1
|
Actis Dato V, Paz MC, Rey FE, Sánchez MC, Llorente-Cortés V, Chiabrando GA, Ceschin DG. Transcriptional analysis reveals that the intracellular lipid accumulation impairs gene expression profiles involved in insulin response-associated cardiac functionality. Sci Rep 2023; 13:8761. [PMID: 37253991 DOI: 10.1038/s41598-023-35951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023] Open
Abstract
Cardiovascular disease (CVD) is a multisystemic and multicellular pathology that is generally associated with high levels of atherogenic lipoproteins in circulation. These lipoproteins tend to be retained and modified, for example, aggregated low-density lipoprotein (aggLDL), in the extracellular matrix of different tissues, such as the vascular wall and heart. The uptake of aggLDL generates a significant increase in cholesteryl ester (CE) in these tissues. We previously found that the accumulation of CE generates alterations in the insulin response in the heart. Although the insulin response is mainly associated with the uptake and metabolism of glucose, other studies have shown that insulin would fulfill functions in this tissue, such as regulating the calcium cycle and cardiac contractility. Here, we found that aggLDL induced-lipid accumulation altered the gene expression profile involved in processes essential for cardiac functionality, including insulin response and glucose uptake (Insr, Ins1, Pik3ip1, Slc2a4 gene expression), calcium cycle (Cacna1s and Gjc2 gene expression) and calcium-dependent cardiac contractility (Myh3), and cholesterol efflux (Abca1), in HL-1 cardiomyocytes. These observations were recapitulated using an in vivo model of hypercholesterolemic ApoE-KO mice. Altogether, these results may explain the deleterious effect of lipid accumulation in the myocardium, with important implications for lipid-overloaded associated CVD, including impaired insulin response, disrupted lipid metabolism, altered cardiac structure, and increased susceptibility to cardiovascular events.
Collapse
Affiliation(s)
- Virginia Actis Dato
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 5000, Córdoba, Argentina
| | - María C Paz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 5000, Córdoba, Argentina
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI, 53706, USA
| | - María C Sánchez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 5000, Córdoba, Argentina
| | - Vicenta Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autonoma de Barcelona, 08041, Barcelona, Spain
- CIBERCV, Institute of Health Carlos III, 28019, Madrid, Spain
| | - Gustavo A Chiabrando
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA); G.V. al Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
| | - Danilo G Ceschin
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA); G.V. al Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
| |
Collapse
|
2
|
Dato VA, Paz MC, Rey FE, Sánchez MC, Llorente-Cortés V, Chiabrando GA, Ceschin DG. Transcriptional analysis reveals that the intracellular lipid accumulation impairs gene expression profiles involved in insulin response-associated cardiac functionality. RESEARCH SQUARE 2023:rs.3.rs-2688729. [PMID: 37066247 PMCID: PMC10104258 DOI: 10.21203/rs.3.rs-2688729/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Cardiovascular disease (CVD) is a multisystemic and multicellular pathology that is generally associated with high levels of atherogenic lipoproteins in circulation. These lipoproteins tend to be retained and modified, for example, aggregated low-density lipoprotein (aggLDL), in the extracellular matrix of different tissues, such as the vascular wall and heart. The uptake of aggLDL generates a significant increase in cholesteryl ester (CE) in these tissues. We previously found that the accumulation of CE generates alterations in the insulin response in the heart. Although the insulin response is mainly associated with the uptake and metabolism of glucose, other studies have shown that insulin would fulfill functions in this tissue, such as regulating the calcium cycle and cardiac contractility. Here, we found that aggLDL induced-lipid accumulation altered the gene expression profile involved in processes essential for cardiac functionality, including insulin response and glucose uptake ( Insr , Ins1 , Pik3ip1 , Slc2a4 gene expression), calcium cycle ( Cacna1s and Gjc2 gene expression) and calcium-dependent cardiac contractility ( Myh3 ), and cholesterol efflux ( Abca1 ), in HL-1 cardiomyocytes. These observations were recapitulated using an in vivo model of hypercholesterolemic ApoE-KO mice. Altogether, these results may explain the deleterious effect of lipid accumulation in the myocardium, with important implications for lipid-overloaded associated CVD.
Collapse
|
3
|
Nunez CEC, Oliveira JB, de Barros-Mazon S, Zago VHS, Kaplan DB, Nakamura RT, Gidlund MA, Gomes EIL, Cazita PM, Nakandakare E, Carmo HR, Sposito AC, de Faria EC. Positive Association between Autoantibodies Against Oxidized LDL and HDL-C: A Novel Mechanism for HDL Cardioprotection? Arq Bras Cardiol 2022; 119:S0066-782X2022005013403. [PMID: 36074481 PMCID: PMC9750204 DOI: 10.36660/abc.20210796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In the atherosclerotic plaque microenvironment, oxidized phospholipids expressed in the oxidized low-density lipoprotein (oxLDL) surface bind to scavenger receptors of macrophages eliciting foam cell formation and plaque progression. Auto-antibodies against oxLDL (oxLDL-Ab) interact with oxidative epitopes leading to the formation of immune complexes that are unable to interact with macrophage receptors, thus abrogating atherogenesis. Release of oxLDL-Ab by B cells involves interleukin 5 and Th2 response, which in turn are potentiated by HDL. Thereby, we hypothesized that individuals with higher levels of HDL-C may plausibly display elevated titers of oxLDL-Ab. OBJECTIVE To evaluate the relationship between HDL-C and oxLDL-Ab levels. METHODS Asymptomatic individuals (n = 193) were grouped according to their HDL-C concentration to one of three categories: low (< 68 mg/dL), intermediate (68 to 80 mg/dL) or high (> 80 mg/dL). P values < 0.05 were considered statistically significant. RESULTS Our analysis included 193 individuals (mean age: 47 years; male: 26.3%). Compared to individuals in the lowest HDL-C tertile, those in the highest tertile were older (36 versus 53 years; p = 0.001) and less frequently male (42.6% versus 20.9%; p = 0.001). Mean values of oxLDL-Ab increased as the HDL-C group escalated (0.31, 0.33 and 0.43 units, respectively; p = 0.001 for trend). Simple linear regression found a significant, positive relationship between the independent variable, HDL-C, and the dependent variable, oxLDL-Ab (R = 0.293; p = 0.009). This relation remained significant (R = 0.30; p = 0.044), after adjustment by covariates. Apolipoprotein AI levels were also related to oxLDL-Ab in both simple and adjusted linear regression models. CONCLUSION HDL-C and oxLDL-Ab are independently related.
Collapse
Affiliation(s)
- Carla Evelyn Coimbra Nunez
- Universidade Estadual de CampinasDepartamento de PatologiaCampinasSPBrasil Universidade Estadual de Campinas (UNICAMP) – Departamento de Patologia , Campinas , SP – Brasil
| | - Joaquim Barreto Oliveira
- Universidade Estadual de CampinasLaboratório de Aterosclerose e Biologia VascularCampinasSPBrasil Universidade Estadual de Campinas (UNICAMP) – Laboratório de Aterosclerose e Biologia Vascular (Atherolab), Campinas , SP – Brasil
| | - Silvia de Barros-Mazon
- Universidade Estadual de CampinasDepartamento de PatologiaCampinasSPBrasil Universidade Estadual de Campinas (UNICAMP) – Departamento de Patologia , Campinas , SP – Brasil
| | - Vanessa H. S. Zago
- Pontifícia Universidade CatólicaCampinasSPBrasil Pontifícia Universidade Católica (PUC-Campinas), Campinas , SP – Brasil
| | - Denise Beheregaray Kaplan
- Universidade Estadual de CampinasDepartamento de PatologiaCampinasSPBrasil Universidade Estadual de Campinas (UNICAMP) – Departamento de Patologia , Campinas , SP – Brasil
| | - Ruy T. Nakamura
- Diagnostic Image LaboratoryCampinasSPBrasil Diagnostic Image Laboratory , Campinas , SP – Brasil
| | - Magnus Ake Gidlund
- Universidade de São PauloSão PauloSPBrasil Universidade de São Paulo (USP), São Paulo , SP – Brasil
| | - Erica I. L. Gomes
- Universidade Estadual de CampinasCampinasSPBrasil Universidade Estadual de Campinas (UNICAMP), Campinas , SP – Brasil
| | - Patricia Miralda Cazita
- Universidade de São PauloSão PauloSPBrasil Universidade de São Paulo (USP), São Paulo , SP – Brasil
| | - Edna Nakandakare
- Universidade de São PauloSão PauloSPBrasil Universidade de São Paulo (USP), São Paulo , SP – Brasil
| | - Helison R. Carmo
- Universidade Estadual de CampinasCampinasSPBrasil Universidade Estadual de Campinas (UNICAMP), Campinas , SP – Brasil
| | - Andrei C. Sposito
- Universidade Estadual de CampinasLaboratório de Aterosclerose e Biologia VascularCampinasSPBrasil Universidade Estadual de Campinas (UNICAMP) – Laboratório de Aterosclerose e Biologia Vascular (Atherolab), Campinas , SP – Brasil
| | - Eliana Cotta de Faria
- Universidade Estadual de CampinasDepartamento de PatologiaCampinasSPBrasil Universidade Estadual de Campinas (UNICAMP) – Departamento de Patologia , Campinas , SP – Brasil
| |
Collapse
|
4
|
Pandey SS, Hartley A, Caga-Anan M, Ammari T, Khan AHA, Nguyen BAV, Kojima C, Anderson J, Lynham S, Johns M, Haskard DO, Khamis RY. A Novel Immunoassay for Malondialdehyde-Conjugated Low-Density Lipoprotein Measures Dynamic Changes in the Blood of Patients Undergoing Coronary Artery Bypass Graft Surgery. Antioxidants (Basel) 2021; 10:antiox10081298. [PMID: 34439546 PMCID: PMC8389242 DOI: 10.3390/antiox10081298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/08/2023] Open
Abstract
Oxidized low-density lipoproteins play an important role in tissue pathology. In this study, we report a sensitive novel enzyme-linked immunosorbent assay for the detection of malondialdehyde-modified low-density lipoprotein (MDA-LDL), a key component of oxidized LDL. The assay is capable of measuring a variable presence of MDA-LDL within human plasma and serum. We demonstrate the robust nature of the assay on samples stored for over 20 months, as well as high inter-operator reproducibility (r = 0.74, p < 0.0001). The assay was capable of detecting dynamic changes in patient blood samples after coronary artery bypass graft surgery, indicating synthesis or release of MDA-LDL with the oxidative stress of surgery, followed by homeostatic clearance. This robust, sensitive and specific assay for circulating MDA-LDL will serve as a valuable translational tool for the improved detection of oxidative forms of LDL in response to a range of physiological or pathological stimuli, with potential clinical applicability.
