1
|
Bohórquez JA, Jagannath C, Xu H, Wang X, Yi G. T Cell Responses during Human Immunodeficiency Virus/ Mycobacterium tuberculosis Coinfection. Vaccines (Basel) 2024; 12:901. [PMID: 39204027 PMCID: PMC11358969 DOI: 10.3390/vaccines12080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Coinfection with Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) is a significant public health concern. Individuals infected with Mtb who acquire HIV are approximately 16 times more likely to develop active tuberculosis. T cells play an important role as both targets for HIV infection and mediators of the immune response against both pathogens. This review aims to synthesize the current literature and provide insights into the effects of HIV/Mtb coinfection on T cell populations and their contributions to immunity. Evidence from multiple in vitro and in vivo studies demonstrates that T helper responses are severely compromised during coinfection, leading to impaired cytotoxic responses. Moreover, HIV's targeting of Mtb-specific cells, including those within granulomas, offers an explanation for the severe progression of the disease. Herein, we discuss the patterns of differentiation, exhaustion, and transcriptomic changes in T cells during coinfection, as well as the metabolic adaptations that are necessary for T cell maintenance and functionality. This review highlights the interconnectedness of the immune response and the pathogenesis of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|
2
|
Niu L, Wang H, Luo G, Zhou J, Hu Z, Yan B. Advances in understanding immune homeostasis in latent tuberculosis infection. WIREs Mech Dis 2024; 16:e1643. [PMID: 38351551 DOI: 10.1002/wsbm.1643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/13/2024]
Abstract
Nearly one-fourth of the global population is infected by Mycobacterium tuberculosis (Mtb), and approximately 90%-95% remain asymptomatic as latent tuberculosis infection (LTBI), an estimated 5%-10% of those with latent infections will eventually progress to active tuberculosis (ATB). Although it is widely accepted that LTBI transitioning to ATB results from a disruption of host immune balance and a weakening of protective immune responses, the exact underlying immunological mechanisms that promote this conversion are not well characterized. Thus, it is difficult to accurately predict tuberculosis (TB) progression in advance, leaving the LTBI population as a significant threat to TB prevention and control. This article systematically explores three aspects related to the immunoregulatory mechanisms and translational research about LTBI: (1) the distinct immunocytological characteristics of LTBI and ATB, (2) LTBI diagnostic markers discovery related to host anti-TB immunity and metabolic pathways, and (3) vaccine development focus on LTBI. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Liangfei Niu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Hao Wang
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Geyang Luo
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Jing Zhou
- Department of Pathology, Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Zhidong Hu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Tyagi S, Sadhu S, Sharma T, Paul A, Pandey M, Nain VK, Rathore DK, Chatterjee S, Awasthi A, Pandey AK. VapC12 ribonuclease toxin modulates host immune response during Mycobacterium tuberculosis infection. Front Immunol 2024; 15:1302163. [PMID: 38515752 PMCID: PMC10955575 DOI: 10.3389/fimmu.2024.1302163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024] Open
Abstract
Mechanistic understanding of antibiotic persistence is a prerequisite in controlling the emergence of MDR cases in Tuberculosis (TB). We have reported that the cholesterol-induced activation of VapC12 ribonuclease is critical for disease persistence in TB. In this study, we observed that relative to the wild type, mice infected with ΔvapC12 induced a pro-inflammatory response, had a higher pathogen load, and responded better to the anti-TB treatment. In a high-dose infection model, all the mice infected with ΔvapC12 succumbed early to the disease. Finally, we reported that the above phenotype of ΔvapC12 was dependent on the presence of the TLR4 receptor. Overall, the data suggests that failure of a timely resolution of the early inflammation by the ΔvapC12 infected mice led to hyperinflammation, altered T-cell response and high bacterial load. In conclusion, our findings suggest the role of the VapC12 toxin in modulating the innate immune response of the host in ways that favor the long-term survival of the pathogen inside the host.
Collapse
Affiliation(s)
- Shaifali Tyagi
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Srikanth Sadhu
- Immunobiology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Taruna Sharma
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Abhijit Paul
- Complex Analysis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manitosh Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Vaibhav Kumar Nain
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Kumar Rathore
- Immunobiology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Samrat Chatterjee
- Complex Analysis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Immunobiology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Kumar Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
4
|
Tognarelli EI, Gutiérrez-Vera C, Palacios PA, Pasten-Ferrada IA, Aguirre-Muñoz F, Cornejo DA, González PA, Carreño LJ. Natural Killer T Cell Diversity and Immunotherapy. Cancers (Basel) 2023; 15:5737. [PMID: 38136283 PMCID: PMC10742272 DOI: 10.3390/cancers15245737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Invariant natural killer T cells (iNKTs), a type of unconventional T cells, share features with NK cells and have an invariant T cell receptor (TCR), which recognizes lipid antigens loaded on CD1d molecules, a major histocompatibility complex class I (MHC-I)-like protein. This interaction produces the secretion of a wide array of cytokines by these cells, including interferon gamma (IFN-γ) and interleukin 4 (IL-4), allowing iNKTs to link innate with adaptive responses. Interestingly, molecules that bind CD1d have been identified that enable the modulation of these cells, highlighting their potential pro-inflammatory and immunosuppressive capacities, as required in different clinical settings. In this review, we summarize key features of iNKTs and current understandings of modulatory α-galactosylceramide (α-GalCer) variants, a model iNKT cell activator that can shift the outcome of adaptive immune responses. Furthermore, we discuss advances in the development of strategies that modulate these cells to target pathologies that are considerable healthcare burdens. Finally, we recapitulate findings supporting a role for iNKTs in infectious diseases and tumor immunotherapy.
Collapse
Affiliation(s)
- Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Ignacio A. Pasten-Ferrada
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Daniel A. Cornejo
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
5
|
Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol 2023; 14:1260859. [PMID: 37965344 PMCID: PMC10641450 DOI: 10.3389/fimmu.2023.1260859] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, claiming the lives of up to 1.5 million individuals annually. TB is caused by the human pathogen Mycobacterium tuberculosis (Mtb), which primarily infects innate immune cells in the lungs. These immune cells play a critical role in the host defense against Mtb infection, influencing the inflammatory environment in the lungs, and facilitating the development of adaptive immunity. However, Mtb exploits and manipulates innate immune cells, using them as favorable niche for replication. Unfortunately, our understanding of the early interactions between Mtb and innate effector cells remains limited. This review underscores the interactions between Mtb and various innate immune cells, such as macrophages, dendritic cells, granulocytes, NK cells, innate lymphocytes-iNKT and ILCs. In addition, the contribution of alveolar epithelial cell and endothelial cells that constitutes the mucosal barrier in TB immunity will be discussed. Gaining insights into the early cellular basis of immune reactions to Mtb infection is crucial for our understanding of Mtb resistance and disease tolerance mechanisms. We argue that a better understanding of the early host-pathogen interactions could inform on future vaccination approaches and devise intervention strategies.
Collapse
Affiliation(s)
| | - Bibhuti Bhusan Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
6
|
Jeong D, Woo YD, Chung DH. Invariant natural killer T cells in lung diseases. Exp Mol Med 2023; 55:1885-1894. [PMID: 37696892 PMCID: PMC10545712 DOI: 10.1038/s12276-023-01024-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/12/2023] [Indexed: 09/13/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of T cells that are characterized by a restricted T-cell receptor (TCR) repertoire and a unique ability to recognize glycolipid antigens. These cells are found in all tissues, and evidence to date suggests that they play many immunological roles in both homeostasis and inflammatory conditions. The latter include lung inflammatory diseases such as asthma and infections: the roles of lung-resident iNKT cells in these diseases have been extensively researched. Here, we provide insights into the biology of iNKT cells in health and disease, with a particular focus on the role of pulmonary iNKT cells in airway inflammation and other lung diseases.
Collapse
Affiliation(s)
- Dongjin Jeong
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yeon Duk Woo
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
8
|
High Dimensionality Reduction and Immune Phenotyping of Natural Killer and Invariant Natural Killer Cells in Latent Tuberculosis-Diabetes Comorbidity. J Immunol Res 2022; 2022:2422790. [PMID: 35242883 PMCID: PMC8886750 DOI: 10.1155/2022/2422790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Natural killer (NK) and invariant NKT (iNKT) cells are unique innate lymphocytes that coordinate diverse immune responses and display antimycobacterial potential. However, the role of NK and iNKT cells expressing cytokines, cytotoxic, and immune markers in latent tuberculosis (LTB), diabetes mellitus (DM), or preDM (PDM) and nonDM (NDM) comorbidities is not known. Thus, we have studied the unstimulated (UNS), Mycobacterium tuberculosis (Mtb [PPD, WCL]), and mitogen (P/I)-stimulated NK and iNKT cells expressing Type 1 (IFNγ, TNFα, and IL-2), Type 17 (IL-17A, IL-17F, and IL-22) cytokines, cytotoxic (perforin, granzyme B, and granulysin) and immune (GMCSF, PD-1, and CD69) markers in LTB comorbidities by dimensionality reduction and flow cytometry. Our results suggest that LTB DM and PDM individuals express diverse NK and iNKT cell immune clusters compared to LTB NDM individuals. In UNS condition, frequencies of NK and iNKT cells expressing markers are not significantly different. After Mtb antigen stimulation, NK cell expressing [Type 1 (IFNγ, TNFα, and IL-2), GMCSF in PPD and IFNγ in WCL), Type 17 [(IL-17A), PD-1 in PPD), (IL-17A, IL-17F, and IL-22), PD-1 in WCL], and cytotoxic (perforin, granzyme B in PPD, and WCL)] marker frequencies were significantly reduced in LTB DM and/or PDM individuals compared to LTB NDM individuals. Similarly, iNKT cells expressing [Type 1 (IFNγ, IL-2), GMCSF in PPD), TNFα, GMCSF in WCL), Type 17 (IL-17A), PD-1 in PPD, IL-17F in WCL) cytokines were increased and cytotoxic or immune (perforin, granzyme B, granulysin), CD69 in PPD, perforin and CD69 in WCL] marker frequencies were significantly diminished in LTB DM and/or PDM compared to LTB NDM individuals. Finally, NK and iNKT cell frequencies did not exhibit significant differences upon positive control antigen stimulation between the study population. Therefore, altered NK cell and iNKT cells expressing cytokines, cytotoxic, and immune markers are characteristic features in LTB PDM/DM comorbidities.
