1
|
Starshinova A, Zinchenko Y, Malkova A, Kudlay D, Kudryavtsev I, Yablonskiy P. Sarcoidosis and Autoimmune Inflammatory Syndrome Induced by Adjuvants. Life (Basel) 2023; 13:1047. [PMID: 37109576 PMCID: PMC10145559 DOI: 10.3390/life13041047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Currently, sarcoidosis remains one of the diseases with unknown etiology, which significantly complicates its diagnosis and treatment. Various causes of sarcoidosis have been studied for many years. Both organic and inorganic trigger factors, provoking the development of granulomatous inflammation are considered. However, the most promising and evidence-based hypothesis is the development of sarcoidosis as an autoimmune disease, provoked by various adjuvants in genetic predisposed individuals. This concept fits into the structure of the autoimmune/inflammatory syndrome, induced by adjuvants (ASIA) that was proposed in 2011 by Professor Shoenfeld Y. In this paper, the authors reveal the presence of major and minor ASIA criteria for sarcoidosis, propose a new concept of the course of sarcoidosis within the framework of ASIA, and point out the difficulties in creating a model of the disease and the selection of therapy. It is obvious that the data obtained not only bring us closer to understanding the nature of sarcoidosis, but also potentiate new studies confirming this hypothesis by obtaining a model of the disease.
Collapse
Affiliation(s)
- Anna Starshinova
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia;
| | - Yulia Zinchenko
- Saint-Petersburg Research Institute of Phthisiopulmonology, 194064 Saint-Petersburg, Russia (P.Y.)
| | - Anna Malkova
- Laboratory of the Mosaic of Autoimmunity, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia;
| | - Dmitriy Kudlay
- Medical Department, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Institute of Immunology, 115478 Moscow, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, 197341 Saint-Petersburg, Russia;
- Department of Immunology, Institution of Experimental Medicine, 197022 Saint-Petersburg, Russia
| | - Piotr Yablonskiy
- Saint-Petersburg Research Institute of Phthisiopulmonology, 194064 Saint-Petersburg, Russia (P.Y.)
- Laboratory of the Mosaic of Autoimmunity, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia;
| |
Collapse
|
2
|
Kraaijvanger R, Veltkamp M. The Role of Cutibacterium acnes in Sarcoidosis: From Antigen to Treatable Trait? Microorganisms 2022; 10:1649. [PMID: 36014067 PMCID: PMC9415339 DOI: 10.3390/microorganisms10081649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Cutibacterium acnes (C. acnes, formerly Propionibacterium acnes) is considered to be a non-pathogenic resident of the human skin, as well as mucosal surfaces. However, it also has been demonstrated that C. acnes plays a pathogenic role in diseases such as acne vulgaris or implant infections after orthopedic surgery. Besides a role in infectious disease, this bacterium also seems to harbor immunomodulatory effects demonstrated by studies using C. acnes to enhance anti-tumor activity in various cancers or vaccination response. Sarcoidosis is a systemic inflammatory disorder of unknown causes. Cultures of C. acnes in biopsy samples of sarcoidosis patients, its presence in BAL fluid, tissue samples as well as antibodies against this bacterium found in serum of patients with sarcoidosis suggest an etiological role in this disease. In this review we address the antigenic as well as immunomodulatory potential of C. acnes with a focus on sarcoidosis. Furthermore, a potential role for antibiotic treatment in patients with sarcoidosis will be explored.