Collapse
Affiliation(s)
- Samata S. Pandey
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Adam Hartley
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Mikhail Caga-Anan
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Tareq Ammari
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Ameer Hamid Ahmed Khan
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Bao Anh Vu Nguyen
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Chiari Kojima
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Jon Anderson
- Department of Cardiothoracic Surgery, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK;
| | - Steven Lynham
- Centre of Excellence for Mass Spectrometry, Proteomics Facility, Denmark Hill Campus, Kings College London, London SE5 9NU, UK;
| | - Michael Johns
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Dorian O. Haskard
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Ramzi Y. Khamis
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
- Correspondence: ; Tel.: +44-(020)-7594-6842
| |
Collapse
|
5
|
Akimoto H, Takahashi Y, Asai S. [Effects of Fibrates on Risk of Development of Diabetic Retinopathy in Japanese Working Age Patients with Type 2 Diabetes and Dyslipidemia: a Retrospective Cohort Study]. YAKUGAKU ZASSHI 2021; 141:761-769. [PMID: 33952760 DOI: 10.1248/yakushi.20-00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of the present study were to investigate the effects of fenofibrate and bezafibrate on the risk of development of diabetic retinopathy (DR) in patients with type 2 diabetes and dyslipidemia. Japanese working age patients with type 2 diabetes and dyslipidemia were extracted from the Nihon University School of Medicine Clinical Data Warehouse. These patients were divided into three groups: control group (n=2549), fenofibrate group (n=40), and bezafibrate group (n=135). Multivariate logistic regression analysis was performed to assess the association between fibrates and the development of DR. After adjustment for covariates, fenofibrate showed no association with the risk of DR [adjusted odds ratio (OR), 0.160; 95% CI, 0.021-1.209; p=0.0758]. Bezafibrate also showed no association with the risk of DR (adjusted OR, 0.731; 95% CI, 0.411-1.299; p=0.2855). However, poor control of hemoglobin A1c (HbA1c ≥8.0%; adjusted OR, 3.623; 95% CI, 2.649-4.956; p<0.0001) and high low-density lipoprotein cholesterol (LDL-C ≥140 mg/dL; adjusted OR, 1.399; 95% CI, 1.013-1.932; p=0.0415) within the follow-up period of type 2 diabetes and dyslipidemia increased the risk of DR. Our results suggested that to prevent development of DR in patients with type 2 diabetes and dyslipidemia, controlling LDL-C levels as well as HbA1c levels under coexistence type 2 diabetes and dyslipidemia is more important than the selection of fibrate.
Collapse
Affiliation(s)
- Hayato Akimoto
- Department of Biomedical Sciences, Nihon University School of Medicine
| | - Yasuo Takahashi
- Clinical Trials Research Center, Nihon University School of Medicine
| | - Satoshi Asai
- Department of Biomedical Sciences, Nihon University School of Medicine
| |
Collapse
|
6
|
Rehman S, Alouffi S, Faisal M, Qahtan AA, Alatar AA, Ahmad S. Methylglyoxal mediated glycation leads to neo-epitopes generation in fibrinogen: Role in the induction of adaptive immune response. Int J Biol Macromol 2021; 175:535-543. [PMID: 33529635 DOI: 10.1016/j.ijbiomac.2021.01.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/12/2023]
Abstract
In diabetes mellitus, hyperglycemia mediated non-enzymatic glycosylation of proteins results in the pathogenesis of diabetes-associated secondary complications via the generation of advanced glycation end products (AGEs). The focus of this study is to reveal the immunological aspects of methylglyoxal (MG) mediated glycation of fibrinogen protein. The induced immunogenicity of modified fibrinogen is analyzed by direct binding and inhibition ELISA. Direct binding ELISA confirmed that MG glycated fibrinogen (MG-Fib) is highly immunogenic and induces a high titer of antibodies in comparison to its native analog. Cross-reactivity and antigen-binding specificity of induced antibodies were confirmed by inhibition ELISA. The enhanced affinity of immunoglobulin G (IgG) from immunized rabbits' sera and MG glycated fibrinogen is probably the aftermath of neo-epitopes generation in the native structure of protein upon modification. Thus, we deduce that under the glycative stress, MG-mediated structural alterations in fibrinogen could induce the generation of antibodies which might serve as a potential biomarker in diabetes mellitus and its associated secondary disorders.
Collapse
Affiliation(s)
- Shahnawaz Rehman
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorder, Integral University, Lucknow, Uttar Prade sh-226026, India
| | - Sultan Alouffi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia; Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Qahtan
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia.
| |
Collapse
|
7
|
Khan MY, Alouffi S, Khan MS, Husain FM, Akhter F, Ahmad S. The neoepitopes on methylglyoxal (MG) glycated LDL create autoimmune response; autoimmunity detection in T2DM patients with varying disease duration. Cell Immunol 2020; 351:104062. [PMID: 32087930 DOI: 10.1016/j.cellimm.2020.104062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/23/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023]
Abstract
AIMS Non-enzymatic reaction of biomolecules leads to the formation of advanced glycation end products (AGEs). AGEs plays significant role in the pathophysiology of type 2 diabetes mellitus. Methylglyoxal (MG) is a highly reactive carbonyl compound which causes formation of early (ketoamines), intermediate (dicarbonyls) and advanced glycation end products (AGEs). Glycation also results in the generation of free radicals causing structural perturbations which leads to the generation of neoantigenic epitopes on LDL molecules. The aim of the present study was to investigate whether the modification of LDL results in auto-antibodies generation in type 2 diabetes patients'. METHODS The binding affinity of circulating autoantibodies in patients against native and MG modified LDL were assessed as compared with healthy and age-matched controls (n = 50) and T2DM patients with disease duration (DD) 5-15 yrs (n = 80) and DD > 15 yrs (n = 50) were examined by direct binding ELISA. KEYFINDINGS The high affinity binding were observed in 50% of T2DM with DD 5-15 and 62% of T2DM with DD > 15 of patient's sera antibodies to MG-LDL antigen, in comparison to its native analog (P < 0.05). NHS sera showed negligible binding with both native and glycated LDL. Competitive inhibition ELISA results exhibit greater affinity sera IgG than the direct binding ELISA results. The increase in glycation intermediate and ends product were also observed in T2DM patient's sera and NHS sera. SIGNIFICANCE There might be the generation of neoantigenic epitopes on LDL macromoleucle which results in generation of antibodies in T2DM. The prevalence of antibodies was dependent on disease duration.
Collapse
Affiliation(s)
- Mohd Yasir Khan
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India; Department of Biosciences, Integral University, Lucknow, India
| | - Sultan Alouffi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Fohad Mabood Husain
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Firoz Akhter
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
8
|
FcgRIII Deficiency and FcgRIIb Defeciency Promote Renal Injury in Diabetic Mice. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3514574. [PMID: 31534958 PMCID: PMC6724446 DOI: 10.1155/2019/3514574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/12/2019] [Accepted: 07/01/2019] [Indexed: 02/05/2023]
Abstract
The immune system is involved in the development of diabetes complications and IgG Fc gamma receptors (FcgRs) are key immune receptors responsible for the effective control of both humoral and innate immunity. We investigated the effects of members of the FcgR superfamily into both the streptozotocin plus high fat-induced type 2 diabetes and high fat diet (HFD) models. FcgRIII-/- diabetic mice and FcgRIIb-/- diabetic mice had elevated levels of serum creatinine compared with wildtype (WT) diabetic mice. Renal histology of diabetic FcgRIII knockout and FcgRIIb knockout mice showed mesangial expansion and GBM thickening; the mechanistic study indicated a higher expression of TGF-β1, TNF-α, and p-NFκB-p65 compared with wild type mouse. The HFD mouse with FcgRIII knockout or FcgRIIb knockout had increased biochemical and renal injury factors, but oxLDL deposition was higher than in FcgRIII-/- diabetic mice and FcgRIIb-/- diabetic mice. In vitro we further examined the mechanism by which the Fc gamma receptor promoted renal injury and transfected glomerular mesangial cells (GMCs) with FcgRI siRNA attenuated the level of TGF-β1, TNF-α expression. In summary, FcgRI knockdown downregulated kidney inflammation and fibrosis and FcgRIIb knockout accelerated inflammation, fibrosis, and the anomalous deposition of oxLDL whereas FcgRIII deficiency failed to protect kidney from diabetic renal injury. These observations suggested that FcgRs might represent a novel target for the therapeutic intervention of diabetic nephropathy.
Collapse
|
9
|
Wang Y, Zhang R, Zhang J, Liu F. MicroRNA-326-3p ameliorates high glucose and ox-LDL-IC- induced fibrotic injury in renal mesangial cells by targeting FcγRIII. Nephrology (Carlton) 2019; 23:1031-1038. [PMID: 28921768 DOI: 10.1111/nep.13168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 02/05/2023]
Abstract
AIM The aim of the present study was to identify the regulatory relationship between miR-326-3p and FcγRIII, and to explore the involvement of miR-326-3p/FcγRIII/TGF-β/Smad signalling pathway in fibrotic injury, which was induced by the high glucose (HG) and oxidized low density lipoprotein immune complex (ox-LDL-IC) in mouse glomerular mesangial cells (GMCs). METHODS Dual-luciferase reporter system and real time PCR (RT-PCR) were used to identify FcγRIII as a target gene of miR-326-3p. Lentiviral transduction was used to construct different expression of miR-326-3p in GMCs, which were divided into three groups: miR-326-3p mimics group (miR-326-3p group), miR-326-3p inhibitor group (miR-326-3p-inhibit group) and scramble control group (control group). Then, each group was stimulated by normal glucose (NG), HG, ox-LDL-IC and HG + ox-LDL-IC, respectively. RT-PCR and western blot were used to measure the expressions of Col-I, CTGF, α-SMA, TGF-β, Smad2/3 and pSmad2/3. RESULTS FcγRIII was regulated negatively by miR-326-3p in GMCs under the condition of HG and ox-LDL-IC, which implied FcγRIII as a target gene of miR-326-3p. Furthermore, compared with normal glucose group, the expressions of Col-I, CTGF, α-SMA, TGF-β and pSmad2/3 were higher under the condition of HG, ox-LDL-IC and HG + ox-LDL-IC (P < 0.05). In particular, miR-326-3p-inhibit groups exhibited the most significant increase (P < 0.05), while miR-326-3p could attenuate the increase (P < 0.05). CONCLUSION FcγRIII was identified as a target gene of miR-326-3p. MiR-326-3p/FcγRIII/TGF-β/Smad signaling pathway was investigated to be involved in the pathophysiology of renal fibrosis of DKD.