Collapse
|
9
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Walker NF, Opondo C, Meintjes G, Jhilmeet N, Friedland JS, Elkington PT, Wilkinson RJ, Wilkinson KA. Invariant Natural Killer T-cell Dynamics in Human Immunodeficiency Virus-associated Tuberculosis. Clin Infect Dis 2021; 70:1865-1874. [PMID: 31190065 PMCID: PMC7156773 DOI: 10.1093/cid/ciz501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023] Open
Abstract
Background Tuberculosis (TB) is the leading cause of mortality and morbidity in people living with human immunodeficiency virus (HIV) infection (PLWH). PLWH with TB disease are at risk of the paradoxical TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) when they commence antiretroviral therapy. However, the pathophysiology is incompletely understood and specific therapy is lacking. We investigated the hypothesis that invariant natural killer T (iNKT) cells contribute to innate immune dysfunction associated with TB-IRIS. Methods In a cross-sectional study of 101 PLWH and HIV-uninfected South African patients with active TB and controls, iNKT cells were enumerated using α-galactosylceramide-loaded CD1d tetramers and subsequently functionally characterized by flow cytometry. In a second study of 49 people with HIV type 1 (HIV-1) and active TB commencing antiretroviral therapy, iNKT cells in TB-IRIS patients and non-IRIS controls were compared longitudinally. Results Circulating iNKT cells were reduced in HIV-1 infection, most significantly the CD4+ subset, which was inversely associated with HIV-1 viral load. iNKT cells in HIV-associated TB had increased surface CD107a expression, indicating cytotoxic degranulation. Relatively increased iNKT cell frequency in patients with HIV-1 infection and active TB was associated with development of TB-IRIS following antiretroviral therapy initiation. iNKT cells in TB-IRIS were CD4+CD8– subset depleted and degranulated around the time of TB-IRIS onset. Conclusions Reduced iNKT cell CD4+ subsets as a result of HIV-1 infection may skew iNKT cell functionality toward cytotoxicity. Increased CD4– cytotoxic iNKT cells may contribute to immunopathology in TB-IRIS.
Collapse
Affiliation(s)
- Naomi F Walker
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa.,Infectious Diseases and Immunity, and Imperial College Wellcome Trust Centre for Global Health, Imperial College London, United Kingdom.,Department of Medicine, University of Cape Town, Observatory, South Africa.,Tuberculosis Centre and Department of Clinical Research
| | - Charles Opondo
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa.,Department of Medicine, University of Cape Town, Observatory, South Africa
| | - Nishtha Jhilmeet
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Jon S Friedland
- Institute of Infection and Immunity, St George's, University of London
| | - Paul T Elkington
- Infectious Diseases and Immunity, and Imperial College Wellcome Trust Centre for Global Health, Imperial College London, United Kingdom.,National Institute for Health Research Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa.,Department of Medicine, University of Cape Town, Observatory, South Africa.,Francis Crick Institute, London.,Department of Medicine, Imperial College London, United Kingdom
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa.,Department of Medicine, University of Cape Town, Observatory, South Africa.,Francis Crick Institute, London
| |
Collapse
|
11
|
La Manna MP, Orlando V, Tamburini B, Badami GD, Dieli F, Caccamo N. Harnessing Unconventional T Cells for Immunotherapy of Tuberculosis. Front Immunol 2020; 11:2107. [PMID: 33013888 PMCID: PMC7497315 DOI: 10.3389/fimmu.2020.02107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Even if the incidence of tuberculosis (TB) has been decreasing over the last years, the number of patients with TB is increasing worldwide. The emergence of multidrug-resistant and extensively drug-resistant TB is making control of TB more difficult. Mycobacterium bovis bacillus Calmette–Guérin vaccine fails to prevent pulmonary TB in adults, and there is an urgent need for a vaccine that is also effective in patients with human immunodeficiency virus (HIV) coinfection. Therefore, TB control may benefit on novel therapeutic options beyond antimicrobial treatment. Host-directed immunotherapies could offer therapeutic strategies for patients with drug-resistant TB or with HIV and TB coinfection. In the last years, the use of donor lymphocytes after hematopoietic stem cell transplantation has emerged as a new strategy in the cure of hematologic malignancies in order to induce graft-versus leukemia and graft-versus-infection effects. Moreover, adoptive therapy has proven to be effective in controlling cytomegalovirus and Epstein-Barr virus reactivation in immunocompromised patients with ex vivo expanded viral antigen-specific T cells. Unconventional T cells are a heterogeneous group of T lymphocytes with limited diversity. One of their characteristics is that antigen recognition is not restricted by the classical major histocompatibility complex (MHC). They include CD1 (cluster of differentiation 1)–restricted T cells, MHC-related protein-1–restricted mucosal-associated invariant T (MAIT) cells, MHC class Ib–reactive T cells, and γδ T cells. Because these T cells are genotype-independent, they are also termed “donor unrestricted” T cells. The combined features of low donor diversity and the lack of genetic restriction make these cells suitable candidates for T cell–based immunotherapy of TB.
Collapse
Affiliation(s)
- Marco P La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giusto D Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW To analyze the possible role that the 'unconventional' T-cell populations mucosal-associated invariant T cell (MAIT) and iNKT cells play during HIV infection and following antiretroviral therapy (ART) treatment. RECENT FINDINGS A substantial body of evidence now demonstrates that both MAIT and iNKT cells are depleted in blood during HIV infection. The depletion and dysfunction of MAIT and iNKT cells are only partially restored by suppressive ART, potentially contributing to HIV-related comorbidities. SUMMARY The deficiency and dysfunction of MAIT and iNKT T-cell subsets likely impact on immunity to important coinfections including Mycobacterium tuberculosis. This underscores the importance of research on restoring these unconventional T cells during HIV infection. Future studies in this field should address the challenge of studying tissue-resident cells, particularly in the gut, and better defining the determinants of MAIT/iNKT cell dysfunction. Such studies could have a significant impact on improving the immune function of HIV-infected individuals.
Collapse
|
13
|
Lopez K, Iwany SK, Suliman S, Reijneveld JF, Ocampo TA, Jimenez J, Calderon R, Lecca L, Murray MB, Moody DB, Van Rhijn I. CD1b Tetramers Broadly Detect T Cells That Correlate With Mycobacterial Exposure but Not Tuberculosis Disease State. Front Immunol 2020; 11:199. [PMID: 32117314 PMCID: PMC7033476 DOI: 10.3389/fimmu.2020.00199] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022] Open
Abstract
The non-polymorphic nature of CD1 proteins creates a situation in which T cells with invariant T cell receptors (TCRs), like CD1d-specific NKT cells, are present in all humans. CD1b is an abundant protein on human dendritic cells that presents M. tuberculosis (Mtb) lipid antigens to T cells. Analysis of T cell clones suggested that semi-invariant TCRs exist in the CD1b system, but their prevalence in humans is not known. Here we used CD1b tetramers loaded with mycolic acid or glucose monomycolate to study polyclonal T cells from 150 Peruvian subjects. We found that CD1b tetramers loaded with mycolic acid or glucose monomycolate antigens stained TRAV1-2+ GEM T cells or TRBV4-1+ LDN5-like T cells in the majority of subjects tested, at rates ~10-fold lower than NKT cells. Thus, GEM T cells and LDN5-like T cells are a normal part of the human immune system. Unlike prior studies measuring MHC- or CD1b-mediated activation, this large-scale tetramer study found no significant differences in rates of CD1b tetramer-mycobacterial lipid staining of T cells among subjects with Mtb exposure, latent Mtb infection or active tuberculosis (TB) disease. In all subjects, including “uninfected” subjects, CD1b tetramer+ T cells expressed memory markers at high levels. However, among controls with lower mycobacterial antigen exposure in Boston, we found significantly lower frequencies of T cells staining with CD1b tetramers loaded with mycobacterial lipids. These data link CD1b-specific T cell detection to mycobacterial exposure, but not TB disease status, which potentially explains differences in outcomes among CD1-based clinical studies, which used control subjects with low Mtb exposure.
Collapse
Affiliation(s)
- Kattya Lopez
- Socios En Salud, Lima, Peru.,Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sarah K Iwany
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sara Suliman
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Tonatiuh A Ocampo
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Megan B Murray
- Division of Global Health Equity, Department of Global Health and Social Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
Pean P, Nouhin J, Ratana M, Madec Y, Borand L, Marcy O, Laureillard D, Fernandez M, Barré-Sinoussi F, Weiss L, Scott-Algara D. High Activation of γδ T Cells and the γδ2 pos T-Cell Subset Is Associated With the Onset of Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome, ANRS 12153 CAPRI NK. Front Immunol 2019; 10:2018. [PMID: 31507608 PMCID: PMC6718564 DOI: 10.3389/fimmu.2019.02018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Human Immunodeficiency Virus 1 (HIV-1) and Mycobacterium Tuberculosis (Mtb) co-infected patients are commonly at risk of immune reconstitution inflammatory syndrome (IRIS) when initiating antiretroviral treatment (ART). Evidence indicates that innate immunity plays a role in TB-IRIS. Here, we evaluate the phenotype of Gamma-delta (γδ) T cells and invariant Natural Killer (iNK) T cells in tuberculosis-associated IRIS. Methods: Forty-eight HIV+/TB+ patients (21 IRIS) and three control groups: HIV–/TB– (HD, n = 11), HIV+/TB– (n = 26), and HIV–/TB+ (n = 22) were studied. Samples were taken at ART initiation (week 2 of anti-tuberculosis treatment) and at the diagnosis of IRIS for HIV+/TB+; before ART for HIV+/TB-, and at week 2 of anti-tuberculosis treatment for HIV–/TB+ patients. γδ T cells and Invariant natural killer T (iNKT) cells were analyzed by flow cytometry. Results: Before ART, IRIS, and non-IRIS patients showed a similar proportion of γδpos T and iNKT cells. HLA-DR on γδpos T cells and δ2posγδpos T cells was significantly higher in TB-IRIS vs. non-IRIS patients and controls (p < 0.0001). NKG2D expression on γδpos T cells and the δ2posγδpos T cell subset was lower in HIV+/TB+ patients than controls. CD158a expression on γδpos T cells was higher in TB-IRIS than non-IRIS (p = 0.02), HIV+/TB–, and HIV–/TB- patients. Conclusion: The higher activation of γδposT cells and the γδ2posγδpos T cell subset suggests that γδ T cells may play a role in the pathogenesis of TB-IRIS.