Collapse
Affiliation(s)
- Raisa Kraaijvanger
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
| | - Marcel Veltkamp
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Division of Hearth and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
3
|
Detection of Anti-Vimentin Antibodies in Patients with Sarcoidosis. Diagnostics (Basel) 2022; 12:diagnostics12081939. [PMID: 36010289 PMCID: PMC9406612 DOI: 10.3390/diagnostics12081939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
There is a need to further characterize the antibody response to vimentin in relation to its possible involvement in pathogenicity of sarcoidosis and other lung disorders. Objectives: We investigated serum samples from patients with sarcoidosis, healthy controls and controls with other non-infectious lung diseases., to evaluate levels and frequency of these antibodies. Materials and methods: A retrospective-prospective comparative study was performed in the years 2015–2019. Sera from 93 patients with sarcoidosis, 55 patients with non-infectious lung diseases and 40 healthy subjects was examined for presence of autoantibodies to mutated citrullinated vimentin (anti-MCV). Patients with elevated anti-MCV levels were tested for antibodies to a cyclic citrullinated peptide (anti-CCP) and citrullinated vimentin (anti-Sa). In all cases ELISA assays was used. The results were considered statistically significant at p-value less than 0.05. Results of the study: The high concentrations of anti-MCV antibodies were more frequent in patients with sarcoidosis (40.9% of the cases, 38/93), compared to the control groups (23.6% and 25.0% of cases, respectively). In sarcoidosis, clinical symptoms similar to the autoimmune pathology were described. A moderate positive correlation between the anti-MCV and anti-Sa antibodies (r = 0.66) was found in 13 patients with sarcoidosis. There was no significant difference between the levels of the anti-MCV and the anti-CCP in patients with non-infectious lung diseases and the healthy control group. Conclusion: Antibodies to citrullinated cyclic peptides are not significant in the pathogenesis of sarcoidosis and other investigated pulmonary diseases (COPD, granulomatosis with polyangiitis, alveolitis) and based on their low concentration, it can be assumed that citrullination and modification of vimentin is not a key factor in the development of an autoimmune response in patients with sarcoidosis.
Collapse
|
4
|
d'Alessandro M, Bergantini L, Mezzasalma F, Cavallaro D, Gangi S, Baglioni S, Armati M, Abbritti M, Cattelan S, Cameli P, Bargagli E. Immune-Checkpoint Expression on CD4, CD8 and NK Cells in Blood, Bronchoalveolar Lavage and Lymph Nodes of Sarcoidosis. Mol Diagn Ther 2022; 26:437-449. [PMID: 35761164 PMCID: PMC9276617 DOI: 10.1007/s40291-022-00596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
Background Sarcoidosis features non-necrotizing granulomas consisting mainly of activated CD4-lymphocytes. T-cell activation is regulated by immune checkpoint (IC) molecules. The present study aimed to compare IC expression on CD4, CD8 and NK cells from peripheral, alveolar and lung‐draining lymph node (LLN) samples of sarcoidosis patients. Methods Flow-cytometry analysis was performed to detect IC molecules and a regression decision tree model was constructed to investigate potential binary classifiers for sarcoidosis diagnosis as well as for the IC distribution. Results Fourteen patients (7 females) were consecutively recruited in the study; all enrolled patients showed hilo-mediastinal lymph node enlargement and lung parenchyma involvement with chest X-rays and high resolution computed tomography. CD4+PD1+ and CD8+PD1+ were higher in bronchoalveolar lavage (BAL) than in LLN (p = 0.0159 and p = 0.0439, respectively). CD4+ T-cell immunoglobulin and ITIM domain (TIGIT)+ were higher in BAL than in peripheral blood mononuclear cells (PBMCs) (p = 0.0239), while CD8+TIGIT+ were higher in PBMC than in BAL (p = 0.0386). CD56+TIGIT+ were higher in LLN than in PBMC (p = 0.0126). The decision-tree model showed the best clustering cells of PBMC, BAL and LLN: CD56, CD4/CD8 and CD4+TIGIT+ cells. Considering patients and controls, the best subset was CD4+CTLA-4+. Conclusion High expression of PD1 and TIGIT on T cells in BAL, as well as CTLA-4 and TIGIT on T cells in LLN, suggest that inhibition of these molecules could be a therapeutic strategy for avoiding the development of chronic inflammation and tissue damage in sarcoidosis patients. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s40291-022-00596-0.
Collapse
Affiliation(s)
- Miriana d'Alessandro
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy.
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| | - Fabrizio Mezzasalma
- Diagnostic and Interventional Bronchoscopy Unit, Cardio-Thoracic and Vascular Department, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Siena, Italy
| | - Dalila Cavallaro
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| | - Sara Gangi
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| | | | - Martina Armati
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| | | | - Stefano Cattelan
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation Unit, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Viale Bracci 1, 53100, Siena, Italy
| |
Collapse
|
5
|
Surolia R, Antony VB. Pathophysiological Role of Vimentin Intermediate Filaments in Lung Diseases. Front Cell Dev Biol 2022; 10:872759. [PMID: 35573702 PMCID: PMC9096236 DOI: 10.3389/fcell.2022.872759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Vimentin intermediate filaments, a type III intermediate filament, are among the most widely studied IFs and are found abundantly in mesenchymal cells. Vimentin intermediate filaments localize primarily in the cytoplasm but can also be found on the cell surface and extracellular space. The cytoplasmic vimentin is well-recognized for its role in providing mechanical strength and regulating cell migration, adhesion, and division. The post-translationally modified forms of Vimentin intermediate filaments have several implications in host-pathogen interactions, cancers, and non-malignant lung diseases. This review will analyze the role of vimentin beyond just the epithelial to mesenchymal transition (EMT) marker highlighting its role as a regulator of host-pathogen interactions and signaling pathways for the pathophysiology of various lung diseases. In addition, we will also examine the clinically relevant anti-vimentin compounds and antibodies that could potentially interfere with the pathogenic role of Vimentin intermediate filaments in lung disease.
