1
|
Postpartum HLA-Matched Bone Marrow Donation from Mother to Neonate for Reticular Dysgenesis. J Clin Immunol 2016; 37:29-31. [DOI: 10.1007/s10875-016-0355-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/13/2016] [Indexed: 10/20/2022]
|
2
|
Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW, Bernstein DI, Blessing-Moore J, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 2015; 136:1186-205.e1-78. [PMID: 26371839 DOI: 10.1016/j.jaci.2015.04.049] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Collapse
|
3
|
Mendez DC, Stover AE, Rangel AD, Brick DJ, Nethercott HE, Torres MA, Khalid O, Wong AM, Cooper JD, Jester JV, Monuki ES, McGuire C, Le SQ, Kan SH, Dickson PI, Schwartz PH. A novel, long-lived, and highly engraftable immunodeficient mouse model of mucopolysaccharidosis type I. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:14068. [PMID: 26052536 PMCID: PMC4449030 DOI: 10.1038/mtm.2014.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 02/06/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is an inherited α-L-iduronidase (IDUA, I) deficiency in which glycosaminoglycan (GAG) accumulation causes progressive multisystem organ dysfunction, neurological impairment, and death. Current MPS I mouse models, based on a NOD/SCID (NS) background, are short-lived, providing a very narrow window to assess the long-term efficacy of therapeutic interventions. They also develop thymic lymphomas, making the assessment of potential tumorigenicity of human stem cell transplantation problematic. We therefore developed a new MPS I model based on a NOD/SCID/Il2rγ (NSG) background. This model lives longer than 1 year and is tumor-free during that time. NSG MPS I (NSGI) mice exhibit the typical phenotypic features of MPS I including coarsened fur and facial features, reduced/abnormal gait, kyphosis, and corneal clouding. IDUA is undetectable in all tissues examined while GAG levels are dramatically higher in most tissues. NSGI brain shows a significant inflammatory response and prominent gliosis. Neurological MPS I manifestations are evidenced by impaired performance in behavioral tests. Human neural and hematopoietic stem cells were found to readily engraft, with human cells detectable for at least 1 year posttransplantation. This new MPS I model is thus suitable for preclinical testing of novel pluripotent stem cell-based therapy approaches.
Collapse
Affiliation(s)
- Daniel C Mendez
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - Alexander E Stover
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - Anthony D Rangel
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - David J Brick
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - Hubert E Nethercott
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - Marissa A Torres
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - Omar Khalid
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - Andrew Ms Wong
- King's College, London, Institute of Psychiatry, Psychology & Neuroscience , London, UK
| | - Jonathan D Cooper
- King's College, London, Institute of Psychiatry, Psychology & Neuroscience , London, UK
| | - James V Jester
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine , Irvine, California, USA ; Department of Biomedical Engineering, Gavin Herbert Eye Institute, University of California, Irvine , Irvine, California, USA
| | - Edwin S Monuki
- Department of Pathology and Laboratory Medicine, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, California, USA ; Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, California, USA
| | - Cian McGuire
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, California, USA
| | - Steven Q Le
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, California, USA
| | - Shih-Hsin Kan
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, California, USA
| | - Patricia I Dickson
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, California, USA
| | - Philip H Schwartz
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| |
Collapse
|
4
|
Ebadi M, Aghamohammadi A, Rezaei N. Primary immunodeficiencies: a decade of shifting paradigms, the current status and the emergence of cutting-edge therapies and diagnostics. Expert Rev Clin Immunol 2014; 11:117-39. [DOI: 10.1586/1744666x.2015.995096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
Lev A, Simon AJ, Bareket M, Bielorai B, Hutt D, Amariglio N, Rechavi G, Somech R. The kinetics of early T and B cell immune recovery after bone marrow transplantation in RAG-2-deficient SCID patients. PLoS One 2012; 7:e30494. [PMID: 22295088 PMCID: PMC3266259 DOI: 10.1371/journal.pone.0030494] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 12/16/2011] [Indexed: 01/18/2023] Open
Abstract
The kinetics of T and B cell immune recovery after bone marrow transplantation (BMT) is affected by many pre- and post-transplant factors. Because of the profoundly depleted baseline T and B cell immunity in recombination activating gene 2 (RAG-2)-deficient severe combined immunodeficiency (SCID) patients, some of these factors are eliminated, and the immune recovery after BMT can then be clearly assessed. This process was followed in ten SCID patients in parallel to their associated transplant-related complications. Early peripheral presence of T and B cells was observed in 8 and 4 patients, respectively. The latter correlated with pre-transplant conditioning therapy. Cells from these patients carried mainly signal joint DNA episomes, indicative of newly derived B and T cells. They were present before the normalization of the T cell receptor (TCR) and the B cell receptor (BCR) repertoire. Early presentation of the ordered TCR gene rearrangements after BMT occurred simultaneously, but this pattern was heterogeneous over time, suggesting different and individual thymic recovery processes. Our findings early after transplant could suggest the long-term patients' clinical outcome. Early peripheral presence of newly produced B and T lymphocytes from their production and maturation sites after BMT suggests donor stem cell origin rather than peripheral expansion, and is indicative of successful outcome. Peripheral detection of TCR excision circles and kappa-deleting recombination excision circles in RAG-2-deficient SCID post-BMT are early markers of T and B cell reconstitution, and can be used to monitor outcome and tailor specific therapy for patients undergoing BMT.