Collapse
Affiliation(s)
- Polidy Pean
- Immunology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Janin Nouhin
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Meng Ratana
- Immunology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Yoann Madec
- Unité d'Épidémiologie des Maladies Émergentes, Institut Pasteur, Paris, France
| | - Laurence Borand
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Olivier Marcy
- Bordeaux Population Health, Centre Inserm U1219, Université de Bordeaux, Bordeaux, France
| | - Didier Laureillard
- Department of Infectious and Tropical Diseases, University hospital, Nîmes, France
| | | | | | - Laurence Weiss
- Hôpital Européen Georges Pompidou, Service d'Immunologie Clinique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
15
|
Giacoia-Gripp CBW, Cazote ADS, da Silva TP, Sant'Anna FM, Schmaltz CAS, Brum TDS, de Matos JA, Silva J, Benjamin A, Pilotto JH, Rolla VC, Morgado MG, Scott-Algara D. Changes in the NK Cell Repertoire Related to Initiation of TB Treatment and Onset of Immune Reconstitution Inflammatory Syndrome in TB/HIV Co-infected Patients in Rio de Janeiro, Brazil-ANRS 12274. Front Immunol 2019; 10:1800. [PMID: 31456797 PMCID: PMC6700218 DOI: 10.3389/fimmu.2019.01800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is the most common comorbidity and the leading cause of death among HIV-infected individuals. Although the combined antiretroviral therapy (cART) during TB treatment improves the survival of TB/HIV patients, the occurrence of immune reconstitution inflammatory syndrome (IRIS) in some patients poses clinical and scientific challenges. This work aimed to evaluate blood innate lymphocytes during therapeutic intervention for both diseases and their implications for the onset of IRIS. Natural killer (NK) cells, invariant NKT cells (iNKT), γδ T cell subsets, and in vitro NK functional activity were characterized by multiparametric flow cytometry in the following groups: 33 TB/HIV patients (four with paradoxical IRIS), 27 TB and 25 HIV mono-infected subjects (prior to initiation of TB treatment and/or cART and during clinical follow-up to 24 weeks), and 25 healthy controls (HC). Concerning the NK cell repertoire, several activation and inhibitory receptors were skewed in the TB/HIV patients compared to those in the other groups, especially the HCs. Significantly higher expression of CD158a (p = 0.025), NKp80 (p = 0.033), and NKG2C (p = 0.0076) receptors was detected in the TB/HIV IRIS patients than in the non-IRIS patients. Although more NK degranulation was observed in the TB/HIV patients than in the other groups, the therapeutic intervention did not alter the frequency during follow-up (weeks 2-24). A higher frequency of the γδ T cell population was observed in the TB/HIV patients with inversion of the Vδ2+/Vδ2- ratio, especially for those presenting pulmonary TB, suggesting an expansion of particular γδ T subsets during TB/HIV co-infection. In conclusion, HIV infection impacts the frequency of circulating NK cells and γδ T cell subsets in TB/HIV patients. Important modifications of the NK cell repertoire were observed after anti-TB treatment (week 2) but not during the cART/TB follow-up (weeks 6-24). An increase of CD161+ NK cells was related to an unfavorable outcome. Despite the low number of cases, a more preserved NK cell profile was detected in IRIS patients previous to treatment, suggesting a role for these cells in IRIS onset. Longitudinal evaluation of the NK repertoire showed the impact of TB treatment and implicated these cells in TB pathogenesis in TB/HIV co-infected patients.
Collapse
Affiliation(s)
| | - Andressa da Silva Cazote
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tatiana Pereira da Silva
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
| | - Flávia Marinho Sant'Anna
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carolina Arana Stanis Schmaltz
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tania de Souza Brum
- HIV Clinical Research Center, Nova Iguaçu General Hospital (HGNI), Rio de Janeiro, Brazil
| | - Juliana Arruda de Matos
- Clinical Research Laboratory on Health Surveillance and Immunization, National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Júlio Silva
- Platform for Clinical Research, National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Aline Benjamin
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - José Henrique Pilotto
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil.,HIV Clinical Research Center, Nova Iguaçu General Hospital (HGNI), Rio de Janeiro, Brazil
| | - Valeria Cavalcanti Rolla
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mariza Gonçalves Morgado
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
16
|
Schäfer A, Hühr J, Schwaiger T, Dorhoi A, Mettenleiter TC, Blome S, Schröder C, Blohm U. Porcine Invariant Natural Killer T Cells: Functional Profiling and Dynamics in Steady State and Viral Infections. Front Immunol 2019; 10:1380. [PMID: 31316500 PMCID: PMC6611438 DOI: 10.3389/fimmu.2019.01380] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Pigs are important livestock and comprehensive understanding of their immune responses in infections is critical to improve vaccines and therapies. Moreover, similarities between human and swine physiology suggest that pigs are a superior animal model for immunological studies. However, paucity of experimental tools for a systematic analysis of the immune responses in pigs represent a major disadvantage. To evaluate the pig as a biomedical model and additionally expand the knowledge of rare immune cell populations in swine, we established a multicolor flow cytometry analysis platform of surface marker expression and cellular responses for porcine invariant Natural Killer T cells (iNKT). In humans, iNKT cells are among the first line defenders in various tissues, respond to CD1d-restricted antigens and become rapidly activated. Naïve porcine iNKT cells were CD3+/CD4−/CD8+ or CD3+/CD4−/CD8− and displayed an effector- or memory-like phenotype (CD25+/ICOS+/CD5hi/CD45RA−/CCR7 ± /CD27+). Based on their expression of the transcription factors T bet and the iNKT cell-specific promyelocytic leukemia zinc finger protein (PLZF), porcine iNKT cells were differentiated into functional subsets. Analogous to human iNKT cells, in vitro stimulation of porcine leukocytes with the CD1d ligand α-galactosylceramide resulted in rapid iNKT cell proliferation, evidenced by an increase in frequency and Ki-67 expression. Moreover, this approach revealed CD25, CD5, ICOS, and the major histocompatibility complex class II (MHC II) as activation markers on porcine iNKT cells. Activated iNKT cells also expressed interferon-γ, upregulated perforin expression, and displayed degranulation. In steady state, iNKT cell frequency was highest in newborn piglets and decreased with age. Upon infection with two viruses of high relevance to swine and humans, iNKT cells expanded. Animals infected with African swine fever virus displayed an increase of iNKT cell frequency in peripheral blood, regional lymph nodes, and lungs. During Influenza A virus infection, iNKT cell percentage increased in blood, lung lymph nodes, and broncho-alveolar lavage. Our in-depth characterization of porcine iNKT cells contributes to a better understanding of porcine immune responses, thereby facilitating the design of innovative interventions against infectious diseases. Moreover, we provide new evidence that endorses the suitability of the pig as a biomedical model for iNKT cell research.
Collapse
Affiliation(s)
- Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jane Hühr
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Theresa Schwaiger
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
17
|
Bragina EY, Babushkina NP, Garaeva AF, Rudko AA, Tsitrikov DY, Gomboeva DE, Freidin MB. Impact of the Polymorphism of the PACRG and CD80 Genes on the Development of the Different Stages of Tuberculosis Infection. IRANIAN JOURNAL OF MEDICAL SCIENCES 2019; 44:236-244. [PMID: 31182890 PMCID: PMC6525733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Tuberculosis (TB) is one of the most significant health-care problems worldwide. The host's genetics play an important role in the development of TB in humans. The disease progresses through several stages, each of which can be under the control of different genes. The precise genes influencing the different stages of the disease are not yet identified. The aim of the current study was to determine the associations between primary and secondary TB and the polymorphisms of novel candidate genes for TB susceptibility, namely CD79A, HCST, CXCR4, CD4, CD80, CP, PACRG, and CD69. METHODS A total of 357 patients with TB (130 cases with primary TB and 227 cases with secondary TB) from the Siberian region of Russia as well as 445 healthy controls were studied. The study was performed at the Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia, between July 2015 and November 2016. Genotyping was carried out using MALDI-TOF mass spectrometry and PCR-RFLP. The associations between the single-nucleotide polymorphisms and TB were assessed using logistic regression adjusting for covariates (age and gender). Multiple testing was addressed via the experiment-wise permutation approach. The statistical significance threshold was a P value less than 0.05 for the permutation P values. The analyses were done in R 3.2 statistical software. RESULTS An association was established between the rs1880661 variant of the CD80 gene and secondary TB and the rs10945890 variant of the PACRG gene and both primary and secondary TB. However, the same allele of PACRG appeared to be both a risk factor for reactivation (secondary TB) and a protector against primary infection. CONCLUSION The results suggested that the CD80 and PACRG genes were associated with susceptibility to different forms of TB infection in the Russian population.
Collapse
|
18
|
Trottein F, Paget C. Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Front Immunol 2018; 9:1750. [PMID: 30116242 PMCID: PMC6082944 DOI: 10.3389/fimmu.2018.01750] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The immune system has been traditionally divided into two arms called innate and adaptive immunity. Typically, innate immunity refers to rapid defense mechanisms that set in motion within minutes to hours following an insult. Conversely, the adaptive immune response emerges after several days and relies on the innate immune response for its initiation and subsequent outcome. However, the recent discovery of immune cells displaying merged properties indicates that this distinction is not mutually exclusive. These populations that span the innate-adaptive border of immunity comprise, among others, CD1d-restricted natural killer T cells and MR1-restricted mucosal-associated invariant T cells. These cells have the unique ability to swiftly activate in response to non-peptidic antigens through their T cell receptor and/or to activating cytokines in order to modulate many aspects of the immune response. Despite they recirculate all through the body via the bloodstream, these cells mainly establish residency at barrier sites including lungs. Here, we discuss the current knowledge into the biology of these cells during lung (viral and bacterial) infections including activation mechanisms and functions. We also discuss future strategies targeting these cell types to optimize immune responses against respiratory pathogens.