Collapse
Affiliation(s)
- Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Houben T, Magro Dos Reis I, Oligschlaeger Y, Steinbusch H, Gijbels MJJ, Hendrikx T, Binder CJ, Cassiman D, Westerterp M, Prickaerts J, Shiri-Sverdlov R. Pneumococcal Immunization Reduces Neurological and Hepatic Symptoms in a Mouse Model for Niemann-Pick Type C1 Disease. Front Immunol 2019; 9:3089. [PMID: 30666257 PMCID: PMC6330339 DOI: 10.3389/fimmu.2018.03089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is caused by a deleterious mutation in the Npc1 gene, causing lysosomal accumulation of unesterified cholesterol and sphingolipids. Consequently, NPC1 disease patients suffer from severe neurovisceral symptoms which, in the absence of effective treatments, result in premature death. NPC1 disease patients display increased plasma levels of cholesterol oxidation products such as those enriched in oxidized low-density lipoprotein (oxLDL), a pro-inflammatory mediator. While it has been shown that inflammation precedes and exacerbates symptom severity in NPC1 disease, it is unclear whether oxLDL contributes to NPC1 disease progression. In this study, we investigated the effects of increasing anti-oxLDL IgM autoantibodies on systemic and neurological symptoms in an NPC1 disease mouse model. For this purpose, Npc1nih mice were immunized with heat-inactivated S. pneumoniae, an immunogen which elicits an IgM autoantibody-mediated immune response against oxLDL. Npc1nih mice injected with heat-inactivated pneumococci displayed an improved hepatic phenotype, including liver lipid accumulation and inflammation. In addition, regression of motor skills was delayed in immunized Npc1nih. In line with these results, brain analyses showed an improved cerebellar phenotype and neuroinflammation in comparison with control-treated subjects. This study highlights the potential of the pneumococcal immunization as a novel therapeutical approach in NPC1 disease. Future research should investigate whether implementation of this therapy can improve life span and quality of life of NPC1 disease patients.
Collapse
Affiliation(s)
- Tom Houben
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Inês Magro Dos Reis
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Hellen Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Marion J J Gijbels
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tim Hendrikx
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - David Cassiman
- Liver Research Unit, University of Leuven, Leuven, Belgium.,Department of Gastroenterology-Hepatology and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Marit Westerterp
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
11
|
Immunochemical studies on native and glycated LDL – An approach to uncover the structural perturbations. Int J Biol Macromol 2018; 115:287-299. [DOI: 10.1016/j.ijbiomac.2018.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 01/27/2023]
|
12
|
Immune complexes containing malondialdehyde (MDA) LDL induce apoptosis in human macrophages. Clin Immunol 2018; 187:1-9. [DOI: 10.1016/j.clim.2017.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 11/22/2022]
|
13
|
A role for autoantibodies in atherogenesis. Cardiovasc Res 2017; 113:1102-1112. [DOI: 10.1093/cvr/cvx112] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 06/01/2017] [Indexed: 12/27/2022] Open
|
14
|
Arifin R, Kyi WM, Che Yaakob CA, Yaacob NM. Increased circulating oxidised low-density lipoprotein and antibodies to oxidised low-density lipoprotein in preeclampsia. J OBSTET GYNAECOL 2017; 37:580-584. [DOI: 10.1080/01443615.2016.1269227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rosemawati Arifin
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Win Mar Kyi
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Che Anuar Che Yaakob
- Department of Obstetrics and Gynaecology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Najib Majdi Yaacob
- Unit of Biostatistics and Research Methodology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| |
Collapse
|
15
|
Sukhorukov VN, Karagodin VP, Orekhov AN. [Atherogenic modification of low-density lipoproteins]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:391-402. [PMID: 27562992 DOI: 10.18097/pbmc20166204391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the first manifestations of atherosclerosis is accumulation of extra- and intracellular cholesterol esters in the arterial intima. Formation of foam cells is considered as a trigger in the pathogenesis of atherosclerosis. Low density lipoprotein (LDL) circulating in human blood is the source of lipids accumulated in the arterial walls. This review considered features and role in atherogenesis different modified forms of LDL: oxidized, small dense, electronegative and especially desialylated LDL. Desialylated LDL of human blood plasma is capable to induce lipid accumulation in cultured cells and it is atherogenic. LDL possesses numerous alterations of protein, carbohydrate and lipid moieties and therefore can be termed multiple-modified LDL. Multiple modification of LDL occurs in human blood plasma and represents a cascade of successive changes in the lipoprotein particle: desialylation, loss of lipids, reduction in the particle size, increase of surface electronegative charge, etc. In addition to intracellular lipid accumulation, stimulatory effects of naturally occurring multiple-modified LDL on other processes involved in the development of atherosclerotic lesions, namely cell proliferation and fibrosis, were shown.
Collapse
Affiliation(s)
- V N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - V P Karagodin
- Plekhanov Russian University of Economics, Moscow, Russia
| | - A N Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, PO Box #21, Moscow, Russia
| |
Collapse
|
16
|
Li Y, Lu Z, Huang Y, Lopes-Virella MF, Virella G. F(ab′)2 fragments of anti-oxidized LDL IgG attenuate vascular inflammation and atherogenesis in diabetic LDL receptor-deficient mice. Clin Immunol 2016; 173:50-56. [DOI: 10.1016/j.clim.2016.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
|
17
|
Kalaria TR, Sirajwala HB, Gohel MG. Serum fructosamine, serum glycated albumin and serum glycated β-lipoprotein in type 2 diabetes mellitus patients with and without microvascular complications. J Diabetes Metab Disord 2016; 15:53. [PMID: 27896233 PMCID: PMC5117551 DOI: 10.1186/s40200-016-0276-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/14/2016] [Indexed: 11/23/2022]
Abstract
Background Glycation of serum proteins has been proposed as an important mechanism of complications of diabetes but whether there are differences in glycation of different serum proteins and whether it has any correlation with development of microvascular complications has not been studied in depth. This study aimed to assess level of serum fructosamine, glycated albumin and glycated β-lipoprotein in type 2 diabetes mellitus patients with and without microvascular complications and to find out their correlation with diabetes complications. Methods Case–control study involving 150 individuals at a tertiary care hospital in western India. Fifty participants were healthy controls (group 1), 50 were type 2 diabetes patients without any evident microvascular complication (group 2) and 50 were type 2 diabetes patients with one or more microvascular complications (group 3). Serum fructosamine, FBS, PP2BS and other biochemical parameters were measured. Glycated albumin and glycated β-lipoprotein were measured by agarose gel electrophoresis followed by NBT staining. Unpaired t-test was used to find out significance of difference between two groups and correlation coefficient to find out statistical correlation between two variables. Results Type 2 diabetes patients with one or more microvascular complications had poor glycemic control as indicated by markers of short and mid-term glycemia. Differences between the groups for fructosamine, glycated albumin and glycated β-lipoprotein were significant (p < 0.001). Glycated albumin correlated with FBS, PP2BS and fructosamine in all diabetic patients (group 2 and 3) whereas glycated β-lipoprotein correlated with these parameters only in group 3 and it was markedly elevated in group 3. Conclusion Serum glycated β-lipoprotein was disproportionately elevated compared to fructosamine and glycated albumin in diabetes patients with microvascular complications (group 3) and it correlated with rest of glycemic markers only in this group. Glycated β-lipoprotein might help in identifying diabetic individuals at high future risk of developing microvascular complications.
Collapse
|
18
|
Simó-Servat O, Simó R, Hernández C. Circulating Biomarkers of Diabetic Retinopathy: An Overview Based on Physiopathology. J Diabetes Res 2016; 2016:5263798. [PMID: 27376090 PMCID: PMC4916280 DOI: 10.1155/2016/5263798] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 05/18/2016] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR) is the main cause of working-age adult-onset blindness. The currently available treatments for DR are applicable only at advanced stages of the disease and are associated with significant adverse effects. In early stages of DR the only therapeutic strategy that physicians can offer is a tight control of the risk factors for DR. Therefore, new pharmacological treatments for these early stages of the disease are required. In order to develop therapeutic strategies for early stages of DR new diagnostic tools are urgently needed. In this regard, circulating biomarkers could be useful to detect early disease, to identify those diabetic patients most prone to progressive worsening who ought to be followed up more often and who could obtain the most benefit from these therapies, and to monitor the effectiveness of new drugs for DR before more advanced DR stages have been reached. Research of biomarkers for DR has been mainly based on the pathogenic mechanism involved in the development of DR (i.e., AGEs, oxidative stress, endothelial dysfunction, inflammation, and proangiogenic factors). This review focuses on circulating biomarkers at both early and advanced stages that could be relevant for the prediction or detection of DR.
Collapse
Affiliation(s)
- Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
19
|
Tsekovska R, Sredovska-Bozhinov A, Niwa T, Ivanov I, Mironova R. Maillard reaction and immunogenicity of protein therapeutics. World J Immunol 2016; 6:19-38. [DOI: 10.5411/wji.v6.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
The recombinant DNA technology enabled the production of a variety of human therapeutic proteins. Accumulated clinical experience, however, indicates that the formation of antibodies against such proteins is a general phenomenon rather than an exception. The immunogenicity of therapeutic proteins results in inefficient therapy and in the development of undesired, sometimes life-threatening, side reactions. The human proteins, designed for clinical application, usually have the same amino acid sequence as their native prototypes and it is not yet fully clear what the reasons for their immunogenicity are. In previous studies we have demonstrated for the first time that interferon-β (IFN-β) pharmaceuticals, used for treatment of patients with multiple sclerosis, do contain advanced glycation end products (AGEs) that contribute to IFN-β immunogenicity. AGEs are the final products of a chemical reaction known as the Maillard reaction or glycation, which implication in protein drugs’ immunogenicity has been overlooked so far. Therefore, the aim of the present article is to provide a comprehensive overview on the Maillard reaction with emphasis on experimental data and theoretical consideration telling us why the Maillard reaction warrants special attention in the context of the well-documented protein drugs’ immunogenicity.