Collapse
Affiliation(s)
| | - Veena B. Antony
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Bagavant H, Cizio K, Araszkiewicz AM, Papinska JA, Garman L, Li C, Pezant N, Drake WP, Montgomery CG, Deshmukh US. Systemic immune response to vimentin and granuloma formation in a model of pulmonary sarcoidosis. J Transl Autoimmun 2022; 5:100153. [PMID: 35434591 PMCID: PMC9006845 DOI: 10.1016/j.jtauto.2022.100153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
A characteristic feature of sarcoidosis is a dysregulated immune response to persistent stimuli, often leading to the formation of non-necrotizing granulomas in various organs. Although genetic susceptibility is an essential factor in disease development, the etiology of sarcoidosis is not fully understood. Specifically, whether autoimmunity contributes to the initiation or progression of the disease is uncertain. In this study, we investigated systemic autoimmunity to vimentin in sarcoidosis. IgG antibodies to human vimentin were measured in sera from sarcoidosis patients and healthy controls. Mice immunized with recombinant murine vimentin were challenged intravenously with vimentin-coated beads to mimic pulmonary sarcoidosis. Lungs from treated mice were studied for cellular infiltration, granuloma formation, and gene expression. Immune cells in the bronchoalveolar lavage fluid were evaluated by flow cytometry. Compared to healthy controls, sarcoidosis patients had a higher frequency and levels of circulating anti-vimentin IgG. Vimentin-immunized mice developed lung granulomas following intravenous challenge with vimentin-coated beads. These sarcoidosis-like granulomas showed the presence of Langhans and foreign body multinucleated giant cells, CD4 T cells, and a heterogeneous collection of MHC II positive and arginase 1-expressing macrophages. The lungs showed upregulated pro-inflammatory gene expression, including Ifng, Il17, and Tnfa, reflecting TH1/TH17 responses typical of sarcoidosis. In addition, genes in the TH2 canonical pathway were also upregulated, congruent with increased numbers of ILC2 in the bronchoalveolar lavage. Overall, these results further validate vimentin as an autoantigen in sarcoidosis and provide evidence for an anti-vimentin immune response in disease pathogenesis. Our study also highlights the possible role of ILC2-driven TH2-like responses in the formation of lung granulomas in sarcoidosis.
Collapse
Affiliation(s)
- Harini Bagavant
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Katarzyna Cizio
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Antonina M. Araszkiewicz
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Joanna A. Papinska
- Department of Microbiology and Immunology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK, USA
| | - Lori Garman
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Chuang Li
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Nathan Pezant
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Wonder P. Drake
- Division of Infectious Diseases, Department of Medicine, Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Courtney G. Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Umesh S. Deshmukh
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
7
|
Díaz-Espada F, Matheu V, Barrios Y. A review of hypersensitivity methods to detect immune responses to SARS-CoV-2. METHODS IN MICROBIOLOGY 2022; 50:189-222. [PMID: 38620993 PMCID: PMC8919898 DOI: 10.1016/bs.mim.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The investigation of the immune response after SARS-CoV-2 infection has been the goal of many researchers worldwide. The study of humoral immune responses and in vitro T cell production after infection requires the obtaining of individualized blood samples to test the presence of antibodies or activated T cells specific for the virus. In vitro T cell studies are especially troublesome due to the need for more specialized resources often outside the daily routine of clinical laboratories. For this reason the development of a simple and objective method to achieve these T cell studies is needed. In this manuscript we reviewed the hypersensitivity reactions, the theoretical basis and the historical background of delayed type hypersensitivity (DTH) which uses the principles of use of this test in the clinical setting for the past century. In the second part of the review, we focus on COVID adaptive immune responses, to understand the differences and challenges offered by this new application of DTH to investigate immune responses elicited after infection. In the last part of the review a vision provided for the use of this test to investigate the immunogenicity elicited by the vaccines. In our opinion, the clinical guidelines of immune assessment of SARS-CoV-2-infected or vaccinated individuals should include this simple and low-cost test to measure T-cell immunity. Rationale and improved vaccination schemes could be obtained after its implementation in the routine assessment of immunity in this pandemic situation.