Collapse
Affiliation(s)
- François Trottein
- Univ. Lille, U1019 – UMR 8204 – CIIL – Centre d’Infection et d’Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Paget
- Institut National de la Santé et de la Recherche Médicale U1100, Centre d’Etude des Pathologies Respiratoires (CEPR), Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
19
|
Paquin-Proulx D, Costa PR, Terrassani Silveira CG, Marmorato MP, Cerqueira NB, Sutton MS, O’Connor SL, Carvalho KI, Nixon DF, Kallas EG. Latent Mycobacterium tuberculosis Infection Is Associated With a Higher Frequency of Mucosal-Associated Invariant T and Invariant Natural Killer T Cells. Front Immunol 2018; 9:1394. [PMID: 29971068 PMCID: PMC6018487 DOI: 10.3389/fimmu.2018.01394] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022] Open
Abstract
Increasing drug resistance and the lack of an effective vaccine are the main factors contributing to Mycobacterium tuberculosis (Mtb) being a major cause of death globally. Despite intensive research efforts, it is not well understood why some individuals control Mtb infection and some others develop active disease. HIV-1 infection is associated with an increased incidence of active tuberculosis, even in virally suppressed individuals. Mucosal-associated invariant T (MAIT) and invariant natural killer T (iNKT) cells are innate T cells that can recognize Mtb-infected cells. Contradicting results regarding the frequency of MAIT cells in latent Mtb infection have been reported. In this confirmatory study, we investigated the frequency, phenotype, and IFNγ production of MAIT and iNKT cells in subjects with latent or active Mtb infection. We found that the frequency of both cell types was increased in subjects with latent Mtb infection compared with uninfected individuals or subjects with active infection. We found no change in the expression of HLA-DR, PD-1, and CCR6, as well as the production of IFNγ by MAIT and iNKT cells, among subjects with latent Mtb infection or uninfected controls. The proportion of CD4- CD8+ MAIT cells in individuals with latent Mtb infection was, however, increased. HIV-1 infection was associated with a loss of MAIT and iNKT cells, and the residual cells had elevated expression of the exhaustion marker PD-1. Altogether, the results suggest a role for MAIT and iNKT cells in immunity against Mtb and show a deleterious impact of HIV-1 infection on those cells.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| | | | | | | | | | - Matthew S. Sutton
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Karina I. Carvalho
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil
| | - Douglas F. Nixon
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Esper G. Kallas
- School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Esmail H, Riou C, Bruyn ED, Lai RPJ, Harley YXR, Meintjes G, Wilkinson KA, Wilkinson RJ. The Immune Response to Mycobacterium tuberculosis in HIV-1-Coinfected Persons. Annu Rev Immunol 2018; 36:603-638. [PMID: 29490165 DOI: 10.1146/annurev-immunol-042617-053420] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Globally, about 36.7 million people were living with HIV infection at the end of 2015. The most frequent infection co-occurring with HIV-1 is Mycobacterium tuberculosis-374,000 deaths per annum are attributable to HIV-tuberculosis, 75% of those occurring in Africa. HIV-1 infection increases the risk of tuberculosis by a factor of up to 26 and alters its clinical presentation, complicates diagnosis and treatment, and worsens outcome. Although HIV-1-induced depletion of CD4+ T cells underlies all these effects, more widespread immune deficits also contribute to susceptibility and pathogenesis. These defects present a challenge to understand and ameliorate, but also an opportunity to learn and optimize mechanisms that normally protect people against tuberculosis. The most effective means to prevent and ameliorate tuberculosis in HIV-1-infected people is antiretroviral therapy, but this may be complicated by pathological immune deterioration that in turn requires more effective host-directed anti-inflammatory therapies to be derived.
Collapse
Affiliation(s)
- Hanif Esmail
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,Department of Medicine, Imperial College London, London W2 1PG, United Kingdom.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Catherine Riou
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Elsa du Bruyn
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | | | - Yolande X R Harley
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa;
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,The Francis Crick Institute, London NW1 2AT, United Kingdom
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town 7925, Republic of South Africa; .,Department of Medicine, Imperial College London, London W2 1PG, United Kingdom.,The Francis Crick Institute, London NW1 2AT, United Kingdom
| |
Collapse
|
21
|
Chancellor A, White A, Tocheva AS, Fenn JR, Dennis M, Tezera L, Singhania A, Elliott T, Tebruegge M, Elkington P, Gadola S, Sharpe S, Mansour S. Quantitative and qualitative iNKT repertoire associations with disease susceptibility and outcome in macaque tuberculosis infection. Tuberculosis (Edinb) 2017; 105:86-95. [PMID: 28610792 PMCID: PMC6168056 DOI: 10.1016/j.tube.2017.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022]
Abstract
Correlates of immune protection that reliably predict vaccine efficacy against Mycobacterium tuberculosis (Mtb) infection are urgently needed. Invariant NKT cells (iNKTs) are CD1d-dependent innate T cells that augment host antimicrobial immunity through production of cytokines, including interferon (IFN)-γ and tumour necrosis factor (TNF)-α. We determined peripheral blood iNKT numbers, their proliferative responses and iNKT subset proportions after in vitro antigen expansion by α-galactosylceramide (αGC) in a large cohort of mycobacteria-naïve non-human primates, and macaques from Bacillus Calmette-Guerin (BCG) vaccine and Mtb challenge studies. Animals studied included four genetically distinct groups of macaques within cynomolgus and rhesus species that differ in their susceptibility to Mtb infection. We demonstrate significant differences in ex vivo iNKT frequency between groups, which trends towards an association with susceptibility to Mtb, but no significant difference in overall iNKT proliferative responses. Susceptible animals exhibited a skewed CD4+/CD8+ iNKT subset ratio in comparison to more Mtb-resistant groups. Correlation of iNKT subsets post BCG vaccination with clinical disease manifestations following Mtb challenge in the Chinese cynomolgus and Indian rhesus macaques identified a consistent trend linking increased CD8+ iNKTs with favourable disease outcome. Finally, a similar iNKT profile was conferred by BCG vaccination in rhesus macaques. Our study provides the first detailed characterisation of iNKT cells in macaque tuberculosis infection, suggesting that iNKT repertoire differences may impact on disease outcome, which warrants further investigation.
Collapse
Affiliation(s)
- Andrew Chancellor
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Andrew White
- Public Health England, National Infections Service, Porton Down, Salisbury, United Kingdom
| | - Anna S Tocheva
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Joe R Fenn
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Mike Dennis
- Public Health England, National Infections Service, Porton Down, Salisbury, United Kingdom
| | - Liku Tezera
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Akul Singhania
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Tim Elliott
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marc Tebruegge
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Global Health Research Institute, University of Southampton, Southampton, United Kingdom; NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Paul Elkington
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Global Health Research Institute, University of Southampton, Southampton, United Kingdom; NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Stephan Gadola
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sally Sharpe
- Public Health England, National Infections Service, Porton Down, Salisbury, United Kingdom
| | - Salah Mansour
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
22
|
Bragina EY, Tiys ES, Rudko AA, Ivanisenko VA, Freidin MB. Novel tuberculosis susceptibility candidate genes revealed by the reconstruction and analysis of associative networks. INFECTION GENETICS AND EVOLUTION 2016; 46:118-123. [PMID: 27810501 DOI: 10.1016/j.meegid.2016.10.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/04/2023]
Abstract
Tuberculosis (TB) is a common infectious disease caused by M. tuberculosis. The risk of the disease is dependent on complex interactions between host genetics and environmental factors. Accumulated genomic data, along with novel methodological approaches such as associative networks, facilitate studies into the inherited basis of TB. In the current study, we carried out the reconstruction and analysis of an associative network representing molecular interactions between proteins and genes associated with TB. The network predominantly comprises of well-studied key proteins and genes which are able to govern the immune response against M. tuberculosis. However, this approach also allowed us to reveal 12 proteins encoded by genes, the polymorphisms of which have never been studied in relation to M. tuberculosis infection. These proteins include surface antigens (CD4, CD69, CD79, CD80, MUC16) and other important components of the immune response, inflammation, pathogen recognition, cell migration and activation (HCST, ADA, CP, SPP1, CXCR4, AGER, PACRG). Thus, the associative network approach enables the discovery of new candidate genes for TB susceptibility.
Collapse
Affiliation(s)
- Elena Yu Bragina
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk NRMC, Nabereznaya Ushaiki Str. 10, Tomsk 634050, Russia.
| | - Evgeny S Tiys
- Laboratory of Computer-Assisted Proteomics, The Federal Research Centre Institute of Cytology and Genetics of The Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk 630090, Russia; Laboratory of Computer Genomics, Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Alexey A Rudko
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk NRMC, Nabereznaya Ushaiki Str. 10, Tomsk 634050, Russia
| | - Vladimir A Ivanisenko
- Laboratory of Computer-Assisted Proteomics, The Federal Research Centre Institute of Cytology and Genetics of The Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk 630090, Russia
| | - Maxim B Freidin
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk NRMC, Nabereznaya Ushaiki Str. 10, Tomsk 634050, Russia
| |
Collapse
|
23
|
Kamaladasa A, Wickramasinghe N, Adikari TN, Gomes L, Shyamali NLA, Salio M, Cerundolo V, Ogg GS, Malavige GN. Expansion of highly activated invariant natural killer T cells with altered phenotype in acute dengue infection. Clin Exp Immunol 2016; 185:228-38. [PMID: 26874822 PMCID: PMC4954999 DOI: 10.1111/cei.12778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 01/05/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are capable of rapid activation and production of cytokines upon recognition of antigenic lipids presented by CD1d molecules. They have been shown to play a significant role in many viral infections and were observed to be highly activated in patients with acute dengue infection. In order to characterize further their role in dengue infection, we investigated the proportion of iNKT cells and their phenotype in adult patients with acute dengue infection. The functionality of iNKT cells in patients was investigated by both interferon (IFN)-γ and interleukin (IL)-4 ex-vivo enzyme-linked immunospot (ELISPOT) assays following stimulation with alpha-galactosyl-ceramide (αGalCer). We found that circulating iNKT cell proportions were significantly higher (P = 0·03) in patients with acute dengue when compared to healthy individuals and were predominantly of the CD4(+) subset. iNKT cells of patients with acute dengue had reduced proportions expressing CD8α and CD161 when compared to healthy individuals. The iNKT cells of patients were highly activated and iNKT activation correlated significantly with dengue virus-specific immunoglobulin (Ig)G antibody levels. iNKT cells expressing Bcl-6 (P = 0·0003) and both Bcl-6 and inducible T cell co-stimulator (ICOS) (P = 0·006) were increased significantly in patients when compared to healthy individuals. Therefore, our data suggest that in acute dengue infection there is an expansion of highly activated CD4(+) iNKT cells, with reduced expression of CD161 markers.
