AlO-NPs exhibit strong antioxidative (DPPH activity) and anti-inflammatory (albumin denaturation assay) action. In this work, the in vitro antioxidant activity of C. phlomidis was assessed using the standard, L-ascorbic acid, as a measure of DPPH activity. At a maximum concentration of 500 µg/ml, the obtained results showed the incredible antioxidant properties of the investigated AlO-NPs synthesized from the plant extracts and demonstrated 90% inhibition. AlO-NPs that were biosynthesized showed effective anti-inflammatory activity at a higher concentration of 100 µg/ml and demonstrated 89% inhibition in contrast to the drug diclofenac sodium. CONCLUSION According to the study's findings, AlO-NPs made using a greener synthesis approach have the potential to be used in a variety of industries and are also an affordable and sustainable way to effectively act as anti-inflammatory and antioxidant agents.
Collapse
Affiliation(s)
- Srigopika Thanaraj
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - A N K Mitthun
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - P Geetha Sravanthy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Durai Singh Carmelin
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Muthuvel Surya
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Muthupandian Saravanan
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
3
|
Rosen AQ, Salpino V, Johnson DW. Observation of alumina nanoparticles generated from aqueous solutions of a "flat" aluminum-13 cluster. Chem Commun (Camb) 2023; 59:12483-12486. [PMID: 37782630 DOI: 10.1039/d3cc02651e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Amorphous alumina nanoparticles were synthesized via dynamic processes during the dissolution of aluminum hydroxide by nitric acid, a method commonly used to produce aqueous solutions of aluminum oxide molecular clusters. These particles were characterized by DLS measurements, and corroborated by other solution and solid state analyses. The methods used represent a highly tuneable, facile synthetic pathway that allows for size targeting and scalability for industrial purposes, and provides insight into pH- and temperature-dependent alumina speciation and aggregation.
Collapse
Affiliation(s)
- Alex Q Rosen
- Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| | - Victor Salpino
- Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| | - Darren W Johnson
- Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| |
Collapse
|
4
|
Eid SM, Attia KAM, El-Olemy A, Emad F Abbas A, Abdelshafi NA. An innovative nanoparticle-modified carbon paste sensor for ultrasensitive detection of lignocaine and its extremely carcinogenic metabolite residues in bovine food samples: Application of NEMI, ESA, AGREE, ComplexGAPI, and RGB12 algorithms. Food Chem 2023; 426:136579. [PMID: 37352707 DOI: 10.1016/j.foodchem.2023.136579] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023]
Abstract
Nowadays, veterinary medicine residues have been viewed as a major threat to food safety worldwide, especially when dealing with carcinogenic residues. Herein, we present the first differential pulse voltammetric method for the quantification of lignocaine and its carcinogenic metabolite 2,6-xylidine residues in bovine food samples, aided by five greenness and whiteness assessment tools, including NEMI, ESA, ComplexGAPI, AGREE, and RGB12. The method depends on the electrochemical oxidation after modification of the carbon paste sensor with recycled Al2O3-NPs functionalized multi-walled carbon nanoparticles. The produced sensor (Al2O3-NPs/MWCNTs/CPE) was characterized using XRD, FT-IR, EDX, SEM, and TEM. As expected, the active surface area and electron transfer processes were accelerated by the modification, resulting in ultra-sensitive quantification with detection limits of 19.00 and 13.94 nM for lignocaine and 2,6-xylidine, respectively. In terms of greenness, whiteness, sustainability, analytical effectiveness, and economic and practical considerations, the proposed method outperforms the reported methods.
Collapse
Affiliation(s)
- Sherif M Eid
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza 12585, Egypt.
| | - Khalid A M Attia
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Ahmed El-Olemy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Ahmed Emad F Abbas
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza 12585, Egypt.
| | - Nahla A Abdelshafi
- Department of Pharmaceutical Analytical Chemistry, School of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| |
Collapse
|
5
|
Saravanan K, Shanthi B, Ravichandran C, Venkatachalapathy B, Sathiyanarayanan KI, Rajendran S, Karthikeyan NS, Suresh R. Transformation of used aluminium foil food container into AlOOH nanoflakes with high catalytic activity in anionic azo dye reduction. ENVIRONMENTAL RESEARCH 2023; 218:114985. [PMID: 36460074 DOI: 10.1016/j.envres.2022.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Synthesis of aluminium-based nanomaterials from aluminium-waste has received huge attention in current scientific research. Herein, an attempt was made to convert aluminium foil food container into aluminium oxyhydroxide (AlOOH) nanoparticles by a precipitation method. X-ray diffraction (XRD), spectroscopic and electron microscopic studies were employed to characterize impure AlOOH (containing sodium chloride, NaCl) and pure AlOOH samples. The band gap (Eg) of AlOOH nanoparticles was found to be 4.5 eV. The catalytic potential of AlOOH samples was evaluated using reduction of methyl orange (MO) and Eriochrome black T (EBT) dyes. Impure AlOOH nanoparticles could reduce 99.8% of MO and EBT dye within 4 min and 3 min respectively. Effect of the AlOOH dosage and NaBH4 concentration on catalytic reduction was determined. Used aluminium foil food container-derived AlOOH nanoparticles will become a low-cost and sustainable catalyst in the catalytic treatment of azo dye contaminated waters.