Collapse
Affiliation(s)
| | - Victor Matheu
- Servicio de Alergología, Floor-2, Edificio de Actividades Ambulatorias, Hospital Universitario de Canarias, Tenerife, Spain
| | - Yvelise Barrios
- Laboratorio Immunología Central Lab, Planta 0, Edificio Principal, Hospital Universitario de Canarias, Tenerife, Spain
| |
Collapse
|
8
|
A Primer on the Clinical Aspects of Sarcoidosis for the Basic and Translational Scientist. J Clin Med 2021; 10:jcm10132857. [PMID: 34203188 PMCID: PMC8268437 DOI: 10.3390/jcm10132857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
The immunopathogenesis of sarcoidosis remains unclear. This failure in understanding has been clinically impactful, as it has impeded the accurate diagnosis, treatment, and prevention of this disease. Unraveling the mechanisms of sarcoidosis will require input from basic and translational scientists. In order to reach this goal, scientists must have a firm grasp of the clinical aspects of the disease, including its diagnostic criteria, the immunologic defects, clinical presentations, response to therapy, risk factors, and clinical course. This manuscript will provide an overview of the clinical aspects of sarcoidosis that are particularly relevant for the basic and translational scientist. The variable phenotypic expression of the disease will be described, which may be integral in identifying immunologic disease mechanisms that may be relevant to subgroups of sarcoidosis patients. Data concerning treatment and risk factors may yield important insights concerning germane immunologic pathways involved in the development of disease. It is hoped that this manuscript will stimulate communication between scientists and clinicians that will eventually lead to improved care of sarcoidosis patients.
Collapse
|
9
|
Ghosh M, Hartmann H, Jakobi M, März L, Bichmann L, Freudenmann LK, Mühlenbruch L, Segan S, Rammensee HG, Schneiderhan-Marra N, Shipp C, Stevanović S, Joos TO. The Impact of Biomaterial Cell Contact on the Immunopeptidome. Front Bioeng Biotechnol 2021; 8:571294. [PMID: 33392160 PMCID: PMC7773052 DOI: 10.3389/fbioe.2020.571294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Biomaterials play an increasing role in clinical applications and regenerative medicine. A perfectly designed biomaterial should restore the function of damaged tissue without triggering an undesirable immune response, initiate self-regeneration of the surrounding tissue and gradually degrade after implantation. The immune system is well recognized to play a major role in influencing the biocompatibility of implanted medical devices. To obtain a better understanding of the effects of biomaterials on the immune response, we have developed a highly sensitive novel test system capable of examining changes in the immune system by biomaterial. Here, we evaluated for the first time the immunopeptidome, a highly sensitive system that reflects cancer transformation, virus or drug influences and passes these cellular changes directly to T cells, as a test system to examine the effects of contact with materials. Since monocytes are one of the first immune cells reacting to biomaterials, we have tested the influence of different materials on the immunopeptidome of the monocytic THP-1 cell line. The tested materials included stainless steel, aluminum, zinc, high-density polyethylene, polyurethane films containing zinc diethyldithiocarbamate, copper, and zinc sulfate. The incubation with all material types resulted in significantly modulated peptides in the immunopeptidome, which were material-associated. The magnitude of induced changes in the immunopeptidome after the stimulation appeared comparable to that of bacterial lipopolysaccharides (LPS). The source proteins of many detected peptides are associated with cytotoxicity, fibrosis, autoimmunity, inflammation, and cellular stress. Considering all tested materials, it was found that the LPS-induced cytotoxicity-, inflammation- and cellular stress-associated HLA class I peptides were mainly induced by aluminum, whereas HLA class II peptides were mainly induced by stainless steel. These findings provide the first insights into the effects of biomaterials on the immunopeptidome. A more thorough understanding of these effects may enable the design of more biocompatible implant materials using in vitro models in future. Such efforts will provide a deeper understanding of possible immune responses induced by biomaterials such as fibrosis, inflammation, cytotoxicity, and autoimmune reactions.