Collapse
Affiliation(s)
- A Kamaladasa
- Department of Microbiology, Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - N Wickramasinghe
- Department of Microbiology, Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - T N Adikari
- Department of Microbiology, Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - L Gomes
- Department of Microbiology, Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
| | - N L A Shyamali
- Department of Medicine, Faculty of Medical Sciences, University of Sri Jayawardanapura, Sri Lanka
| | - M Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - V Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - G S Ogg
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Dermatology, Churchill Hospital, Oxford, UK
| | - G Neelika Malavige
- Department of Microbiology, Centre for Dengue Research, University of Sri Jayawardanapura, Sri Lanka
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Wu C, Li Z, Fu X, Yu S, Lao S, Yang B. Antigen-specific human NKT cells from tuberculosis patients produce IL-21 to help B cells for the production of immunoglobulins. Oncotarget 2016; 6:28633-45. [PMID: 26416419 PMCID: PMC4745682 DOI: 10.18632/oncotarget.5764] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/05/2015] [Indexed: 12/25/2022] Open
Abstract
Natural killer T (NKT) cells from mouse and human play an important role in the immune responses against Mycobacterium tuberculosis. However, the function of CD3(+)TCRvβ11(+) NKT cells at the local site of M. tuberculosis infection remains poorly defined. In the present study, we found that after stimulation with M. tuberculosis antigens, NKT cells isolated from tuberculosis (TB) pleural fluid mononuclear cells (PFMCs) produced IL-21 and other cytokines including IFN-γ, TNF-α, IL-2 and IL-17. IL-21-expressing NKT cells in PFMCs displayed effector memory phenotype, expressing CD45RO(high)CD62L(low)CCR7(low). Moreover, NKT cells expressed high levels of CXCR5 and all of IL-21-expressing NKT cells co-expressed CXCR5. The frequency of BCL-6-expression was higher in IL-21-expressing but not in non-IL-21-expressing CD3(+)TCRvβ11(+) NKT cells. Sorted CD3(+)TCRvβ11(+) NKT cells from PFMCs produced IFN-γ and IL-21 after stimulation, which expressed CD40L. Importantly, CD3(+)TCRvβ11(+) NKT cells provided help to B cells for the production of IgG and IgA. Taken together, our data demonstrate that CD3(+)TCRvβ11(+) NKT cells from a local site of M. tuberculosis infection produce IL-21, express CXCR5 and CD40L, help B cells to secrete IgG and IgA, and may participate in local immune responses against M. tuberculosis infection.
Collapse
Affiliation(s)
- Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| | - Zitao Li
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoying Fu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| | - Sifei Yu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| | - Suihua Lao
- Chest Hospital of Guangzhou, Guangzhou, China
| | - Binyan Yang
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
Vaccines for TB: Lessons from the Past Translating into Future Potentials. J Immunol Res 2015; 2015:916780. [PMID: 26146643 PMCID: PMC4469767 DOI: 10.1155/2015/916780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023] Open
Abstract
Development of vaccines for infectious diseases has come a long way with recent advancements in adjuvant developments and discovery of new antigens that are capable of eliciting strong immunological responses for sterile eradication of disease. Tuberculosis (TB) that kills nearly 2 million of the population every year is also one of the highlights of the recent developments. The availability or not of diagnostic methods for infection has implications for the control of the disease by the health systems but is not related to the immune surveillance, a phenomenon derived from the interaction between the bacteria and their host. Here, we will review the immunology of TB and current vaccine candidates for TB. Current strategies of developing new vaccines against TB will also be reviewed in order to further discuss new insights into immunotherapeutic approaches involving adjuvant and antigens combinations that might be of potential for the control of TB.
Collapse
|
26
|
Invariant Natural Killer T Cells are Reduced in Hereditary Hemochromatosis Patients. J Clin Immunol 2014; 35:68-74. [DOI: 10.1007/s10875-014-0118-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/27/2014] [Indexed: 01/25/2023]
|
27
|
Principi N, Esposito S. The present and future of tuberculosis vaccinations. Tuberculosis (Edinb) 2014; 95:6-13. [PMID: 25458613 DOI: 10.1016/j.tube.2014.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022]
Abstract
The clinical, social, and economic burden of tuberculosis (TB) remains high worldwide, thereby highlighting the importance of TB prevention. The bacilli Calmette-Guérin (BCG) vaccine that is currently available can protect younger children but is less effective in adults, the major source of TB transmission. In addition, the emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains and the high prevalence of HIV infection have significantly complicated TB prognosis and treatment. Together, these data highlight the need for new and more effective vaccines. Recently, several vaccines containing multiple antigens, including some of those specific for dormant Mtb strains, have been developed. These vaccines appear to be the best approach for satisfactory Mtb prevention. However, until a new vaccine is proven more effective and safe than BCG, BCG should remain part of the immunization schedules for neonates and children at risk for TB as a fundamental prophylactic measure.
Collapse
Affiliation(s)
- Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
28
|
Mycobacterium tuberculosis-specific memory NKT cells in patients with tuberculous pleurisy. J Clin Immunol 2014; 34:979-90. [PMID: 25190196 DOI: 10.1007/s10875-014-0090-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 08/26/2014] [Indexed: 01/02/2023]
Abstract
Natural killer T (NKT) cells from mouse and human play a protective role in the immune responses against the infection of Mycobacterium tuberculosis. However, the characteristic of CD3(+)TCRvβ11(+) NKT cells at the local site of M. tuberculosis infection remains poorly defined. In the present study, we found that the numbers of CD3(+)TCRvβ11(+) NKT cells in pleural fluid mononuclear cells (PFMCs) were significantly lower than those in peripheral blood mononuclear cells (PBMCs). However, CD3(+)TCRvβ11(+) NKT cells from PFMCs spontaneously expressed high levels of CD69 and CD25 and effector memory phenotypes of CD45RO(high)CD62L(low)CCR7(low). After stimulation with the antigens of M. tuberculosis, CD3(+)TCRvβ11(+) NKT cells from PFMCs produced high levels of IFN-γ. Sorted CD3(+)TCRvβ11(+) NKT cells from PFMCs cultured with antigen presenting cells (APCs) produced IFN-γ protein and mRNA. The production of IFN-γ could be completely inhibited by AG490 and Wortmannin. In addition, CD3(+)TCRvβ11(+) NKT cells from PFMCs expressed higher levels of Fas (CD95), FasL (CD178) and perforin but lower levels of granzyme B compared with those from PBMCs. Taken together, our data demonstrated for the first time that M. tuberculosis-specific CD3(+)TCRvβ11(+) NKT cells participated in the local immune responses against M. tuberculosis through the production of IFN-γ and the secretion of cytolytic molecules.
Collapse
|
29
|
De Libero G, Singhal A, Lepore M, Mori L. Nonclassical T cells and their antigens in tuberculosis. Cold Spring Harb Perspect Med 2014; 4:a018473. [PMID: 25059739 DOI: 10.1101/cshperspect.a018473] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
T cells that recognize nonpeptidic antigens, and thereby are identified as nonclassical, represent important yet poorly characterized effectors of the immune response. They are present in large numbers in circulating blood and tissues and are as abundant as T cells recognizing peptide antigens. Nonclassical T cells exert multiple functions including immunoregulation, tumor control, and protection against infections. They recognize complexes of nonpeptidic antigens such as lipid and glycolipid molecules, vitamin B2 precursors, and phosphorylated metabolites of the mevalonate pathway. Each of these antigens is presented by antigen-presenting molecules other than major histocompatibility complex (MHC), including CD1, MHC class I-related molecule 1 (MR1), and butyrophilin 3A1 (BTN3A1) molecules. Here, we discuss how nonclassical T cells participate in the recognition of mycobacterial antigens and in the mycobacterial-specific immune response.
Collapse
Affiliation(s)
- Gennaro De Libero
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), 138648 Singapore Experimental Immunology, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Amit Singhal
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), 138648 Singapore
| | - Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Lucia Mori
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), 138648 Singapore Experimental Immunology, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
30
|
Shekhar S, Joyee AG, Yang X. Invariant natural killer T cells: boon or bane in immunity to intracellular bacterial infections? J Innate Immun 2014; 6:575-84. [PMID: 24903638 DOI: 10.1159/000361048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
Invariant natural killer T (iNKT) cells represent a specialized subset of innate lymphocytes that recognize lipid and glycolipid antigens presented to them by nonclassical MHC-I CD1d molecules and are able to rapidly secrete copious amounts of a variety of cytokines. iNKT cells possess the ability to modulate innate as well as adaptive immune responses against various pathogens. Intracellular bacteria are one of the most clinically significant human pathogens that effectively evade the immune system and cause a myriad of diseases of public health concern globally. Emerging evidence suggests that iNKT cells can confer immunity to intracellular bacteria but also inflict pathology in certain cases. We summarize the current knowledge on the contribution of iNKT cells in the host defense against intracellular bacterial infections, with a focus on the underlying mechanisms by which these cells induce protective or pathogenic reactions including the pathways of direct action (acting on infected cells) and indirect action (modulating dendritic, NK and T cells). The rational exploitation of iNKT cells for prophylactic and therapeutic purposes awaits a profound understanding of their functional biology.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Laboratory for Infection and Immunity, Department of Medical Microbiology, University of Manitoba, Winnipeg, Man., Canada
| | | | | |
Collapse
|
31
|
De Libero G, Mori L. The T-Cell Response to Lipid Antigens of Mycobacterium tuberculosis. Front Immunol 2014; 5:219. [PMID: 24904574 PMCID: PMC4033098 DOI: 10.3389/fimmu.2014.00219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 11/13/2022] Open
Abstract
T-cells recognize lipid antigens presented by dedicated antigen-presenting molecules that belong to the CD1 family. This review discusses the structural properties of CD1 molecules, the nature of mycobacterial lipid antigens, and the phenotypic and functional properties of T-cells recognizing mycobacterial lipids. In humans, the five CD1 genes encode structurally similar glycoproteins that recycle in and thus survey different cellular endosomal compartments. The structure of the CD1-lipid-binding pockets, their mode of intracellular recycling and the type of CD1-expressing antigen-presenting cells all contribute to diversify lipid immunogenicity and presentation to T-cells. Mycobacteria produce a large variety of lipids, which form stable complexes with CD1 molecules and stimulate specific T-cells. The structures of antigenic lipids may be greatly different from each other and each lipid may induce unique T-cells capable of discriminating small lipid structural changes. The important functions of some lipid antigens within mycobacterial cells prevent the generation of negative mutants capable of escaping this type of immune response. T-cells specific for lipid antigens are stimulated in tuberculosis and exert protective functions. The mechanisms of antigen recognition, the type of effector functions and the mode of lipid-specific T-cell priming are discussed, emphasizing recent evidence of the roles of lipid-specific T-cells in tuberculosis.