Collapse
|
20
|
Hörl G, Froehlich H, Ferstl U, Ledinski G, Binder J, Cvirn G, Stojakovic T, Trauner M, Koidl C, Tafeit E, Amrein K, Scharnagl H, Jürgens G, Hallström S. Simvastatin Efficiently Lowers Small LDL-IgG Immune Complex Levels: A Therapeutic Quality beyond the Lipid-Lowering Effect. PLoS One 2016; 11:e0148210. [PMID: 26840480 PMCID: PMC4739583 DOI: 10.1371/journal.pone.0148210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/14/2016] [Indexed: 01/28/2023] Open
Abstract
We investigated a polyethylene glycol non-precipitable low-density lipoprotein (LDL) subfraction targeted by IgG and the influence of statin therapy on plasma levels of these small LDL-IgG-immune complexes (LDL-IgG-IC). LDL-subfractions were isolated from 6 atherosclerotic subjects and 3 healthy individuals utilizing iodixanol density gradient ultracentrifugation. Cholesterol, apoB and malondialdehyde (MDA) levels were determined in each fraction by enzymatic testing, dissociation-enhanced lanthanide fluorescence immunoassay and high-performance liquid chromatography, respectively. The levels of LDL-IgG-IC were quantified densitometrically following lipid electrophoresis, particle size distribution was assessed with dynamic light scattering and size exclusion chromatography. The influence of simvastatin (40 mg/day for three months) on small LDL-IgG-IC levels and their distribution among LDL-subfractions (salt gradient separation) were investigated in 11 patients with confirmed coronary artery disease (CAD). We demonstrate that the investigated LDL-IgG-IC are small particles present in atherosclerotic patients and healthy subjects. In vitro assembly of LDL-IgG-IC resulted in particle density shifts indicating a composition of one single molecule of IgG per LDL particle. Normalization on cholesterol levels revealed MDA values twice as high for LDL-subfractions rich in small LDL-IgG-IC if compared to dominant LDL-subfractions. Reactivity of affinity purified small LDL-IgG-IC to monoclonal antibody OB/04 indicates a high degree of modified apoB and oxidative modification. Simvastatin therapy studied in the CAD patients significantly lowered LDL levels and to an even higher extent, small LDL-IgG-IC levels without affecting their distribution. In conclusion simvastatin lowers levels of small LDL-IgG-IC more effectively than LDL-cholesterol and LDL-apoB levels in atherosclerotic patients. This antiatherogenic effect may additionally contribute to the known beneficial effects of this drug in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gerd Hörl
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, Graz, Austria
- * E-mail:
| | - Harald Froehlich
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Ulrika Ferstl
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, Graz, Austria
| | - Gerhard Ledinski
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, Graz, Austria
| | - Josepha Binder
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gerhard Cvirn
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christoph Koidl
- Institute of Hygiene, Medical University of Graz, Graz, Austria
| | - Erwin Tafeit
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, Graz, Austria
| | - Karin Amrein
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Günther Jürgens
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, Graz, Austria
| | - Seth Hallström
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
21
|
Antoniak DT, Duryee MJ, Mikuls TR, Thiele GM, Anderson DR. Aldehyde-modified proteins as mediators of early inflammation in atherosclerotic disease. Free Radic Biol Med 2015; 89:409-18. [PMID: 26432980 DOI: 10.1016/j.freeradbiomed.2015.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022]
Abstract
Inflammation is widely accepted to play a major role in atherosclerosis and other cardiovascular diseases. However, the exact mechanism(s) by which inflammation exerts its pathogenic effect remains poorly understood. A number of oxidatively modified proteins have been associated with cardiovascular disease. Recently, attention has been given to the oxidative compound of malondialdehyde and acetaldehyde, two reactive aldehydes known to covalently bind and adduct macromolecules. These products have been shown to form stable malondialdehyde-acetaldehyde (MAA) adducts that are reactive and induce immune responses. These adducts have been found in inflamed and diseased cardiovascular tissue of patients. Antibodies to these adducted proteins are measurable in the serum of diseased patients. The isotypes involved in the immune response to MAA (i.e., IgM, IgG, and IgA) are predictive of atherosclerotic disease progression and cardiovascular events such as an acute myocardial infarction or coronary artery bypass grafting. Therefore, it is the purpose of this article to review the past and current knowledge of aldehyde-modified proteins and their role in cardiovascular disease.
Collapse
Affiliation(s)
- Derrick T Antoniak
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael J Duryee
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA; Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ted R Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA; Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Geoffrey M Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA; Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel R Anderson
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
22
|
Rao F, Schork AJ, Maihofer AX, Nievergelt CM, Marcovina SM, Miller ER, Witztum JL, O'Connor DT, Tsimikas S. Heritability of Biomarkers of Oxidized Lipoproteins: Twin Pair Study. Arterioscler Thromb Vasc Biol 2015; 35:1704-11. [PMID: 25953646 DOI: 10.1161/atvbaha.115.305306] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine whether biomarkers of oxidized lipoproteins are genetically determined. Lipoprotein(a) (Lp[a]) is a heritable risk factor and carrier of oxidized phospholipids (OxPL). APPROACH AND RESULTS We measured oxidized phospholipids on apolipoprotein B-containing lipoproteins (OxPL-apoB), Lp(a), IgG, and IgM autoantibodies to malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes in 386 monozygotic and dizygotic twins to estimate trait heritability (h(2)) and determine specific genetic effects among traits. A genome-wide linkage study followed by genetic association was performed. The h(2) (scale: 0-1) for Lp(a) was 0.91±0.01 and for OxPL-apoB 0.87±0.02, which were higher than physiological, inflammatory, or lipid traits. h(2) of IgM malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes were 0.69±0.04, 0.67±0.05, and 0.80±0.03, respectively, and for IgG malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes 0.62±0.05, 0.52±0.06, and 0.53±0.06, respectively. There was an inverse correlation between the major apo(a) isoform and OxPL-apoB (R=-0.49; P<0.001) and Lp(a) (R=-0.48; P<0.001) and OxPL-apoB was modestly correlated with Lp(a) (ρ=0.57; P<0.0001). The correlation in major apo(a) isoform size was concordant (R=1.0; P<0.001) among monozygotic twins but not dizygotic twins (R=0.40; P=0.055). Lp(a) and OxPL-apoB shared genetic codetermination (genetic covariance, ρG=0.774±0.032; P=1.09×10(-38)), although not environmental determination (environmental covariance, ρE=0.081±0.15; P=0.15). In contrast, Lp(a) shared environmental but not genetic codetermination with autoantibodies to malondialdehyde-modified low-density lipoprotein and copper oxidized low-density lipoprotein, and apoB-immune complexes. Sib-pair genetic linkage of the Lp(a) trait revealed that single nucleotide polymorphism rs10455872 was significantly associated with OxPL-apoB after adjusting for Lp(a). CONCLUSIONS OxPL-apoB and other biomarkers of oxidized lipoproteins are highly heritable cardiovascular risk factors that suggest novel genetic origins of atherothrombosis.
Collapse
Affiliation(s)
- Fangwen Rao
- From the Departments of Medicine (F.R., A.J.S., E.R.M., J.L.W., D.T.O., S.T.) and Psychiatry (A.X.M., C.M.N.), University of California, La Jolla; and University of Washington, Seattle (S.M.M.)
| | - Andrew J Schork
- From the Departments of Medicine (F.R., A.J.S., E.R.M., J.L.W., D.T.O., S.T.) and Psychiatry (A.X.M., C.M.N.), University of California, La Jolla; and University of Washington, Seattle (S.M.M.)
| | - Adam X Maihofer
- From the Departments of Medicine (F.R., A.J.S., E.R.M., J.L.W., D.T.O., S.T.) and Psychiatry (A.X.M., C.M.N.), University of California, La Jolla; and University of Washington, Seattle (S.M.M.)
| | - Caroline M Nievergelt
- From the Departments of Medicine (F.R., A.J.S., E.R.M., J.L.W., D.T.O., S.T.) and Psychiatry (A.X.M., C.M.N.), University of California, La Jolla; and University of Washington, Seattle (S.M.M.)
| | - Santica M Marcovina
- From the Departments of Medicine (F.R., A.J.S., E.R.M., J.L.W., D.T.O., S.T.) and Psychiatry (A.X.M., C.M.N.), University of California, La Jolla; and University of Washington, Seattle (S.M.M.)
| | - Elizabeth R Miller
- From the Departments of Medicine (F.R., A.J.S., E.R.M., J.L.W., D.T.O., S.T.) and Psychiatry (A.X.M., C.M.N.), University of California, La Jolla; and University of Washington, Seattle (S.M.M.)
| | - Joseph L Witztum
- From the Departments of Medicine (F.R., A.J.S., E.R.M., J.L.W., D.T.O., S.T.) and Psychiatry (A.X.M., C.M.N.), University of California, La Jolla; and University of Washington, Seattle (S.M.M.)
| | - Daniel T O'Connor
- From the Departments of Medicine (F.R., A.J.S., E.R.M., J.L.W., D.T.O., S.T.) and Psychiatry (A.X.M., C.M.N.), University of California, La Jolla; and University of Washington, Seattle (S.M.M.)
| | - Sotirios Tsimikas
- From the Departments of Medicine (F.R., A.J.S., E.R.M., J.L.W., D.T.O., S.T.) and Psychiatry (A.X.M., C.M.N.), University of California, La Jolla; and University of Washington, Seattle (S.M.M.).
| |
Collapse
|
23
|
Silva ITD, Almeida-Pititto BD, Ferreira SRG. Reassessing lipid metabolism and its potentialities in the prediction of cardiovascular risk. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2015; 59:171-80. [PMID: 25993681 DOI: 10.1590/2359-3997000000031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/13/2014] [Indexed: 11/22/2022]
Abstract
There are numerous particles, enzymes, and mechanisms in the lipid metabolism that are involved in the genesis of cardiovascular disease (CVD). Given its prevalence in populations and its impact on mortality, it is relevant to review the lipid metabolism as it may potentially provide subsidies to better prediction. This article reviews the importance of traditional cardiovascular risk factors and comments on the potential of novel lipid biomarkers involved in the physiopathology of CVD. The Framingham cohorts proved the role of traditional risk factors (physical inactivity, smoking, blood pressure, total cholesterol, LDL-C, HDL-C, plasma glucose) in the prediction of cardiovascular events. However, a significant number of individuals that suffer from a cardiovascular event has few or none of these factors. Such finding indicates the need for new biomarkers able to identify plaques that are more susceptible to rupture. Some of bloodstream biomarkers related to lipid metabolism are modified LDL particles, apolipoprotein AI (apo AI), apolipoprotein B, lipoprotein (a) [Lp (a)], cholesteryl ester transfer protein (CETP), subtypes of LDL and HDL particles, and lipoprotein-associated phospholipase A2 (Lp-PLA2). These factors participate in the atherosclerotic process, and are abnormal in individuals at high risk, or in those who suffered from a cardiovascular event. Lp (a) determination is already employed in clinical practice and should be included as a reference parameter for CVD monitoring. Furthermore, there are expectations for wider use of apo B, non-HDL cholesterol and total cholesterol / HDL-C determination to improve cardiovascular risk assessment.
