1
|
Krivec N, Ghosh MS, Spits C. Gains of 20q11.21 in human pluripotent stem cells: Insights from cancer research. Stem Cell Reports 2024; 19:11-27. [PMID: 38157850 PMCID: PMC10828824 DOI: 10.1016/j.stemcr.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The genetic abnormalities observed in hPSC cultures worldwide have been suggested to pose an important hurdle in their safe use in regenerative medicine due to the possibility of oncogenic transformation by mutant cells in the patient posttransplantation. One of the best-characterized genetic lesions in hPSCs is the gain of 20q11.21, found in 20% of hPSC lines worldwide, and strikingly, also amplified in 20% of human cancers. In this review, we have curated the existing knowledge on the incidence of this mutation in hPSCs and cancer, explored the significance of chromosome 20q11.21 amplification in cancer progression, and reviewed the oncogenic role of the genes in the smallest common region of gain, to shed light on the significance of this mutation in hPSC-based cell therapy. Lastly, we discuss the state-of-the-art strategies devised to detect aneuploidies in hPSC cultures, avoid genetic changes in vitro cultures of hPSCs, and strategies to eliminate genetically abnormal cells from culture.
Collapse
Affiliation(s)
- Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha S Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
2
|
Prates J, Moreli JB, Gimenes AD, Biselli JM, Pires D'Avila SCG, Sandri S, Farsky SHP, Rodrigues-Lisoni FC, Oliani SM. Cisplatin treatment modulates Annexin A1 and inhibitor of differentiation to DNA 1 expression in cervical cancer cells. Biomed Pharmacother 2020; 129:110331. [PMID: 32768930 DOI: 10.1016/j.biopha.2020.110331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cisplatin (Cis) is a choice chemotherapy approach to cervical cancer by inducing DNA adducts and subsequent apoptosis. We have investigated the effects of Cis on Annexin A1 (ANXA1) and inhibitor of DNA binding 1 (ID1) proteins expression to elucidate further mechanisms of Cis actions. Human cervical tissue samples from twenty-four patients, with Cervical Intraepithelial Neoplasia (CIN, stage I, II and III), were evaluated to quantified ANXA1 and ID1 expressions. In vitro, human epidermoid carcinoma of the cervix (SiHa cell line) were treated with Annexin A1 peptide (ANXA12-26), Cis or Cis + ANXA12-26 to evaluate cell proliferation and migration, cytotoxicity of treatments as well as ANXA1 and ID1 modulations by mRNA and protein expression. Our findings showed expression of ID1 and ANXA1 proteins in tissue samples from Cervical Intraepithelial Neoplasia (CIN) patients, with intense immunological identification of ID1 in the CIN III stage. In SiHa cells, treatments with Cis alone or Cis + ANXA12-26, increase mRNA expressions of the ANXA1 and reduced the ID1. In agreement, Cis + ANXA12-26 enhanced ANXA1 protein expression and Cis or Cis + ANXA12-26 abolished ID1 protein expression. Cell proliferation was reduced after treatment with ANXA12-26 peptide and more significant after Cis or Cis + ANXA12-26 treatments. These two last treatments reduced cell viability, by inducing late apoptosis, and impaired cell migration. Together, our data highlight endogenous ANXA1 is involved in Cis therapy for cervical cancer.
Collapse
Affiliation(s)
- Janesly Prates
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, SP, Brazil
| | - Jusciéle Brogin Moreli
- Universidade Federal de São Paulo - UNIFESP, Post-Graduation in Structural and Functional Biology, SP, Brazil; Faceres School of Medicine, São José do Rio Preto, SP, Brazil
| | - Alexandre Dantas Gimenes
- Universidade Federal de São Paulo - UNIFESP, Post-Graduation in Structural and Functional Biology, SP, Brazil
| | - Joice Matos Biselli
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, SP, Brazil
| | | | - Silvana Sandri
- São Paulo University (USP), Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- São Paulo University (USP), Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, São Paulo, Brazil
| | - Flávia Cristina Rodrigues-Lisoni
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, SP, Brazil; São Paulo State University (Unesp), Ilha Solteira School of Engineering (FEIS), Campus Ilha Solteira, SP, Brazil
| | - Sonia Maria Oliani
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Post-Graduation in Structural and Functional Biology, SP, Brazil.