Collapse
Affiliation(s)
- Gennaro De Libero
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore ; Experimental Immunology, Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| | - Lucia Mori
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| |
Collapse
|
32
|
Fernandez CS, Kelleher AD, Finlayson R, Godfrey DI, Kent SJ. NKT cell depletion in humans during early HIV infection. Immunol Cell Biol 2014; 92:578-90. [PMID: 24777308 DOI: 10.1038/icb.2014.25] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/06/2014] [Accepted: 03/08/2014] [Indexed: 12/19/2022]
Abstract
Natural killer T (NKT) cells bridge across innate and adaptive immune responses and have an important role in chronic viral infections such as human immunodeficiency virus (HIV). NKT cells are depleted during chronic HIV infection, but the timing, drivers and implications of this NKT cell depletion are poorly understood. We studied human peripheral blood NKT cell levels, phenotype and function in 31 HIV-infected subjects not on antiretroviral treatment from a mean of 4 months to 2 years after HIV infection. We found that peripheral CD4(+) NKT cells were substantially depleted and dysfunctional by 4 months after HIV infection. The depletion of CD4(+) NKT cells was more marked than the depletion of total CD4(+) T cells. Further, the early depletion of NKT cells correlated with CD4(+) T-cell decline, but not HIV viral levels. Levels of activated CD4(+) T cells correlated with the loss of NKT cells. Our studies suggest that the early loss of NKT cells is associated with subsequent immune destruction during HIV infection.
Collapse
Affiliation(s)
- Caroline S Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony D Kelleher
- 1] Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia [2] St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Robert Finlayson
- Taylor Square Private Clinic, Darlinghurst, New South Wales, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Interleukins 15 and 12 in combination expand the selective loss of natural killer T cells in HIV infection in vitro. Clin Exp Med 2014; 15:205-13. [PMID: 24748538 DOI: 10.1007/s10238-014-0278-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/10/2014] [Indexed: 12/20/2022]
Abstract
The present study evaluated the frequency and receptor expression pattern of invariant natural killer T (iNKT) cells in human immunodeficiency virus (HIV)-infected individuals. Further, the effect of IL-15 + IL-12 stimulation on iNKT cells was also assessed. The study included 15 individuals each from normal healthy subjects, pulmonary tuberculosis patients, HIV-infected individuals, and patients with HIV and tuberculosis coinfection (HIV-TB). The frequency of iNKT cells and the expression of phenotype, cytotoxic and chemokine receptors were studied by flow cytometry. The number of iNKT cells was significantly depleted in HIV and HIV-TB patients, which upon IL-15 + IL-12 stimulation expanded in HIV. The constitutively expressed natural cytotoxicity receptor, NKp46 was increased in HIV and HIV-TB, which might be the host's response to HIV replication. The distinct expression patterns of chemokine and adhesion receptors suggest that iNKT subsets might traffic to different microenvironment and tissues. High expression of chemokine receptor CCR5 by most iNKT cells suggests that these cells might be more favorable targets of HIV infection. Our results show that IL-15 and IL-12 combination has the ability to expand the selective depletion of iNKT cells in vitro in HIV-infected individuals, but of limited value when coinfected with TB.
Collapse
|
34
|
Abstract
Clinical trials of vaccines against Mycobacterium tuberculosis are well under way and results are starting to come in. Some of these results are not so encouraging, as exemplified by the latest Aeras-422 and MVA85A trials. Other than empirically determining whether a vaccine reduces the number of cases of active tuberculosis, which is a daunting prospect given the chronic nature of the disease, we have no way of assessing vaccine efficacy. Therefore, investigators seek to identify biomarkers that predict vaccine efficacy. Historically, focus has been on the production of interferon-γ by CD4(+) T cells, but this has not been a useful correlate of vaccine-induced protection. In this Opinion article, we discuss recent advances in our understanding of the immune control of M. tuberculosis and how this knowledge could be used for vaccine design and evaluation.
Collapse
|
35
|
Rothchild AC, Jayaraman P, Nunes-Alves C, Behar SM. iNKT cell production of GM-CSF controls Mycobacterium tuberculosis. PLoS Pathog 2014; 10:e1003805. [PMID: 24391492 PMCID: PMC3879349 DOI: 10.1371/journal.ppat.1003805] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/15/2013] [Indexed: 02/08/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are activated during infection, but how they limit microbial growth is unknown in most cases. We investigated how iNKT cells suppress intracellular Mycobacterium tuberculosis (Mtb) replication. When co-cultured with infected macrophages, iNKT cell activation, as measured by CD25 upregulation and IFNγ production, was primarily driven by IL-12 and IL-18. In contrast, iNKT cell control of Mtb growth was CD1d-dependent, and did not require IL-12, IL-18, or IFNγ. This demonstrated that conventional activation markers did not correlate with iNKT cell effector function during Mtb infection. iNKT cell control of Mtb replication was also independent of TNF and cell-mediated cytotoxicity. By dissociating cytokine-driven activation and CD1d-restricted effector function, we uncovered a novel mediator of iNKT cell antimicrobial activity: GM-CSF. iNKT cells produced GM-CSF in vitro and in vivo in a CD1d-dependent manner during Mtb infection, and GM-CSF was both necessary and sufficient to control Mtb growth. Here, we have identified GM-CSF production as a novel iNKT cell antimicrobial effector function and uncovered a potential role for GM-CSF in T cell immunity against Mtb. Mycobacterium tuberculosis (Mtb) is the cause of tuberculosis, a leading cause of sickness and death worldwide. Although much is known about CD4+ and CD8+ T cell responses to Mtb, the role of other T cell subsets is poorly understood. Invariant natural killer T (iNKT) cells are innate lymphocytes that express a semi-invariant T cell receptor and recognize lipid antigens presented by CD1d. Although iNKT cells participate in the immune response to many different pathogens, little is known about how iNKT cells directly kill microbes. We previously showed that when co-cultured with Mtb-infected macrophages, iNKT cells inhibit intracellular Mtb replication. Now, we used this model to dissociate the signals that induce iNKT cell activation markers including IFNγ production, from the signals that activate iNKT cell antimicrobial activity. This allowed us to uncover a novel antimicrobial effector function produced by iNKT cells: GM-CSF. GM-CSF is essential for immunity to Mtb, but its role has never been defined. This study is the first report to demonstrate a protective function of GM-CSF production by any T cell subset during Mtb infection. T cell production of GM-CSF should be considered as a potential mechanism of antimicrobial immunity.
Collapse
Affiliation(s)
- Alissa C. Rothchild
- Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Pushpa Jayaraman
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Cláudio Nunes-Alves
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Paget C, Trottein F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 2013; 6:1054-67. [PMID: 24104457 DOI: 10.1038/mi.2013.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Mucosal sites are populated by a multitude of innate lymphoid cells and "innate-like" T lymphocytes expressing semiconserved T-cell receptors. Among the latter group, interest in type I natural killer T (NKT) cells has gained considerable momentum over the last decade. Exposure to NKT cell antigens is likely to occur continuously at mucosal sites. For this reason, and as they rapidly respond to stress-induced environmental cytokines, NKT cells are important contributors to immune and inflammatory responses. Here, we review the dual role of mucosal NKT cells during immune responses and pathologies with a particular focus on the lungs. Their role during pulmonary acute and chronic inflammation and respiratory infections is outlined. Whether NKT cells might provide a future attractive therapeutic target for treating human respiratory diseases is discussed.
Collapse
Affiliation(s)
- C Paget
- 1] Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France [4] Institut National de la Santé et de la Recherche Médicale, Lille, France [5] Centre National de la Recherche Scientifique, UMR 8204, Lille, France [6] Université Lille Nord de France, Lille, France [7] Institut Fédératif de Recherche 142, Lille, France
| | | |
Collapse
|
37
|
Ibarrondo FJ, Yang OO, Chodon T, Avramis E, Lee Y, Sazegar H, Jalil J, Chmielowski B, Koya RC, Schmid I, Gomez-Navarro J, Jamieson BD, Ribas A, Comin-Anduix B. Natural killer T cells in advanced melanoma patients treated with tremelimumab. PLoS One 2013; 8:e76829. [PMID: 24167550 PMCID: PMC3805549 DOI: 10.1371/journal.pone.0076829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/28/2013] [Indexed: 01/22/2023] Open
Abstract
A significant barrier to effective immune clearance of cancer is loss of antitumor cytotoxic T cell activity. Antibodies to block pro-apoptotic/downmodulatory signals to T cells are currently being tested. Because invariant natural killer T cells (iNKT) can regulate the balance of Th1/Th2 cellular immune responses, we characterized the frequencies of circulating iNKT cell subsets in 21 patients with melanoma who received the anti-CTLA4 monoclonal antibody tremelimumab alone and 8 patients who received the antibody in combination with MART-126–35 peptide-pulsed dendritic cells (MART-1/DC). Blood T cell phenotypes and functionality were characterized by flow cytometry before and after treatment. iNKT cells exhibited the central memory phenotype and showed polyfunctional cytokine production. In the combination treatment group, high frequencies of pro-inflammatory Th1 iNKT CD8+ cells correlated with positive clinical responses. These results indicate that iNKT cells play a critical role in regulating effective antitumor T cell activity.