Collapse
Affiliation(s)
- Isis Tande da Silva
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Sandra Roberta G Ferreira
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
24
|
Immunopathology of desialylation: human plasma lipoprotein(a) and circulating anti-carbohydrate antibodies form immune complexes that recognize host cells. Mol Cell Biochem 2015; 403:13-23. [PMID: 25633186 DOI: 10.1007/s11010-015-2332-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
Abstract
Human plasma lipoprotein(a) [Lp(a)], the dominant lipoprotein in atherosclerotic plaques, contains an apo(a) subunit of variable size linked to the apoB subunit of a low-density lipoprotein (LDL) molecule. Circulating lipoprotein immune complexes (ICs) assayed by ELISA using microplate-coated anti-apo(a) or anti-apoB antibody for capture and peroxidase-labelled anti-human immunoglobulins as probe consisted mostly of Lp(a) despite several-fold excess of LDL over Lp(a) in plasma. Microplate coating of plasma lipoprotein IC and probing with antibodies to apo(a) and apoB also revealed negligible presence of LDL compared to Lp(a). Peanut agglutinin specific to desialylated O-glycans bound significantly more to Lp(a) recovered after urea dissociation of IC than to free Lp(a). Plasma lipoproteins separated by ultracentrifugation and desialylated by neuraminidase formed IC with naturally occurring antibodies in normal plasma. These de novo ICs agglutinated desialylated but not normal human RBC in proportion to the polyagglutinin antibody titre of plasma used, suggesting availability of multiple unoccupied binding sites on the participating antibodies even after IC formation. Agglutination was inhibitable by galactosides and decreased 4-8 fold if precursor lipoprotein was selectively depleted of Lp(a), showing agglutinating ICs were contributed mainly by desialylated Lp(a) and galactose-specific antibodies. IC was 2 fold more agglutinating if lipoproteins used contained smaller rather than larger Lp(a) molecules of the same number. Small size/high plasma concentration Lp(a) phenotype and neuraminidase-releasing diseases including diabetes are risk factors for vascular disorders. Results suggest a possible route of Lp(a) attachment to vascular cells that offer terminal galactose on surface glycans following desialylation.
Collapse
|
25
|
Akhter F, Khan MS, Singh S, Ahmad S. An immunohistochemical analysis to validate the rationale behind the enhanced immunogenicity of D-ribosylated low density lipo-protein. PLoS One 2014; 9:e113144. [PMID: 25393017 PMCID: PMC4231124 DOI: 10.1371/journal.pone.0113144] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/22/2014] [Indexed: 01/26/2023] Open
Abstract
Advanced glycation end products (AGEs) are thought to contribute to the abnormal lipoprotein profiles and increased risk of cardiovascular disease in patients with diabetes and renal failure. D-ribose is one of the naturally occurring pentose monosaccharide present in all living cells and is a key component of numerous biomolecules involved in many important metabolic pathways. Formation of D-ribose derived glycated low density lipoprotein (LDL) has been previously demonstrated but no studies have been performed to assess the immune complex deposition in the kidney of rabbits immunized with glycated LDL. In this study, LDL was glycated with D-ribose, and it was further used as an immunogen for immunizing NZW female rabbits. The results showed that female rabbits immunized with D-ribose modified LDL induced antibodies as detected by direct binding and competitive ELISA. The modified LDL was found to be highly immunogenic eliciting high titer immunogen-specific antibodies, while the native forms were moderately immunogenic. The induced antibodies from modified LDL exhibited wide range of heterogeneity in recognizing various proteins and amino acids conformers. Furthermore, our histopathological results illustrated the deposits of immune complex in glomerular basement membrane in rabbits immunized with D-ribose-LDL.
Collapse
Affiliation(s)
- Firoz Akhter
- Department of Bio-Engineering, Integral University, Lucknow, India
- Department of Bio-Sciences, Integral University, Lucknow, India
| | - M. Salman Khan
- Department of Bio-Sciences, Integral University, Lucknow, India
- * E-mail: (SA); (MSK)
| | - Sarika Singh
- Department Toxicology, Central Drug Research Institute (CDRI), Lucknow, India
| | - Saheem Ahmad
- Department of Bio-Sciences, Integral University, Lucknow, India
- * E-mail: (SA); (MSK)
| |
Collapse
|
26
|
Unique antibody responses to malondialdehyde-acetaldehyde (MAA)-protein adducts predict coronary artery disease. PLoS One 2014; 9:e107440. [PMID: 25210746 PMCID: PMC4161424 DOI: 10.1371/journal.pone.0107440] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/12/2014] [Indexed: 12/13/2022] Open
Abstract
Malondialdehyde-acetaldehyde adducts (MAA) have been implicated in atherosclerosis. The purpose of this study was to investigate the role of MAA in atherosclerotic disease. Serum samples from controls (n = 82) and patients with; non-obstructive coronary artery disease (CAD), (n = 40), acute myocardial infarction (AMI) (n = 42), or coronary artery bypass graft (CABG) surgery due to obstructive multi-vessel CAD (n = 72), were collected and tested for antibody isotypes to MAA-modifed human serum albumin (MAA-HSA). CAD patients had elevated relative levels of IgG and IgA anti-MAA, compared to control patients (p<0.001). AMI patients had a significantly increased relative levels of circulating IgG anti-MAA-HSA antibodies as compared to stable angina (p<0.03) or CABG patients (p<0.003). CABG patients had significantly increased relative levels of circulating IgA anti-MAA-HSA antibodies as compared to non-obstructive CAD (p<0.001) and AMI patients (p<0.001). Additionally, MAA-modified proteins were detected in the tissue of human AMI lesions. In conclusion, the IgM, IgG and IgA anti-MAA-HSA antibody isotypes are differentially and significantly associated with non-obstructive CAD, AMI, or obstructive multi-vessel CAD and may serve as biomarkers of atherosclerotic disease.
Collapse
|
27
|
Babakr AT, Elsheikh OM, Almarzouki AA, Assiri AM, Abdalla BEE, Zaki HY, Fatani SH, NourEldin EM. Relationship between oxidized low-density lipoprotein antibodies and obesity in different glycemic situations. Diabetes Metab Syndr Obes 2014; 7:513-20. [PMID: 25368528 PMCID: PMC4216034 DOI: 10.2147/dmso.s70904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Autoantibodies to oxidized low-density lipoprotein (oxLDL) are a heterogeneous group of antibodies that are controversially discussed to be either pathogenic or protective. Biochemical and anthropometric measurements correlated with increased levels of these antibodies are also controversial, especially in conditions of impaired glucose tolerance and type 2 diabetes mellitus. The present study was conducted to evaluate levels of oxLDL antibodies and their correlation with obesity in different glycemic situations. METHODS Two hundred and seventy-four adult males were classified into three subgroups: group 1 (n=125), comprising a control group of nondiabetic subjects; group 2 (n=77), comprising subjects with impaired glucose tolerance; and group 3 (n=72), comprising patients with type 2 diabetes mellitus. Body mass index was calculated, and measurement of oxLDL and oxLDL antibodies was performed. RESULTS Higher mean concentrations of oxLDL were found in the type 2 diabetes mellitus and impaired glucose tolerance groups (143.5±21.9 U/L and 108.7±23.7 U/L, respectively). The mean value for the control group was 73.5±27.5 U/L (P<0.001). Higher mean concentrations of anti-oxLDL antibodies were observed in the type 2 diabetes mellitus and impaired glucose tolerance groups (55.7±17.8 U/L and 40.4±17.6 U/L, respectively). The mean value for the control group was 20.4±10 U/L (P<0.001). Levels of anti-oxLDL antibodies were found to be positively and significantly correlated with body mass index in the control group (r=0.46), impaired glucose tolerance (r=0.51), type 2 diabetes mellitus group (r=0.46), and in the whole study population (r=0.44; P<0.001). CONCLUSION Anti-oxLDL antibody levels were increased in subjects with type 2 diabetes mellitus and impaired glucose tolerance and were positively correlated with obesity and body mass index.
Collapse
Affiliation(s)
- Abdullatif Taha Babakr
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
- Correspondence: Abdullatif Taha Babakr, Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Abdia, Makkah, Kingdom of Saudi Arabia, Tel +966 2527 0000 ext 4322, Fax +966 2527 0000 ext 4319, Email
| | - Osman Mohamed Elsheikh
- Department of Biochemistry, Faculty of Medicine, International University of Africa, Khartoum, Sudan
| | - Abdullah A Almarzouki
- Department of Internal Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Adel Mohamed Assiri
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Badr Eldin Elsonni Abdalla
- Department of Biochemistry, Sciences Faculty for Girls, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hani Yousif Zaki
- Department of Biochemistry and Nutrition, Faculty of Medicine, University of Gezira, Sudan
| | - Samir H Fatani
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - EssamEldin Mohamed NourEldin
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Lipoproteínas modificadas como marcadores de riesgo cardiovascular en la diabetes mellitus. ACTA ACUST UNITED AC 2013; 60:518-28. [DOI: 10.1016/j.endonu.2012.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 11/17/2022]
|
29
|
Abstract
A large body of evidence implicates the immune system in the pathogenesis of atherosclerosis. Both active and passive immunizations have been tested as immunomodulation strategies to confer protective effect against atherogenesis. This review focuses on the current knowledge of the complex role and the potential for immune modulation therapy via active immunization for atherosclerosis.
Collapse
Affiliation(s)
- Kuang-Yuh Chyu
- 1Division of Cardiology, Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
30
|
Lopes-Virella MF, Virella G. Pathogenic role of modified LDL antibodies and immune complexes in atherosclerosis. J Atheroscler Thromb 2013; 20:743-54. [PMID: 23965492 DOI: 10.5551/jat.19281] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
There is strong evidence supporting a key role of the adaptive immune response in atherosclerosis, given that both activated Th cells producing predominantly interferon-γ and oxidized LDL (oxLDL) and the corresponding antibodies have been isolated from atheromatous plaques. Studies carried out using immune complexes (IC) prepared with human LDL and rabbit antibodies have demonstrated proatherogenic and pro-inflammatory properties, mostly dependent on the engagement of Fcγ receptors Ⅰ and Ⅱ in macrophages and macrophage-like cell lines. Following the development of a methodology for isolating modified LDL (mLDL) antibodies from serum and isolated IC, it was confirmed that antibodies reacting with oxLDL and advanced glycation end product-modified LDL are predominantly IgG of subtypes 1 and 3 and that mLDL IC prepared with human reagents possesses pro-inflammatory and proatherogenic properties. In previous studies, LDL separated from isolated IC has been analyzed for its modifications, and the reactivity of antibodies isolated from the same IC with different LDL modifications has been tested. Recently, we obtained strong evidence suggesting that the effects of mLDL IC on phagocytic cells are modulated by the composition of the mLDL. Clinical studies have shown that the level of mLDL in circulating IC is a strong predictor of cardiovascular disease (CVD) and, in diabetic patients, other significant complications, such as nephropathy and retinopathy. In conclusion, there is convincing ex vivo and clinical data supporting the hypothesis that, in humans, the humoral immune response to mLDL is pathogenic rather than protective.