Collapse
Affiliation(s)
- Michael Ghosh
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Hanna Hartmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Léo März
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Applied Bioinformatics, Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Lena K Freudenmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Lena Mühlenbruch
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Sören Segan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Christopher Shipp
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Thomas O Joos
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
10
|
Wang A, Rahman NT, McGeary MK, Murphy M, McHenry A, Peterson D, Bosenberg M, Flavell RA, King B, Damsky W. Treatment of granuloma annulare and suppression of proinflammatory cytokine activity with tofacitinib. J Allergy Clin Immunol 2020; 147:1795-1809. [PMID: 33317858 DOI: 10.1016/j.jaci.2020.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Granuloma annulare (GA) is a common cutaneous inflammatory disorder characterized by macrophage accumulation and activation in skin. Its pathogenesis is poorly understood, and there are no effective treatments. The potential health implications of severe GA are unknown. OBJECTIVE We sought to better understand GA pathogenesis and evaluate a molecularly targeted treatment approach for this disease. METHODS We used single-cell RNA sequencing to study the immunopathogenesis of GA and also evaluated the efficacy of tofacitinib (a Janus kinase 1/3 inhibitor) in 5 patients with severe, long-standing GA in an open-label clinical trial. RESULTS Using single-cell RNA sequencing, we found that in GA lesions IFN-γ production by CD4+ T cells is upregulated and is associated with inflammatory polarization of macrophages and fibroblasts. In particular, macrophages upregulate oncostatin M, an IL-6 family cytokine, which appears to act on fibroblasts to alter extracellular matrix production, a hallmark of GA. IL-15 and IL-21 production appears to feed back on CD4+ T cells to sustain inflammation. Treatment of 5 patients with recalcitrant GA with tofacitinib inhibited IFN-γ and oncostatin M, as well as IL-15 and IL-21, activity and resulted in clinical and histologic disease remission in 3 patients and marked improvement in the other 2. Inhibition of these effects at the molecular level paralleled the clinical improvement. Evidence of systemic inflammation is also present in some patients with severe GA and is mitigated by tofacitinib. CONCLUSIONS The Janus kinase-signal transducer and activator of transcription pathway is activated in GA, likely in part through the activity of IFN-γ and oncostatin M, and Janus kinase inhibitors appear to be an effective treatment.
Collapse
Affiliation(s)
- Alice Wang
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn
| | - Nur-Taz Rahman
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, Conn
| | - Meaghan K McGeary
- Department of Pathology, Yale University School of Medicine, New Haven, Conn
| | - Michael Murphy
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn
| | - Austin McHenry
- Department of Pathology, Yale University School of Medicine, New Haven, Conn
| | - Danielle Peterson
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn; Department of Pathology, Yale University School of Medicine, New Haven, Conn; Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Conn
| | - Brett King
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn.
| | - William Damsky
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn.
| |
Collapse
|
11
|
Murthi M, Yoshioka K, Cho JH, Arias S, Danna E, Zaw M, Holt G, Tatsumi K, Kawasaki T, Mirsaeidi M. Presence of concurrent sarcoid-like granulomas indicates better survival in cancer patients: a retrospective cohort study. ERJ Open Res 2020; 6:00061-2020. [PMID: 33263026 PMCID: PMC7682654 DOI: 10.1183/23120541.00061-2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction An increased risk of sarcoidosis and sarcoid-like reactions in subjects with a history of malignancy has been suggested. We assessed the incidence and clinical characteristics of cancer patients with biopsies containing sarcoid-like granulomas on cancer metastasis and patient survival. Methods This is a retrospective, multicentre, observational study involving endobronchial ultrasound transbronchial needle aspiration and a melanoma patient dataset at the University of Miami, USA, and a sarcoidosis patient database at Chiba University, Japan. Subjects with a confirmed diagnosis of cancer and who subsequently developed granulomas in different organs were enrolled. The study was registered at Clinicaltrials.gov (NCT03844698). Results 133 patients met the study's criteria. The most common primary cancer sites were the skin (22.5%), breast (20.3%) and lymph node (12.8%). 24 (18%) patients developed sarcoid-like granulomas within 1 year of cancer diagnosis, 54 (40.6%) between 1 and 5 years and 49 (36.8%) after 5 years. Imaging showed possible sarcoid-like granulomas in lymph nodes in 51 cases (38.3%) and lung tissue and mediastinal lymph nodes in 73 cases (54.9%); some parenchymal reticular opacity and fibrosis was found in 5 (3.7%) and significant parenchymal fibrosis in 2 (1.5%) subjects. According to logistic regression analysis, the frequency of metastatic cancer was significantly lower in patients with sarcoid-like granulomas than in controls. Moreover, multivariate Cox proportional hazard analysis showed a significant survival advantage in those with sarcoid-like granuloma. Conclusion Sarcoid-like granulomas are uncommon pathology findings in cancer patients. There is a significant association between the presence of granulomas and reduced metastasis and increased survival. Further study is warranted to understand the protective mechanism involved.