Collapse
Affiliation(s)
- F. Javier Ibarrondo
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (FJI); (BC-A)
| | - Otto O. Yang
- UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Thinle Chodon
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Earl Avramis
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Yohan Lee
- Department of Child Psychiatry Branch, NIH/NIMH, Bethesda, Maryland, Untied States of America
| | - Hooman Sazegar
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jason Jalil
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Bartosz Chmielowski
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Richard C. Koya
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ingrid Schmid
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jesus Gomez-Navarro
- Department of Clinical Research, Pfizer Global Research and Development (PGRD), New London, Connecticut, United States of America
| | - Beth D. Jamieson
- UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Surgery, Division of Surgical Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Begoña Comin-Anduix
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Surgery, Division of Surgical Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (FJI); (BC-A)
| |
Collapse
|
38
|
Fernandez CS, Jegaskanda S, Godfrey DI, Kent SJ. In-vivo stimulation of macaque natural killer T cells with α-galactosylceramide. Clin Exp Immunol 2013; 173:480-92. [PMID: 23656283 DOI: 10.1111/cei.12132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 12/14/2022] Open
Abstract
Natural killer T cells are a potent mediator of anti-viral immunity in mice, but little is known about the effects of manipulating NKT cells in non-human primates. We evaluated the delivery of the NKT cell ligand, α-galactosylceramide (α-GalCer), in 27 macaques by studying the effects of different dosing (1-100 μg), and delivery modes [directly intravenously (i.v.) or pulsed onto blood or peripheral blood mononuclear cells]. We found that peripheral NKT cells were depleted transiently from the periphery following α-GalCer administration across all delivery modes, particularly in doses of ≥10 μg. Furthermore, NKT cell numbers frequently remained depressed at i.v. α-GalCer doses of >10 μg. Levels of cytokine expression were also not enhanced after α-GalCer delivery to macaques. To evaluate the effects of α-GalCer administration on anti-viral immunity, we administered α-GalCer either together with live attenuated influenza virus infection or prior to simian immunodeficiency virus (SIV) infection of two macaques. There was no clear enhancement of influenza-specific T or B cell immunity following α-GalCer delivery. Further, there was no modulation of pathogenic SIVmac251 infection following α-GalCer delivery to a further two macaques in a pilot study. Accordingly, although macaque peripheral NKT cells are modulated by α-GalCer in vivo, at least for the dosing regimens tested in this study, this does not appear to have a significant impact on anti-viral immunity in macaque models.
Collapse
Affiliation(s)
- C S Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
39
|
Abstract
TB causes 1.4 million deaths annually. HIV-1 infection is the strongest risk factor for TB. The characteristic immunological effect of HIV is on CD4 cell count. However, the risk of TB is elevated in HIV-1 infected individuals even in the first few years after HIV acquisition and also after CD4 cell counts are restored with antiretroviral therapy. In this review, we examine features of the immune response to TB and how this is affected by HIV-1 infection and vice versa. We discuss how the immunology of HIV-TB coinfection impacts on the clinical presentation and diagnosis of TB, and how antiretroviral therapy affects the immune response to TB, including the development of TB immune reconstitution inflammatory syndrome. We highlight important areas of uncertainty and future research needs.
Collapse
Affiliation(s)
- Naomi F Walker
- Infectious Diseases & Immunity, Imperial College London, W12 0NN, UK
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Graeme Meintjes
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, Norfolk Place, Imperial College London, W2 1PG, UK
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, Norfolk Place, Imperial College London, W2 1PG, UK
- MRC National Institute for Medical Research, London, NW7 1AA, UK
| |
Collapse
|
40
|
Pitabut N, Sakurada S, Tanaka T, Ridruechai C, Tanuma J, Aoki T, Kantipong P, Piyaworawong S, Kobayashi N, Dhepakson P, Yanai H, Yamada N, Oka S, Okada M, Khusmith S, Keicho N. Potential function of granulysin, other related effector molecules and lymphocyte subsets in patients with TB and HIV/TB coinfection. Int J Med Sci 2013; 10:1003-14. [PMID: 23801887 PMCID: PMC3691799 DOI: 10.7150/ijms.6437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/30/2013] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Host effector mechanism against Mycobacterium tuberculosis (Mtb) infection is dependent on innate immune response by macrophages and neutrophils and the alterations in balanced adaptive immunity. Coordinated release of cytolytic effector molecules from NK cells and effector T cells and the subsequent granule-associated killing of infected cells have been documented; however, their role in clinical tuberculosis (TB) is still controversy. OBJECTIVE To investigate whether circulating granulysin and other effector molecules are associated with the number of NK cells, iNKT cells, Vγ9(+)Vδ2(+) T cells, CD4(+) T cells and CD8(+) T cells, and such association influences the clinical outcome of the disease in patients with pulmonary TB and HIV/TB coinfection. METHODS Circulating granulysin, perforin, granzyme-B and IFN-γ levels were determined by ELISA. The isoforms of granulysin were analyzed by Western blot analysis. The effector cells were analyzed by flow cytometry. RESULTS Circulating granulysin and perforin levels in TB patients were lower than healthy controls, whereas the granulysin levels in HIV/TB coinfection were much higher than in any other groups, TB and HIV with or without receiving HAART, which corresponded to the number of CD8(+) T cells which kept high, but not with NK cells and other possible cellular sources of granulysin. In addition, the 17kDa, 15kDa and 9kDa isoforms of granulysin were recognized in plasma of HIV/TB coinfection. Increased granulysin and decreased IFN-γ levels in HIV/TB coinfection and TB after completion of anti-TB therapy were observed. CONCLUSION The results suggested that the alteration of circulating granulysin has potential function in host immune response against TB and HIV/TB coinfection. This is the first demonstration so far of granulysin in HIV/TB coinfection.
Collapse
Affiliation(s)
- Nada Pitabut
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
CD1d and natural killer T cells in immunity to Mycobacterium tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:199-223. [PMID: 23468111 DOI: 10.1007/978-1-4614-6111-1_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The critical role of peptide antigen-specific T cells in controlling mycobacterial infections is well documented in natural resistance and vaccine-induced immunity against Mycobacterium tuberculosis. However, many other populations of leukocytes contribute to innate and adaptive immunity against mycobacteria. Among these, non-conventional T cells recognizing lipid antigens presented by the CD1 antigen presentation system have attracted particular interest. In this chapter, we review the basic immunobiology and potential antimycobacterial properties of a subset of CD1-restricted T cells that have come to be known as Natural Killer T cells. This group of lipid reactive T cells is notable for its high level of conservation between humans and mice, thus enabling a wide range of highly informative studies in mouse models. As reviewed below, NKT cells appear to have subtle but potentially significant activities in the host response to mycobacteria. Importantly, they also provide a framework for investigations into other types of lipid antigen-specific T cells that may be more abundant in larger mammals such as humans.
Collapse
|
42
|
Pinheiro MB, Antonelli LR, Sathler-Avelar R, Vitelli-Avelar DM, Spindola-de-Miranda S, Guimarães TMPD, Teixeira-Carvalho A, Martins-Filho OA, Toledo VPCP. CD4-CD8-αβ and γδ T cells display inflammatory and regulatory potentials during human tuberculosis. PLoS One 2012; 7:e50923. [PMID: 23239994 PMCID: PMC3519797 DOI: 10.1371/journal.pone.0050923] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/25/2012] [Indexed: 11/24/2022] Open
Abstract
T-cells play an important role controlling immunity against pathogens and therefore influence the outcome of human diseases. Although most T-lymphocytes co-express either CD4 or CD8, a smaller T-cell subset found the in the human peripheral blood that expresses the αβ or γδ T-cell-receptor (TCR) lacks the CD4 and CD8 co-receptors. These double negative (DN) T-cells have been shown to display important immunological functions in human diseases. To better understand the role of DN T-cells in human Mycobacterium tuberculosis, we have characterized their frequency, activation and cytokine profile in a well-defined group of tuberculosis patients, categorized as severe and non-severe based on their clinical status. Our data showed that whereas high frequency of αβ DN T-cells observed in M. tuberculosis-infected patients are associated with disease severity, decreased proportion of γδ DN T-cells are found in patients with severe tuberculosis. Together with activation of CD4+ and CD8+ T-cells, higher frequencies of both αβ and γδ DN T-cells from tuberculosis patients also express the chronic activation marker HLA-DR. However, the expression of CD69, an early activation marker, is selectively observed in DN T-cells. Interestingly, while αβ and γδ DN T-cells from patients with non-severe tuberculosis display a pro-inflammatory cytokine profile, characterized by enhanced IFN-γ, the γδ DN T-cells from patients with severe disease express a modulatory profile exemplified by enhanced interleukin-10 production. Overall, our findings suggest that αβ and γδ DN T-cell present disparate immunoregulatory potentials and seems to contribute to the development/maintenance of distinct clinical aspects of TB, as part of the complex immunological network triggered by the TB infection.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Lineage/immunology
- Female
- HLA-DR Antigens/metabolism
- Humans
- Interleukin-10/metabolism
- Lymphocyte Activation/immunology
- Male
- Middle Aged
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- Tuberculosis/immunology
- Tuberculosis/microbiology
Collapse
Affiliation(s)
- Melina B. Pinheiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Lis R. Antonelli
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
- * E-mail: (LRA); (VPCPT)
| | - Renato Sathler-Avelar
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Danielle M. Vitelli-Avelar
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | | | - Tânia M. P. D. Guimarães
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Andrea Teixeira-Carvalho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Olindo A. Martins-Filho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Vicente P. C. P. Toledo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
- * E-mail: (LRA); (VPCPT)
| |
Collapse
|
43
|
Age- and gender-related differences in circulating natural killer T cells and their subset levels in healthy Korean adults. Hum Immunol 2012; 73:1011-6. [DOI: 10.1016/j.humimm.2012.07.335] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/12/2012] [Accepted: 07/30/2012] [Indexed: 11/21/2022]
|
44
|
Abstract
Natural killer T cells (NKT cells) represent a subset of T lymphocytes that express natural killer (NK) cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT), express a highly restricted T cell receptor (TCR) and respond to CD1d-restricted lipid ligands. iNKT cells are now appreciated to play an important role in linking innate and adaptive immune responses and have been implicated in infectious disease, allergy, asthma, autoimmunity, and tumor surveillance. Advances in iNKT identification and purification have allowed for the detailed study of iNKT activity in both humans and mice during a variety of chronic and acute infections. Comparison of iNKT function between non-pathogenic simian immunodeficiency virus (SIV) infection models and chronic HIV-infected patients implies a role for iNKT activity in controlling immune activation. In vitro studies of influenza infection have revealed novel effector functions of iNKT cells including IL-22 production and modulation of myeloid-derived suppressor cells, but ex vivo characterization of human iNKT cells during influenza infection are lacking. Similarly, as recent evidence suggests iNKT involvement in dengue virus pathogenesis, iNKT cells may modulate responses to a number of emerging pathogens. This Review will summarize current knowledge of iNKT involvement in responses to viral infections in both human and mouse models and will identify critical gaps in knowledge and opportunities for future study. We will also highlight recent efforts to harness iNKT ligands as vaccine adjuvants capable of improving vaccination-induced cellular immune responses.