Collapse
Affiliation(s)
- Atar Lev
- Cancer Research Center, Tel Hashomer, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Immunology Service, Jeffery Modell Foundation (JMF) Center, Tel Hashomer, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amos J. Simon
- Cancer Research Center, Tel Hashomer, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Immunology Service, Jeffery Modell Foundation (JMF) Center, Tel Hashomer, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mor Bareket
- Pediatric Immunology Service, Jeffery Modell Foundation (JMF) Center, Tel Hashomer, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bella Bielorai
- Pediatric Hematology/Oncology Division and Bone Marrow Transplantation Unit, Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Hutt
- Pediatric Hematology/Oncology Division and Bone Marrow Transplantation Unit, Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ninette Amariglio
- Cancer Research Center, Tel Hashomer, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Hematology Laboratory, Sheba Medical Center, Tel Hashomer, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Rechavi
- Cancer Research Center, Tel Hashomer, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raz Somech
- Cancer Research Center, Tel Hashomer, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Immunology Service, Jeffery Modell Foundation (JMF) Center, Tel Hashomer, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
6
|
|
7
|
Morio T, Atsuta Y, Tomizawa D, Nagamura-Inoue T, Kato K, Ariga T, Kawa K, Koike K, Tauchi H, Kajiwara M, Hara T, Kato S. Outcome of unrelated umbilical cord blood transplantation in 88 patients with primary immunodeficiency in Japan. Br J Haematol 2011; 154:363-72. [DOI: 10.1111/j.1365-2141.2011.08735.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Abraham RS. Relevance of laboratory testing for the diagnosis of primary immunodeficiencies: a review of case-based examples of selected immunodeficiencies. Clin Mol Allergy 2011; 9:6. [PMID: 21477322 PMCID: PMC3080807 DOI: 10.1186/1476-7961-9-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/09/2011] [Indexed: 12/18/2022] Open
Abstract
The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing.
Collapse
Affiliation(s)
- Roshini S Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Abstract
Human SCID (Severe Combined Immunodeficiency) is a prenatal disorder of T lymphocyte development, that depends on the expression of numerous genes. The knowledge of the genetic basis of SCID is essential for diagnosis (e.g., clinical phenotype, lymphocyte profile) and treatment (e.g., use and type of pre-hematopoietic stem cell transplant conditioning).Over the last years novel genetic defects causing SCID have been discovered, and the molecular and immunological mechanisms of SCID have been better characterized. Distinct forms of SCID show both common and peculiar (e.g., absence or presence of nonimmunological features) aspects, and they are currently classified into six groups according to prevalent pathophysiological mechanisms: impaired cytokine-mediated signaling; pre-T cell receptor defects; increased lymphocyte apoptosis; defects in thymus embryogenesis; impaired calcium flux; other mechanisms.This review is the updated, extended and largely modified translation of the article "Cossu F: Le basi genetiche delle SCID", originally published in Italian language in the journal "Prospettive in Pediatria" 2009, 156:228-238.
Collapse
Affiliation(s)
- Fausto Cossu
- Pediatric HSCT Unit, 2 Pediatric Clinic of University, Ospedale Microcitemico, Via Jenner s/n, 09121 Cagliari, Sardinia, Italy.
| |
Collapse
|