Collapse
Affiliation(s)
- Mukunthan Murthi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Keiichiro Yoshioka
- Dept of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jeong Hee Cho
- Dept of Pathology, University of Miami, Miami, FL, USA
| | - Sixto Arias
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Elio Danna
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Moe Zaw
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Greg Holt
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA.,Section of Pulmonary, Miami VA Healthcare System, Miami, FL, USA
| | - Koichiro Tatsumi
- Dept of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Kawasaki
- Dept of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA.,Section of Pulmonary, Miami VA Healthcare System, Miami, FL, USA
| |
Collapse
|
12
|
Beijer E, Kraaijvanger R, Roodenburg C, Grutters JC, Meek B, Veltkamp M. Simultaneous testing of immunological sensitization to multiple antigens in sarcoidosis reveals an association with inorganic antigens specifically related to a fibrotic phenotype. Clin Exp Immunol 2020; 203:115-124. [PMID: 32941653 DOI: 10.1111/cei.13519] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Organic and inorganic antigens were studied simultaneously in the same cohort of sarcoidosis patients to investigate whether correlations between clinical characteristics and immunological sensitization could reveal new phenotypes. Sensitization to antigens of mycobacteria, Propionibacterium acnes catalase and vimentin was investigated in 201 sarcoidosis and 51 obstructive sleep apnoea patients, serving as control group. Sensitization to aluminium, beryllium, silica and zirconium was also studied in 105 of the sarcoidosis patients and in 24 of the controls. A significantly higher percentage of sarcoidosis patients (27·6%) than controls (4·2%) had an immunological response to metals or silica (P = 0·014). A higher percentage of these sarcoidosis patients showed fibrosis on chest X-ray 5 years after the diagnosis (69·2 versus 30·3%, P = 0·016). No significant differences in mycobacterial or vimentin enzyme-linked immunospot (ELISPOT) assay results were observed between sarcoidosis and control patients. A significantly lower percentage of sarcoidosis patients (3·5%) than control patients (15·7%) had a positive ELISPOT for P. acnes catalase (P = 0·003). However, sarcoidosis patients sensitized to P. acnes catalase were more likely to have skin involvement, while sarcoidosis patients sensitized to mycobacterial antigens were more likely to have cardiac involvement. Our study suggests a more prominent role for inorganic triggers in sarcoidosis pathogenesis than previously thought. Immunological sensitization to inorganic antigens was associated with development of fibrotic sarcoidosis. No association was found between sensitization to bacterial antigens or vimentin and sarcoidosis in Dutch patients. However, our data suggest that trigger-related phenotypes can exist in the heterogeneous population of sarcoidosis patients.
Collapse
Affiliation(s)
- E Beijer
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, the Netherlands
| | - R Kraaijvanger
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, the Netherlands
| | - C Roodenburg
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, the Netherlands.,Department of Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, the Netherlands
| | - J C Grutters
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, the Netherlands.,Department of Pulmonology, University Medical Centre, Utrecht, the Netherlands
| | - B Meek
- Department of Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, the Netherlands
| | - M Veltkamp
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, the Netherlands.,Department of Pulmonology, University Medical Centre, Utrecht, the Netherlands
| |
Collapse
|
13
|
Calender A, Weichhart T, Valeyre D, Pacheco Y. Current Insights in Genetics of Sarcoidosis: Functional and Clinical Impacts. J Clin Med 2020; 9:E2633. [PMID: 32823753 PMCID: PMC7465171 DOI: 10.3390/jcm9082633] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Sarcoidosis is a complex disease that belongs to the vast group of autoinflammatory disorders, but the etiological mechanisms of which are not known. At the crosstalk of environmental, infectious, and genetic factors, sarcoidosis is a multifactorial disease that requires a multidisciplinary approach for which genetic research, in particular, next generation sequencing (NGS) tools, has made it possible to identify new pathways and propose mechanistic hypotheses. Codified treatments for the disease cannot always respond to the most progressive forms and the identification of new genetic and metabolic tracks is a challenge for the future management of the most severe patients. Here, we review the current knowledge regarding the genes identified by both genome wide association studies (GWAS) and whole exome sequencing (WES), as well the connection of these pathways with the current research on sarcoidosis immune-related disorders.