Collapse
Affiliation(s)
- Jennifer A. Juno
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yoav Keynan
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Keith R. Fowke
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
45
|
Higher SLPI expression, lower immune activation, and increased frequency of immune cells in a cohort of Colombian HIV-1 controllers. J Acquir Immune Defic Syndr 2012; 60:12-9. [PMID: 22240462 DOI: 10.1097/qai.0b013e31824876ca] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND There are 2 new phenotypes of HIV-1-positive individuals who exhibit a spontaneous and sustained control of viral replication at least for 1 year without antiretroviral therapy (elite controllers <50 copies/mL and viremic controllers <2000 copies/mL). Mechanisms related to this spontaneous control of viral replication are poorly understood. METHODS The study included HIV-1 controllers (patients with at least 1 year of HIV-1 diagnosis, highly active antiretroviral therapy naive, and with viral loads less than 2000 copies/mL) and HIV-1 progressors without antiretroviral therapy (viral load >2500 copies/mL, and CD4 T-cell count >250 cells/μL at the time of sampling). The expression of soluble factors, leukocyte protease inhibitor (SLPI) and human α-defensins-1 (HAD-1), was measured by real-time polymerase chain reaction from neutrophil cultures with or without HIV stimulation; the frequency and phenotype of innate and adaptive immune cells were determined by flow cytometry, and frequency of human leukocyte antigen alleles was determined by polymerase chain reaction sequence-specific oligonucleotide typing. RESULTS As expected, HIV-1 controllers had higher CD4 T-cell counts and lower viral load when compared with HIV-1 progressor individuals; in addition, they exhibited lower expression of activation markers, higher frequency of myeloid dendritic cell, lower percentage of regulatory T cells and natural killer cells, and higher expression of SLPI. CONCLUSIONS All together, these findings suggest that the control of the immune activation status and the production of antiviral proteins by innate immune cells could be associated to the mechanisms involved in the control of HIV-1 replication and better preservation of the CD4 T-cell count.
Collapse
|
46
|
Carvalho KI, Bruno FR, Snyder-Cappione JE, Maeda SM, Tomimori J, Xavier MB, Haslett PA, Nixon DF, Kallas EG. Lower numbers of natural killer T cells in HIV-1 and Mycobacterium leprae co-infected patients. Immunology 2012; 136:96-102. [PMID: 22269018 PMCID: PMC3372761 DOI: 10.1111/j.1365-2567.2012.03563.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/14/2012] [Accepted: 01/18/2012] [Indexed: 11/26/2022] Open
Abstract
Natural killer T (NKT) cells are a heterogeneous population of lymphocytes that recognize antigens presented by CD1d and have attracted attention because of their potential role linking innate and adaptive immune responses. Peripheral NKT cells display a memory-activated phenotype and can rapidly secrete large amounts of pro-inflammatory cytokines upon antigenic activation. In this study, we evaluated NKT cells in the context of patients co-infected with HIV-1 and Mycobacterium leprae. The volunteers were enrolled into four groups: 22 healthy controls, 23 HIV-1-infected patients, 20 patients with leprosy and 17 patients with leprosy and HIV-1-infection. Flow cytometry and ELISPOT assays were performed on peripheral blood mononuclear cells. We demonstrated that patients co-infected with HIV-1 and M. leprae have significantly lower NKT cell frequencies [median 0.022%, interquartile range (IQR): 0.007-0.051] in the peripheral blood when compared with healthy subjects (median 0.077%, IQR: 0.032-0.405, P < 0.01) or HIV-1 mono-infected patients (median 0.072%, IQR: 0.030-0.160, P < 0.05). Also, more NKT cells from co-infected patients secreted interferon-γ after stimulation with DimerX, when compared with leprosy mono-infected patients (P = 0.05). These results suggest that NKT cells are decreased in frequency in HIV-1 and M. leprae co-infected patients compared with HIV-1 mono-infected patients alone, but are at a more activated state. Innate immunity in human subjects is strongly influenced by their spectrum of chronic infections, and in HIV-1-infected subjects, a concurrent mycobacterial infection probably hyper-activates and lowers circulating NKT cell numbers.
Collapse
Affiliation(s)
- Karina I Carvalho
- Division of Clinical Immunology and Allergy, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect Immun 2012; 80:2100-8. [PMID: 22409933 DOI: 10.1128/iai.06018-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Natural killer T (NKT) cells are known to play a protective role in the immune responses of mice against a variety of infectious pathogens. However, little is known about the detailed information of NKT cells in patients with Mycobacterium tuberculosis infection. The aims of this study were to examine NKT cell levels and functions in patients with active M. tuberculosis infection, to investigate relationships between NKT cell levels and clinical parameters, and to determine the mechanism responsible for the poor response to α-galactosylceramide (α-GalCer). NKT cell levels were significantly lower in the peripheral blood of pulmonary tuberculosis and extrapulmonary tuberculosis patients, and the proliferative responses of NKT cells to α-GalCer were also lower in patients, whereas NKT cell levels and responses were comparable in latent tuberculosis infection subjects and healthy controls. Furthermore, this NKT cell deficiency was found to be correlated with serum C-reactive protein levels. In addition, the poor response to α-GalCer in M. tuberculosis-infected patients was found to be due to increased NKT cell apoptosis, reduced CD1d expression, and a defect in NKT cells. Notably, M. tuberculosis infection was associated with an elevated expression of the inhibitory programmed death-1 (PD-1) receptor on NKT cells, and blockade of PD-1 signaling enhanced the response to α-GalCer. This study shows that NKT cell levels and functions are reduced in M. tuberculosis-infected patients and these deficiencies were found to reflect the presence of active tuberculosis.
Collapse
|
48
|
Rijavec M, Volarevic S, Osolnik K, Kosnik M, Korosec P. Natural killer T cells in pulmonary disorders. Respir Med 2012; 105 Suppl 1:S20-5. [PMID: 22015081 DOI: 10.1016/s0954-6111(11)70006-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Natural killer T (NKT) cells, a unique subgroup of lymphocytes with features of both T and natural killer (NK) cells, represent a bridge between innate and adaptive immunity. They have the ability to either promote or suppress immune responses. With these immunoregulatory functions, NKT cells have emerged as an important subset of lymphocytes with a protective role in some disorders, such as infections, cancer, and possibly sarcoidosis, and a pathogenic role in others, such as asthma, chronic obstructive pulmonary disease and hypersensitivity pneumonitis. Immunotherapeutic interventions to modulate the immune response by targeting iNKT cell functions has become a challenging field and has shown promising results for the development of new therapies.
Collapse
Affiliation(s)
- Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases, Colnik, Slovenia.
| | | | | | | | | |
Collapse
|
49
|
Philips JA, Ernst JD. Tuberculosis pathogenesis and immunity. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:353-84. [PMID: 22054143 DOI: 10.1146/annurev-pathol-011811-132458] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the development of potentially curative chemotherapy, tuberculosis (TB) continues to cause increasing worldwide morbidity and is a leading cause of human mortality in the developing world. Recent advances in bacterial molecular genetics, immunology, and human genetics have yielded insight into the molecular determinants of virulence, the immune responses that are essential for restricting progressive disease, and the determinants of immunopathology in TB. Despite these advances, a large knowledge gap still exists that limits the development and testing of new interventions, including novel drugs and efficacious vaccines. This review focuses on our current knowledge of TB pathogenesis and immunity that has been derived from in vitro and in vivo studies. In addition, it highlights topics that need to be better understood to provide improved means of controlling TB worldwide.
Collapse
Affiliation(s)
- Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
50
|
Batista VG, Moreira-Teixeira L, Leite-de-Moraes MC, Benard G. Analysis of invariant natural killer T cells in human paracoccidioidomycosis. Mycopathologia 2011; 172:357-63. [PMID: 21805204 DOI: 10.1007/s11046-011-9451-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 07/12/2011] [Indexed: 12/28/2022]
Abstract
Invariant natural killer T (iNKT) cells are capable of recognizing lipid antigens and secreting Th1/Th2 cytokines. Deficiency in iNKT cell number or function has been partially implicated in susceptibility to some infectious diseases, such as tuberculosis. We evaluated iNKT cells in paracoccidioidomycosis, another chronic granulomatous disease endemic in Latin America. iNKT cells were detected using PBS57-loaded tetramer staining and flow cytometry. Circulating iNKT cell numbers were similar among healthy individuals who had previously been cured of paracoccidioidomycosis (susceptible individuals, n = 7) and healthy Paracoccidioides brasiliensis-infected (n = 5) and non-infected individuals (n = 5). iNKT from all three groups expanded similarly upon α-GalCer and a synthetic analog (OCH) stimulation. IFN-γ was the dominant cytokine produced both by ex vivo and by expanded iNKT cells, followed by IL-4 and IL-10, in the three groups. No deficit in the monocyte expression of CD1d was detected. In conclusion, individuals who had developed paracoccidioidomycosis in the past have no impairment in iNKT number, expansion capacity, and cytokine secretion.
Collapse
Affiliation(s)
- Vanessa Gomes Batista
- Laboratory of Medical Investigation Unit 53, Tropical Medicine Institute, University of São Paulo, Avenida Dr. Enéas de Carvalho Aguiar, 470. IMT-II, Térreo, São Paulo, SP, 05403-907, Brazil.
| | | | | | | |
Collapse
|