| |
Collapse
|
3
|
Zhao Z, Bo Z, Gong W, Guo Y. Inhibitor of Differentiation 1 (Id1) in Cancer and Cancer Therapy. Int J Med Sci 2020; 17:995-1005. [PMID: 32410828 PMCID: PMC7211148 DOI: 10.7150/ijms.42805] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
The inhibitor of DNA binding (Id) proteins are regulators of cell cycle and cell differentiation. Of all Id family proteins, Id1 is mostly linked to tumorigenesis, cellular senescence as well as cell proliferation and survival. Id1 is a stem cell-like gene more than a classical oncogene. Id1 is overexpressed in numerous types of cancers and exerts its promotion effect to these tumors through different pathways. Briefly, Id1 was found significantly correlated with EMT-related proteins, K-Ras signaling, EGFR signaling, BMP signaling, PI3K/Akt signaling, WNT and SHH signaling, c-Myc signaling, STAT3 signaling, RK1/2 MAPK/Egr1 pathway and TGF-β pathway, etc. Id1 has potent effect on facilitating tumorous angiogenesis and metastasis. Moreover, high expression of Id1 plays a facilitating role in the development of drug resistance, including chemoresistance, radiation resistance and resistance to drugs targeting angiogenesis. However, controversial results were also obtained. Overall, Id1 represent a promising target of anti-tumor therapeutics based on its potent promotion effect to cancer. Numerous drugs were found exerting their anti-tumor function through Id1-related signaling pathways, such as fucoidan, berberine, tetramethylpyrazine, crizotinib, cannabidiol and vinblastine.
Collapse
Affiliation(s)
- Zhengxiao Zhao
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Zhiyuan Bo
- The Second Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Weiyi Gong
- The Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, PR China
| | - Yong Guo
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
4
|
Castañón E, Soltermann A, López I, Román M, Ecay M, Collantes M, Redrado M, Baraibar I, López-Picazo JM, Rolfo C, Vidal-Vanaclocha F, Raez L, Weder W, Calvo A, Gil-Bazo I. The inhibitor of differentiation-1 (Id1) enables lung cancer liver colonization through activation of an EMT program in tumor cells and establishment of the pre-metastatic niche. Cancer Lett 2017; 402:43-51. [PMID: 28549790 DOI: 10.1016/j.canlet.2017.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 01/29/2023]
Abstract
Id1 promotes carcinogenesis and metastasis, and predicts prognosis of non-small cell lung cancer (NSCLC)-adenocarcionoma patients. We hypothesized that Id1 may play a critical role in lung cancer colonization of the liver by affecting both tumor cells and the microenvironment. Depleted levels of Id1 in LLC (Lewis lung carcinoma cells, LLC shId1) significantly reduced cell proliferation and migration in vitro. Genetic loss of Id1 in the host tissue (Id1-/- mice) impaired liver colonization and increased survival of Id1-/- animals. Histologically, the presence of Id1 in tumor cells of liver metastasis was responsible for liver colonization. Microarray analysis comparing liver tumor nodules from Id1+/+ mice and Id1-/- mice injected with LLC control cells revealed that Id1 loss reduces the levels of EMT-related proteins, such as vimentin. In tissue microarrays containing 532 NSCLC patients' samples, we found that Id1 significantly correlated with vimentin and other EMT-related proteins. Id1 loss decreased the levels of vimentin, integrinβ1, TGFβ1 and snail, both in vitro and in vivo. Therefore, Id1 enables both LLC and the host microenvironment for an effective liver colonization, and may represent a novel therapeutic target to avoid NSCLC liver metastasis.
Collapse
Affiliation(s)
- Eduardo Castañón
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain; Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Alex Soltermann
- Institut für Klinische Pathologie, Universitätsspital Zürich, Zürich, Switzerland
| | - Inés López
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Marta Román
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain; Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Margarita Ecay
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - María Collantes
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Miriam Redrado
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Iosune Baraibar
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain; Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | | | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Edegem, Belgium
| | - Fernando Vidal-Vanaclocha
- Valencia Institute of Pathology (IVP), Catholic University of Valencia School of Medicine and Odontology, Valencia, Spain
| | - Luis Raez
- Memorial Cancer Institute, Memorial Health Care System, Florida International University, Miami, FL, USA
| | - Walter Weder
- Klinik für Thoraxchirurgie, Universitätsspital Zürich, Zürich, Switzerland
| | - Alfonso Calvo
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain; Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| |
Collapse
|
5
|
Prates J, Franco-Salla GB, Dinarte Dos Santos AR, da Silva WA, da Cunha BR, Tajara EH, Oliani SM, Rodrigues-Lisoni FC. ANXA1Ac₂₋₂₆ peptide reduces ID1 expression in cervical carcinoma cultures. Gene 2015; 570:248-54. [PMID: 26072160 DOI: 10.1016/j.gene.2015.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 11/30/2022]