Collapse
|
31
|
Virella G, Colglazier J, Chassereau C, Hunt KJ, Baker NL, Lopes-Virella MF. Immunoassay of modified forms of human low density lipoprotein in isolated circulating immune complexes. J Immunoassay Immunochem 2013; 34:61-74. [PMID: 23323982 DOI: 10.1080/15321819.2012.683500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Modified lipoproteins are able to induce inflammatory reactions through innate immunity pathways and are immunogenic, leading to an autoimmune response that results in the formation of proinflammatory immune complexes. The measurement of circulating oxidized lipoproteins and corresponding antibodies has, therefore, been proposed as an approach to assess the risk for complications in patients with diabetes and for the risk of cardiovascular disease in the general population. However, the majority of modified low density lipoprotein (LDL) in the peripheral circulation exists in the form of immune complexes, and this is a significant obstacle for the measurement of modified LDL and the corresponding antibodies. In this manuscript, we describe in detail the methodology developed by our group for isolation and fractionation of circulating immune complexes (IC), allowing the accurate assay of different LDL modifications. This approach has resulted in several studies showing that the levels of modified LDL are risk factors with a stronger association to diabetic retinopathy, nephropathy, and macrovascular disease. Ongoing research is focused on evaluating the predictive power of modified LDL levels for the development or progression of atherosclerotic cardiovascular disease in other patient populations and on the simplification of the assay to make it more applicable to diagnostic laboratories.
Collapse
Affiliation(s)
- Gabriel Virella
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Di Marco E, Gray SP, Jandeleit-Dahm K. Diabetes alters activation and repression of pro- and anti-inflammatory signaling pathways in the vasculature. Front Endocrinol (Lausanne) 2013; 4:68. [PMID: 23761786 PMCID: PMC3672854 DOI: 10.3389/fendo.2013.00068] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/21/2013] [Indexed: 01/11/2023] Open
Abstract
A central mechanism driving vascular disease in diabetes is immune cell-mediated inflammation. In diabetes, enhanced oxidation and glycation of macromolecules, such as lipoproteins, insults the endothelium, and activates both innate and adaptive arms of the immune system by generating new antigens for presentation to adaptive immune cells. Chronic inflammation of the endothelium in diabetes leads to continuous infiltration and accumulation of leukocytes at sites of endothelial cell injury. We will describe the central role of the macrophage as a source of signaling molecules and damaging by-products which activate infiltrating lymphocytes in the tissue and contribute to the pro-oxidant and pro-inflammatory microenvironment. An important aspect to be considered is the diabetes-associated defects in the immune system, such as fewer or dysfunctional athero-protective leukocyte subsets in the diabetic lesion compared to non-diabetic lesions. This review will discuss the key pro-inflammatory signaling pathways responsible for leukocyte recruitment and activation in the injured vessel, with particular focus on pro- and anti-inflammatory pathways aberrantly activated or repressed in diabetes. We aim to describe the interaction between advanced glycation end products and their principle receptor RAGE, angiotensin II, and the Ang II type 1 receptor, in addition to reactive oxygen species (ROS) production by NADPH-oxidase enzymes that are relevant to vascular and immune cell function in the context of diabetic vasculopathy. Furthermore, we will touch on recent advances in epigenetic medicine that have revealed high glucose-mediated changes in the transcription of genes with known pro-inflammatory downstream targets. Finally, novel anti-atherosclerosis strategies that target the vascular immune interface will be explored; such as vaccination against modified low-density lipoprotein and pharmacological inhibition of ROS-producing enzymes.
Collapse
Affiliation(s)
- Elyse Di Marco
- Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Stephen P. Gray
- Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
33
|
High sensitivity C-reactive protein concentrations, birthweight and cardiovascular risk markers in Brazilian children. Eur J Clin Nutr 2013; 67:664-9. [PMID: 23571847 DOI: 10.1038/ejcn.2013.75] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND/OBJECTIVES High sensitivity C-reactive protein (hs-CRP) and low birthweight have emerged as predictors of cardiovascular diseases (CVDs). In studies involving adults, higher concentrations of hs-CRP have been associated with low birthweight. This study assessed the relationship between hs-CRP and birthweight, and other risk markers for CVDs in childhood. SUBJECTS/METHODS A total of 459 Brazilian children aged 5-8 years were included in the study. hs-CRP was measured by particle-enhanced immunonephelometry. The nutritional status of the children was assessed by BMI and waist circumference. Total cholesterol and fractions, triglycerides and glucose were measured by enzymatic methods. Insulin sensitivity was determined by the homeostasis model assessment (HOMA) method. Blood pressure was measured by the HDI/Pulse Wave CR-2000 equipment (Hypertension Diagnostics, Eagan, MN, USA). A multivariate linear regression analysis investigated the association between hs-CRP and birthweight, and risk markers for CVDs. RESULTS There were positive associations between hs-CRP and gender (P=0.001), waist circumference (P<0.001) and systolic blood pressure (SBP) (P=0.03), and negative associations between hs-CRP and age (P<0.001), and high-density lipoprotein cholesterol (HDL-c) (P=0.005) (R²=0.14). Abnormal values of hs-CRP, waist circumference, HDL-c and SBP, respectively, were observed in 27.7, 26.4, 14.4 and 34.7% of the children. CONCLUSIONS Opposite to studies involving adults, there was no association between hs-CRP and birthweight, implying that time may strengthen the relationship, considering that hs-CRP-concentration-associated metabolic changes increase from childhood to adulthood. The associations between hs-CRP and waist circumference, HDL-c and SBP in very young ages is a matter of concern, especially in females, in view of the large number of children with abnormal values of these measurements.
Collapse
|
34
|
Lopes-Virella MF, Virella G. The role of immunity and inflammation in the development of diabetic complications. Diabetol Int 2013. [DOI: 10.1007/s13340-013-0105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
N. Orekhov A. Direct anti-atherosclerotic therapy preventing intracellular cholesterol retention. Health (London) 2013. [DOI: 10.4236/health.2013.57a1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Tsimikas S, Willeit P, Willeit J, Santer P, Mayr M, Xu Q, Mayr A, Witztum JL, Kiechl S. Oxidation-Specific Biomarkers, Prospective 15-Year Cardiovascular and Stroke Outcomes, and Net Reclassification of Cardiovascular Events. J Am Coll Cardiol 2012; 60:2218-29. [DOI: 10.1016/j.jacc.2012.08.979] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/14/2012] [Accepted: 08/30/2012] [Indexed: 11/26/2022]
|
37
|
Chang SH, Johns M, Boyle JJ, McConnell E, Kirkham PA, Bicknell C, Zahoor-ul-Hassan Dogar M, Edwards RJ, Gale-Grant O, Khamis R, Ramkhelawon KVV, Haskard DO. Model IgG monoclonal autoantibody-anti-idiotype pair for dissecting the humoral immune response to oxidized low density lipoprotein. Hybridoma (Larchmt) 2012; 31:87-98. [PMID: 22509912 DOI: 10.1089/hyb.2011.0058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Increasing evidence implicates IgG autoantibodies against oxidized forms of low density lipoprotein (oxLDL) in the pathophysiology of atherosclerotic arterial disease. However, insufficient knowledge of their structure and function is a key gap. Using an elderly LDL receptor-deficient atherosclerotic mouse, we isolated a novel IgG3k against oxLDL (designated MAb LO1). LO1 reacts with copper-oxidized LDL, but minimally with native LDL. Further analysis showed that MAb LO1 also reacts in vitro with malondialdehyde-conjugated LDL (MDA-LDL), a known key epitope in copper-oxidized LDL preparations. By screening a phage library expressing single chain variable region antibodies (scFv), we selected an anti-idiotype scFv (designated H3) that neutralizes MAb LO1 binding to MDA-LDL. Amino acid substitutions between H3 and an irrelevant control scFv C12 showed that residues in the H3 CDRH2, CDRH3, and CDRL2 are all critical for MAb LO1 binding, consistent with a conformational epitope on H3 involving both heavy and light chains. Comparison of amino acids in H3 CDRH2 and CDRL2 with apoB, the major LDL protein, showed homologous sequences, suggesting H3 has structural similarities to the MAb LO1 binding site on MDA-LDL. Immunocytochemical staining showed that MAb LO1 binds epitopes in mouse and human atherosclerotic lesions. The MAb LO1-H3 combination therefore provides a very promising model for analyzing the structure and function of an individual IgG autoantibody in relation to atherosclerosis.
Collapse
Affiliation(s)
- Shang-Hung Chang
- Vascular Sciences Section, Department of Medicine, Imperial College, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ferreira PF, Zago VH, D'Alexandri FL, Panzoldo NB, Gidlund MA, Nakamura RT, Schreiber R, Parra ES, Santiago FD, Nakandakare ER, Quintão EC, de Faria EC. Oxidized low-density lipoproteins and their antibodies: Relationships with the reverse cholesterol transport and carotid atherosclerosis in adults without cardiovascular diseases. Clin Chim Acta 2012; 413:1472-8. [DOI: 10.1016/j.cca.2012.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
|
39
|
Holleboom AG, Daniil G, Fu X, Zhang R, Hovingh GK, Schimmel AW, Kastelein JJP, Stroes ESG, Witztum JL, Hutten BA, Tsimikas S, Hazen SL, Chroni A, Kuivenhoven JA. Lipid oxidation in carriers of lecithin:cholesterol acyltransferase gene mutations. Arterioscler Thromb Vasc Biol 2012; 32:3066-75. [PMID: 23023370 DOI: 10.1161/atvbaha.112.255711] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Lecithin:cholesterol acyltransferase (LCAT) has been shown to play a role in the depletion of lipid oxidation products, but this has so far not been studied in humans. In this study, we investigated processes and parameters relevant to lipid oxidation in carriers of functional LCAT mutations. METHODS AND RESULTS In 4 carriers of 2 mutant LCAT alleles, 63 heterozygotes, and 63 family controls, we measured activities of LCAT, paraoxonase 1, and platelet-activating factor-acetylhydrolase; levels of lysophosphatidylcholine molecular species, arachidonic and linoleic acids, and their oxidized derivatives; immunodetectable oxidized phospholipids on apolipoprotein (apo) B-containing and apo(a)-containing lipoproteins; IgM and IgG autoantibodies to malondialdehyde-low-density lipoprotein and IgG and IgM apoB-immune complexes; and the antioxidant capacity of high-density lipoprotein (HDL). In individuals with LCAT mutations, plasma LCAT activity, HDL cholesterol, apoA-I, arachidonic acid, and its oxidized derivatives, oxidized phospholipids on apo(a)-containing lipoproteins, HDL-associated platelet-activating factor-acetylhydrolase activity, and the antioxidative capacity of HDL were gene-dose-dependently decreased. Oxidized phospholipids on apoB-containing lipoproteins was increased in heterozygotes (17%; P<0.001) but not in carriers of 2 defective LCAT alleles. CONCLUSIONS Carriers of LCAT mutations present with significant reductions in LCAT activity, HDL cholesterol, apoA-I, platelet-activating factor-acetylhydrolase activity, and antioxidative potential of HDL, but this is not associated with parameters of increased lipid peroxidation; we did not observe significant changes in the oxidation products of arachidonic acid and linoleic acid, immunoreactive oxidized phospholipids on apo(a)-containing lipoproteins, and IgM and IgG autoantibodies against malondialdehyde-low-density lipoprotein. These data indicate that plasma LCAT activity, HDL-associated platelet-activating factor-acetylhydrolase activity, and HDL cholesterol may not influence the levels of plasma lipid oxidation products.