Collapse
Affiliation(s)
| | | | - Cingaram Ravichandran
- Department of Chemistry, Easwari Engineering College, Chennai, 600089, Tamil Nadu, India
| | - Bakthavachalam Venkatachalapathy
- Department of Chemistry, Easwari Engineering College, Chennai, 600089, Tamil Nadu, India; Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Kulathu Iyer Sathiyanarayanan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT University), Vellore, 632014, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 600095, India; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | | | - Ranganathan Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| |
Collapse
|
6
|
Al-Byati MKAA, Al-Duhaidahawi AMJ. Synthesis and Characterization of Zinc Oxide Nanoparticles by Electrochemical Method for Environmentally Friendly Dye-Sensitized Solar Cell Applications (DSSCs). BIOMEDICINE AND CHEMICAL SCIENCES 2023; 2:53-57. [DOI: 10.48112/bcs.v2i1.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In this research, zinc oxide nanoparticles (ZnO NPs) were made utilizing an electrochemical method. Which has the advantages of being quick, simple, producing no side products, and being inexpensive. Advanced techniques such as x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis), energy dispersive x-ray (EDX), and atomic force microscopy (AFM) were used to characterize the generated zinc oxide. Using methyl orange dye, the analysis showed that the shape of zinc oxide nanoparticles was rice-like and the band gap value was 3.62. ZnO NPs is used in dye-sensitized solar cells (DSSCs) it has many advantages including its ease of use and low cost, its ability to be integrated into buildings, and its fantastic performance under diffuse and indoor lighting. DSSCs have attracted more attention and have been deemed viable alternatives to conventional photovoltaic devices. The solar cell's efficiency (η %) and fill factor with methyl orange as a dye were 2.3, and 74.1, respectively.
Collapse
|
7
|
Attia KAM, Abdel-Raoof AM, Serag A, Eid SM, Abbas AE. Innovative electrochemical electrode modified with Al 2O 3 nanoparticle decorated MWCNTs for ultra-trace determination of tamsulosin and solifenacin in human plasma and urine samples and their pharmaceutical dosage form. RSC Adv 2022; 12:17536-17549. [PMID: 35765456 PMCID: PMC9192163 DOI: 10.1039/d2ra01962k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022] Open
Abstract
A simple, cheap, sensitive, and time-saving square wave voltammetric (SWV) procedure using a carbon paste electrode modified with aluminum oxide nanoparticle decorated multi-walled carbon nanoparticles (Al2O3-NPs/MWCNTs/CPE) is presented for the ultra-sensitive determination of tamsulosin (TAM) and solifenacin (SOL), one of the most prescribed pharmaceutical combinations in urology. Characterization of the developed electrode was performed using scanning electron microscopy (SEM), X-ray diffraction (XRD) patterns, energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM) and FT-IR spectrophotometry. The voltammetric behavior of TAM/SOL was evaluated using Al2O3-NPs in different content and electrode compositions. The use of Al2O3 functionalized MWCNTs as a CPE modifier increased the process of electron transfer as well as improved the electrode active surface area therefore, ultra-sensitive results were acquired with a linear range of 10-100 and 12-125 ng ml-1 for TAM and SOL respectively, and a limit of the detection value of 2.69 and 3.25 ng ml-1 for TAM and SOL, respectively. Interestingly, the proposed method succeeded in quantifying TAM and SOL with acceptable percentage recoveries in dosage forms having diverged concentration ranges and in the biological fluids with very low peak plasma concentration (C max). Furthermore, the proposed method was validated, according to the ICH criteria, and shown to be accurate and reproducible.
Collapse
Affiliation(s)
- Khalid A M Attia
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City Cairo Egypt
| | - Ahmed M Abdel-Raoof
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City Cairo Egypt
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City Cairo Egypt
| | - Sherif M Eid
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University 6 October City Giza Egypt
| | - Ahmed E Abbas
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University 6 October City Giza Egypt
| |
Collapse
|
8
|
De A. Nanomaterial Synthesis from End‐of‐Cycle Products: A Sustainable Way of Waste Valorisation. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anindita De
- Sharda University Department of Chemistry and Biochemistry School of Basic Sciences and Research 201306 Greater Noida India
| |
Collapse
|