Abstract
Cervical cancer is the second most frequent cancer in women worldwide and is associated with genetic alterations, infection with human papilloma virus (HPV), angiogenesis and inflammatory processes. The idea that inflammation is involved in tumorigenesis is supported by the frequent appearance of cancer in areas of chronic inflammation. On the other hand, the inflammatory response is controlled by the action of anti-inflammatory mediators, among these mediators, annexin A1 (ANXA1), a 37 kDa protein was detected as a modulator of inflammatory processes and is expressed by tumor cells. The study was carried out on the epithelial cancer cell line (SiHa) treated with the peptide of annexin A1 (ANXA1Ac2-26). We combined subtraction hybridization approach, Ingenuity Systems software and quantitative PCR, in order to evaluate gene expression influenced by ANXA1. We observed that ANXA1Ac2-26 inhibited proliferation in SiHa cells after 72h. In these cells, 55 genes exhibited changes in expression levels in response to peptide treatment. Six genes were selected and the expression results of 5 up-regulated genes (TPT1, LDHA, NCOA3, HIF1A, RAB13) and one down-regulated gene (ID1) were research by real time quantitative PCR. Four more genes (BMP4, BMPR1B, SMAD1 and SMAD4) of the ID1 pathway were investigated and only one (BMPR1B) shows the same down regulation. The data indicate the involvement of ANXA1Ac2-26 in the altered expression of genes involved in tumorigenic processes, which could potentially be applied as a therapeutic indicator of cervical cancer.
Collapse
Affiliation(s)
- Janesly Prates
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Gabriela Bueno Franco-Salla
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Anemari Ramos Dinarte Dos Santos
- Department of Clinical Medical, Foundation Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo - FCFRP/USP, Ribeirão Preto, SP, Brazil
| | - Wilson Araújo da Silva
- Department of Clinical Medical, Foundation Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo - FCFRP/USP, Ribeirão Preto, SP, Brazil
| | - Bianca Rodrigues da Cunha
- Department of Molecular, Biology Faculty of Medicine of São José do Rio Preto - FAMERP, São José do Rio Preto, SP, Brazil
| | - Eloiza Helena Tajara
- Department of Molecular, Biology Faculty of Medicine of São José do Rio Preto - FAMERP, São José do Rio Preto, SP, Brazil
| | - Sonia Maria Oliani
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | | |
Collapse
|
6
|
Manrique I, Nguewa P, Bleau AM, Nistal-Villan E, Lopez I, Villalba M, Gil-Bazo I, Calvo A. The inhibitor of differentiation isoform Id1b, generated by alternative splicing, maintains cell quiescence and confers self-renewal and cancer stem cell-like properties. Cancer Lett 2014; 356:899-909. [PMID: 25449776 DOI: 10.1016/j.canlet.2014.10.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/14/2022]
Abstract
Id1 has been shown to play a critical role in tumorigenesis and angiogenesis. Moreover, recent reports have involved Id1 in the maintenance of cancer stem cell features in some tumor types. The Id1 gene generates two isoforms through alternative splicing: Id1a and Id1b. We have investigated the role of each isoform in cancer development. Using lentiviral systems we modified the endogenous expression of each of these isoforms in cancer cells and analyzed their biological effect both in vitro and in vivo. Overexpression of Id1b in murine CT26 and 3LL cells caused a G0/G1 cell cycle arrest and reduced proliferation, clonogenicity and phospho-ERK1/2 levels, while increasing p27 levels. High levels of Id1a had an opposite effect and the proportion of cells in the S phase increased significantly. In vivo models confirmed the inhibitory role of Id1b in primary tumor growth and metastasis. Through microarray analysis we found that the cancer stem cell (CSC) markers ALDH1A1 and Notch-1 were up-regulated specifically in Id1b-overexpressing cells. By using qPCR we also found overexpression of Sca-1, Tert, Sox-2 and Oct-4 in these cells. Increased levels of Id1b promoted self-renewal and CSC-like properties, as shown by their high capacity for developing secondary tumorspheres and retaining the PKH26 dye. The acquisition of CSC phenotype was confirmed in human PC-3 cells that overexpressed Id1b. Our results show that Id1b maintains cells in a quiescent state and promotes self-renewal and CSC-like features. On the contrary, Id1a promotes cell proliferation.
Collapse
Affiliation(s)
- Irene Manrique
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Paul Nguewa
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Instituto de Salud Tropical and Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Anne-Marie Bleau
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Estanislao Nistal-Villan
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ines Lopez
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Maria Villalba
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Histology and Pathology, University of Navarra, Pamplona, Spain
| | - Ignacio Gil-Bazo
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Histology and Pathology, University of Navarra, Pamplona, Spain.
| |
Collapse
|