Collapse
Affiliation(s)
- Adriaan G Holleboom
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ribeiro S, do Sameiro Faria M, Mascarenhas-Melo F, Freitas I, Mendonça MI, Nascimento H, Rocha-Pereira P, Miranda V, Mendonça D, Quintanilha A, Belo L, Costa E, Reis F, Santos-Silva A. Main determinants of PON1 activity in hemodialysis patients. Am J Nephrol 2012; 36:317-23. [PMID: 23007074 DOI: 10.1159/000342235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/30/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Cardiovascular diseases are the major cause of morbidity and mortality in hemodialysis (HD) patients. These patients present reduced paraoxonase 1 (PON1) activity that depends on genetic and non-genetic factors; however, how these factors influence PON1 activity in HD patients is poorly clarified. Our aim was to evaluate the influence of two polymorphisms and non-genetic factors on PON1 activity in HD patients. METHODS We evaluated 183 HD patients under recombinant human erythropoietin (rhEPO) treatment and 22 healthy individuals. The lipid profile [total cholesterol, triglycerides, HDL-c, LDL-c, apolipoprotein (Apo) A-I, Apo B, lipoprotein(a) and oxidized low-density lipoprotein (Ox-LDL)], inflammatory markers [adiponectin, interleukin-6 (IL-6) and C-reactive protein (CRP)], PON1 activity and PON1 gene polymorphisms (L55M and Q192R) were evaluated. RESULTS HD patients presented higher levels of IL-6, CRP and Ox-LDL/LDL-c, and lower PON1 activity, total cholesterol, HDL-c, LDL-c, Apo A and Apo B; the most frequent genotype was heterozygosity for L55M polymorphism and homozygosity for the Q allele, the more frequent genotype of Q192R polymorphism. Multiple regression analysis identified heterozygosity and homozygosity for L55M and Q192R polymorphisms, very low-density lipoproteins, LDL-c, Apo A and CRP levels, time on dialysis and rhEPO dose, as the independent variables significantly associated with PON1 activity. The associations with CRP, rhEPO and time on dialysis were negative. CONCLUSION Our results show that the reduced PON1 activity in HD patients who are not under statin therapy is strongly associated with inflammation, longer time on dialysis and high rhEPO doses, suggesting that the reduction in PON1 activity may worsen the prognosis of these patients.
Collapse
|
41
|
Lopez-Parra V, Mallavia B, Lopez-Franco O, Ortiz-Muñoz G, Oguiza A, Recio C, Blanco J, Nimmerjahn F, Egido J, Gomez-Guerrero C. Fcγ receptor deficiency attenuates diabetic nephropathy. J Am Soc Nephrol 2012; 23:1518-27. [PMID: 22859852 DOI: 10.1681/asn.2011080822] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Among patients with diabetes, increased production of immunoglobulins against proteins modified by diabetes is associated with proteinuria and cardiovascular risk, suggesting that immune mechanisms may contribute to the development of diabetes complications, such as nephropathy. We investigated the contribution of IgG Fcγ receptors to diabetic renal injury in hyperglycemic, hypercholesterolemic mice. We used streptozotocin to induce diabetes in apolipoprotein E-deficient mice and in mice deficient in both apolipoprotein E and γ-chain, the common subunit of activating Fcγ receptors. After 15 weeks, the mice lacking Fcγ receptors had significantly less albuminuria and renal hypertrophy, despite similar degrees of hyperglycemia and hypercholesterolemia, immunoglobulin production, and glomerular immune deposits. Moreover, diabetic Fcγ receptor-deficient mice had less mesangial matrix expansion, inflammatory cell infiltration, and collagen and α-smooth muscle actin content in their kidneys. Accordingly, expression of genes involved in leukocyte infiltration, fibrosis, and oxidative stress was significantly reduced in diabetic kidneys and in mesangial cells cultured from Fcγ receptor-deficient mice. In summary, preventing the activation of Fcγ receptors alleviates renal hypertrophy, inflammation, and fibrosis in hypercholesterolemic mice with diabetes, suggesting that modulating Fcγ receptor signaling may be renoprotective in diabetic nephropathy.
Collapse
Affiliation(s)
- Virginia Lopez-Parra
- Renal and Vascular Inflammation Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University, Avda Reyes Catolicos, 2 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Haro A, Saxlin T, Suominen AL, Ylöstalo P, Leiviskä J, Tervonen T, Knuuttila M. Serum lipids modify periodontal infection - C-reactive protein association. J Clin Periodontol 2012; 39:817-23. [PMID: 22780440 DOI: 10.1111/j.1600-051x.2012.01920.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2012] [Indexed: 11/28/2022]
Abstract
AIM To investigate whether low-grade inflammation-related factors such as serum low-density (LDL-C) and high-density lipoprotein cholesterol (HDL-C) modify the association between periodontal infection and C-reactive protein. MATERIAL AND METHODS This study was based on a subpopulation of the Health 2000 Survey, which consisted of dentate, non-diabetic, non-rheumatic subjects who were 30-49 years old (n = 2710). The extent of periodontal infection was measured by means of the number of teeth with periodontal pocket ≥4 mm and teeth with periodontal pocket ≥6 mm and systemic inflammation using high sensitive C-reactive protein. RESULTS The extent of periodontal infection was associated with elevated levels of C-reactive protein among those subjects whose HDL-C value was below the median value of 1.3 mmol/l or LDL-C above the median value of 3.4 mmol/l. Among those with HDL-C ≥ 1.3 mmol/l or LDL-C ≤ 3.4 mmol/l, the association between periodontal infection and serum concentrations of C-reactive protein was practically non-existent. CONCLUSION This study suggests that the relation of periodontal infection to the systemic inflammatory condition is more complicated than previously presumed. The findings of this study suggest that the possible systemic effect of periodontal infection is dependent on serum lipid composition.
Collapse
Affiliation(s)
- Anniina Haro
- Institute of Dentistry, University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
43
|
Lopes-Virella MF, Baker NL, Hunt KJ, Lyons TJ, Jenkins AJ, Virella G. High concentrations of AGE-LDL and oxidized LDL in circulating immune complexes are associated with progression of retinopathy in type 1 diabetes. Diabetes Care 2012; 35:1333-40. [PMID: 22511260 PMCID: PMC3357232 DOI: 10.2337/dc11-2040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine whether immunocomplexes (ICs) containing advanced glycation end product (AGE)-LDL (AGE-LDL) and oxidized LDL (oxLDL) contribute to the development of retinopathy over a 16-year period in subjects with type 1 diabetes. RESEARCH DESIGN AND METHODS Levels of AGE-LDL and oxLDL in ICs were measured in 517 patients of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort. Retinopathy was assessed by stereoscopic fundus photography. Cox proportional hazards models were used to assess the effect of AGE-LDL-ICs and oxLDL-ICs on retinopathy progression. RESULTS In unadjusted models, higher baseline levels of AGE-LDL-ICs and oxLDL-ICs significantly predicted progression of diabetic retinopathy outcomes. After adjustment by study-design variables (treatment group, retinopathy cohort, duration of type 1 diabetes, and baseline albumin excretion rate [AER], hemoglobin A(1c) (HbA(1c)), and Early Treatment Diabetic Retinopathy Study [ETDRS] score), one SD increase in IC levels was associated with 47% (hazard ratio [HR] 1.47 [95% CI 1.19-1.81]; AGE-LDL-IC) and 45% (1.45 [1.17-1.80]; oxLDL-IC) increased risk of developing proliferative diabetic retinopathy (PDR) and 37% (1.37 [1.12-1.66]; to both ICs) increased risk of progressing to severe nonproliferative retinopathy. Analyses were stratified by retinopathy cohort because results differed between primary and secondary cohorts. For AGE-LDL-ICs, HR for progression to PDR was 2.38 (95% CI 1.30-4.34) in the primary cohort and attenuated in the secondary cohort (1.29 [1.03-1.62]). Similar results were observed for oxLDL-ICs. CONCLUSIONS Increased levels of AGE-LDL and oxLDL in ICs are associated with increased risk for progression to advanced retinopathy in patients with type 1 diabetes, indicating that the antibody response to modified LDL plays a significant role in retinopathy progression.
Collapse
Affiliation(s)
- Maria F Lopes-Virella
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Kannan Y, Sundaram K, Aluganti Narasimhulu C, Parthasarathy S, Wewers MD. Oxidatively modified low density lipoprotein (LDL) inhibits TLR2 and TLR4 cytokine responses in human monocytes but not in macrophages. J Biol Chem 2012; 287:23479-88. [PMID: 22613713 DOI: 10.1074/jbc.m111.320960] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inflammation characterized by the expression and release of cytokines and chemokines is implicated in the development and progression of atherosclerosis. Oxidatively modified low density lipoproteins, central to the formation of atherosclerotic plaques, have been reported to signal through Toll-like receptors (TLRs), TLR4 and TLR2, in concert with scavenger receptors to regulate the inflammatory microenvironment in atherosclerosis. This study evaluates the role of low density lipoproteins (LDL) and oxidatively modified LDL (oxmLDL) in the expression and release of proinflammatory mediators IκBζ, IL-6, IL-1β, TNFα, and IL-8 in human monocytes and macrophages. Although standard LDL preparations induced IκBζ along with IL-6 and IL-8 production, this inflammatory effect was eliminated when LDL was isolated under endotoxin-restricted conditions. However, when added with TLR4 and TLR2 ligands, this low endotoxin preparation of oxmLDL suppressed the expression and release of IL-1β, IL-6, and TNFα but surprisingly spared IL-8 production. The suppressive effect of oxmLDL was specific to monocytes as it did not inhibit LPS-induced proinflammatory cytokines in human macrophages. Thus, TLR ligand contamination of LDL/oxmLDL preparations can complicate interpretations of inflammatory responses to these modified lipoproteins. In contrast to providing a proinflammatory function, oxmLDL suppresses the expression and release of selected proinflammatory mediators.
Collapse
Affiliation(s)
- Yashaswini Kannan
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
45
|
Amir S, Hartvigsen K, Gonen A, Leibundgut G, Que X, Jensen-Jarolim E, Wagner O, Tsimikas S, Witztum JL, Binder CJ. Peptide mimotopes of malondialdehyde epitopes for clinical applications in cardiovascular disease. J Lipid Res 2012; 53:1316-26. [PMID: 22508944 PMCID: PMC3371243 DOI: 10.1194/jlr.m025445] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autoantibodies specific for malondialdehyde-modified LDL (MDA-LDL) represent
potential biomarkers to predict cardiovascular risk. However, MDA-LDL is a high
variability antigen with limited reproducibility. To identify peptide mimotopes of
MDA-LDL, phage display libraries were screened with the MDA-LDL-specific IgM
monoclonal Ab LRO4, and the specificity and antigenic properties of MDA mimotopes
were assessed in vitro and in vivo. We identified one 12-mer linear (P1) and one
7-mer cyclic (P2) peptide carrying a consensus sequence, which bound specifically to
murine and human anti-MDA monoclonal Abs. Furthermore, MDA mimotopes were found to
mimic MDA epitopes on the surface of apoptotic cells. Immunization of mice with P2
resulted in the induction of MDA-LDL-specific Abs, which strongly immunostained human
atherosclerotic lesions. We detected IgG and IgM autoAbs to both MDA mimotopes in
sera of healthy subjects and patients with myocardial infarction and stable angina
pectoris undergoing percutaneous coronary intervention, and the titers of autoAbs
correlated significantly with respective Ab titers against MDA-LDL. In conclusion, we
identified specific peptides that are immunological mimotopes of MDA. These mimotopes
can serve as standardized and reproducible antigens that will be useful for
diagnostic and therapeutic applications in cardiovascular disease.
Collapse
Affiliation(s)
- Shahzada Amir
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Virella G, Lopes-Virella MF. The Pathogenic Role of the Adaptive Immune Response to Modified LDL in Diabetes. Front Endocrinol (Lausanne) 2012; 3:76. [PMID: 22715334 PMCID: PMC3375400 DOI: 10.3389/fendo.2012.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/28/2012] [Indexed: 01/12/2023] Open
Abstract
The main causes of morbidity and mortality in diabetes are macro and microvascular complications, including atherosclerosis, nephropathy, and retinopathy. As the definition of atherosclerosis as a chronic inflammatory disease became widely accepted, it became important to define the triggers of vascular inflammation. Oxidative and other modifications of lipids and lipoproteins emerged as major pathogenic factors in atherosclerosis. Modified forms of LDL (mLDL) are pro-inflammatory by themselves, but, in addition, mLDLs including oxidized, malondialdehyde (MDA)-modified, and advanced glycation end (AGE)-product-modified LDL induce autoimmune responses in humans. The autoimmune response involves T cells in the arterial wall and synthesis of IgG antibodies. The IgG auto-antibodies that react with mLDLs generate immune complexes (IC) both intra and extravascularly, and those IC activate the complement system as well as phagocytic cells via the ligation of Fcγ receptors. In vitro studies proved that the pro-inflammatory activity of IC containing mLDL (mLDL-IC) is several-fold higher than that of the modified LDL molecules. Clinical studies support the pathogenic role of mLDL-IC in the development of macrovascular disease patients with diabetes. In type 1 diabetes, high levels of oxidized and AGE-LDL in IC were associated with internal carotid intima-media thickening and coronary calcification. In type 2 diabetes, high levels of MDA-LDL in IC predicted the occurrence of myocardial infarction. There is also evidence that mLDL-IC are involved in the pathogenesis of diabetic nephropathy and retinopathy. The pathogenic role of mLDL-IC is not unique to diabetic patients, because those IC are also detected in non-diabetic individuals. But mLDL-IC are likely to reach higher concentrations and have a more prominent pathogenic role in diabetes due to increased antigenic load secondary to high oxidative stress and to enhanced autoimmune responses in type 1 diabetes.
Collapse
Affiliation(s)
- Gabriel Virella
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, USA
- *Correspondence: Gabriel Virella, Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, MSC 504, Charleston, SC 29425-5040, USA. e-mail:
| | - Maria F. Lopes-Virella
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, USA
- Ralph E. Johnson VA Medical CenterCharleston, SC, USA
| |
Collapse
|
47
|
Ravandi A, Boekholdt SM, Mallat Z, Talmud PJ, Kastelein JJP, Wareham NJ, Miller ER, Benessiano J, Tedgui A, Witztum JL, Khaw KT, Tsimikas S. Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: results from the EPIC-Norfolk Study. J Lipid Res 2011; 52:1829-36. [PMID: 21821825 DOI: 10.1194/jlr.m015776] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Levels of IgG and IgM autoantibodies (AA) to malondialdehyde (MDA)-LDL and apoB-immune complexes (ICs) were measured in 748 cases and 1,723 controls in the EPIC-Norfolk cohort and their association to coronary artery disease (CAD) events determined. We evaluated whether AA and IC modify CAD risk associated with secretory phospholipase A(2) (sPLA(2)) type IIA mass and activity, lipoprotein-associated PLA(2) activity, lipoprotein (a) [Lp(a)], oxidized phospholipids on apoB-100 (OxPL/apoB), myeloperoxidase, and high sensitivity C-reactive protein. IgG ICs were higher in cases versus controls (P = 0.02). Elevated levels of IgM AA and IC were inversely associated with Framingham Risk Score and number of metabolic syndrome criteria (p range 0.02-0.001). In regression analyses adjusted for age, smoking, diabetes, LDL-cholesterol, HDL-cholesterol, and systolic blood pressure, the highest tertiles of IgG and IgM AA and IC were not associated with higher risk of CAD events compared with the lowest tertiles. However, elevated levels of IgM IC reduced the risk of Lp(a) (P = 0.006) and elevated IgG MDA-LDL potentiated the risk of sPLA(2) mass (P = 0.018). This epidemiological cohort of initially healthy subjects shows that IgG and IgM AA and IC are not independent predictors of CAD events but may modify CAD risk associated with elevated levels of oxidative biomarkers.
Collapse
Affiliation(s)
- Amir Ravandi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The effect of olive oil polyphenols on antibodies against oxidized LDL. A randomized clinical trial. Clin Nutr 2011; 30:490-3. [DOI: 10.1016/j.clnu.2011.01.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/04/2011] [Accepted: 01/16/2011] [Indexed: 11/23/2022]
|
49
|
Moghaddam AE, Gartlan KH, Kong L, Sattentau QJ. Reactive carbonyls are a major Th2-inducing damage-associated molecular pattern generated by oxidative stress. THE JOURNAL OF IMMUNOLOGY 2011; 187:1626-33. [PMID: 21742965 DOI: 10.4049/jimmunol.1003906] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxidative stress is widespread and entwined with pathological processes, yet its linkage to adaptive immunity remains elusive. Reactive carbonyl (RC) adduction, a common feature of oxidative stress, has been shown to target proteins to the adaptive immune system. Because aldehydes are important mediators of carbonylation, we explored the immunomodulatory properties of model Ags modified by common bioactive aldehyde by-products of oxidative stress: 4-hydroxy-2-nonenal, malondialdehyde, and glycolaldehyde. Ag modification with all three aldehydes resulted in Ag-specific IgG1-dominated responses in adjuvant-free murine immunizations in an RC-dependent manner. The central role of RCs was confirmed, as their reduction into nonreactive groups abrogated all adaptive responses, despite the presence of other well-known aldehyde-driven adducts such as N(ε)-carboxymethyllysine and glycolaldehyde-pyridine. Moreover, Ag-specific Ab responses robustly correlated with the extent of RC adduction, regardless of the means of their generation. T cell responses mirrored the Th2-biased Ab isotypes by Ag-specific splenocyte production of IL-4, IL-5, and IL-13, but not IFN-γ. The RC-induced Th2 response was in sharp contrast to that induced by Th1/Th2 balanced or Th1-biasing adjuvants and was maintained in a range of mouse strains. In vitro studies revealed that RC adduction enhanced Ag presentation with Th2 polarization in the absence of conventional dendritic cell activation. Taken together, these data implicate commonly occurring RC as an important oxidation-derived Th2 immunomodulatory damage-associated molecular pattern with potentially important roles in health and disease.
Collapse
Affiliation(s)
- Amin E Moghaddam
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| | | | | | | |
Collapse
|
50
|
Postigo J, Genre F, Iglesias M, Fernández-Rey M, Buelta L, Carlos Rodríguez-Rey J, Merino J, Merino R. Exacerbation of type II collagen-induced arthritis in apolipoprotein E-deficient mice in association with the expansion of Th1 and Th17 cells. ACTA ACUST UNITED AC 2011; 63:971-80. [PMID: 21225684 DOI: 10.1002/art.30220] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To explore the bidirectional relationship between the development of rheumatoid arthritis (RA) and atherosclerosis using bovine type II collagen (CII)-immunized B10.RIII apoE(-/-) mice, a murine model of spontaneous atherosclerosis and collagen-induced arthritis (CIA). METHODS Male B10.RIII apoE(-/-) mice and wild-type controls were immunized with 150 μg of CII emulsified in Freund's complete adjuvant (CFA). The clinical, radiologic, and histopathologic severity of CIA, the levels of circulating IgG1 and IgG2a anti-CII antibodies, the expression of proinflammatory and antiinflammatory cytokines in the joints, and the percentages of Th1, Th17, and Treg lymphocytes in the draining lymph nodes were evaluated during CIA induction. In addition, the size of atherosclerotic lesions was assessed in these mice 8 weeks after CIA induction. RESULTS B10.RIII apoE(-/-) mice that were immunized with CII and CFA developed an exacerbated CIA that was accompanied by increased joint expression of multiple proinflammatory cytokines and by the expansion in the draining lymph nodes of Th1 and Th17 cells. In contrast, the size of vascular lesions in B10.RIII apoE(-/-) mice was not affected by the development of CIA. CONCLUSION Our findings indicate that a deficiency in apolipoprotein E and/or its consequences in cholesterol metabolism act as accelerating factors in autoimmunity by promoting Th1 and Th17 inflammatory responses.
Collapse
|