Collapse
Affiliation(s)
- Alain Calender
- Department of Molecular and Medical genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France;
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory, University Claude Bernard Lyon 1, 69007 Lyon, France
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria;
| | - Dominique Valeyre
- INSERM UMR 1272, Department of Pulmonology, Avicenne Hospital, University Sorbonne Paris Nord, Saint Joseph Hospital, AP-HP, 75014 Paris, France;
| | - Yves Pacheco
- Department of Molecular and Medical genetics, Hospices Civils de Lyon, University Hospital, 69500 Bron, France;
- CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory, University Claude Bernard Lyon 1, 69007 Lyon, France
| |
Collapse
|
14
|
Abstract
Sarcoidosis is a multisystem granulomatous disease that may affect any body organ. Sarcoidosis is associated with many environmental and occupational exposures. Because the exact immunopathogenesis of sarcoidosis is unknown, it is not known whether these exposures are truly causing sarcoidosis, rendering the immune system more susceptible to the development of sarcoidosis, exacerbating subclinical cases of sarcoidosis, or causing a granulomatous condition distinct from sarcoidosis. This manuscript outlines what is known about the immunopathogenesis of sarcoidosis and postulates mechanisms whereby these exposures could cause or exacerbate the disease. We also describe the varied environmental and occupational exposures that have been associated with sarcoidosis. This includes potential infectious exposures such as mycobacteria and Propionibacterium acnes, a skin commensal bacterium, as well as non-infectious environmental exposures including inhaled bioaerosols, metal dusts and products of combustion. Further insights concerning the relationship of environmental exposures to the development of sarcoidosis may have a major impact on the prevention and treatment of this enigmatic disease.
Collapse
|
15
|
Sarcoidosis: Causes, Diagnosis, Clinical Features, and Treatments. J Clin Med 2020; 9:jcm9041081. [PMID: 32290254 PMCID: PMC7230978 DOI: 10.3390/jcm9041081] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Sarcoidosis is a multisystem granulomatous disease with nonspecific clinical manifestations that commonly affects the pulmonary system and other organs including the eyes, skin, liver, spleen, and lymph nodes. Sarcoidosis usually presents with persistent dry cough, eye and skin manifestations, weight loss, fatigue, night sweats, and erythema nodosum. Sarcoidosis is not influenced by sex or age, although it is more common in adults (< 50 years) of African-American or Scandinavians decent. Diagnosis can be difficult because of nonspecific symptoms and can only be verified following histopathological examination. Various factors, including infection, genetic predisposition, and environmental factors, are involved in the pathology of sarcoidosis. Exposures to insecticides, herbicides, bioaerosols, and agricultural employment are also associated with an increased risk for sarcoidosis. Due to its unknown etiology, early diagnosis and detection are difficult; however, the advent of advanced technologies, such as endobronchial ultrasound-guided biopsy, high-resolution computed tomography, magnetic resonance imaging, and 18F-fluorodeoxyglucose positron emission tomography has improved our ability to reliably diagnose this condition and accurately forecast its prognosis. This review discusses the causes and clinical features of sarcoidosis, and the improvements made in its prognosis, therapeutic management, and the recent discovery of potential biomarkers associated with the diagnostic assay used for sarcoidosis confirmation.
Collapse
|
16
|
Kinloch AJ, Cascino MD, Dai J, Bermea RS, Ko K, Vesselits M, Dragone LL, Mor Vaknin N, Legendre M, Markovitz DM, Okoreeh MK, Townsend MJ, Clark MR. Anti-vimentin antibodies: a unique antibody class associated with therapy-resistant lupus nephritis. Lupus 2020; 29:569-577. [PMID: 32216516 DOI: 10.1177/0961203320913606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Tubulointerstitial inflammation (TII) in lupus nephritis is associated with a worse prognosis. Vimentin, a filamental antigen, is commonly targeted by in situ activated B-cells in TII. The prognostic importance of high serum anti-vimentin antibodies (AVAs) in lupus nephritis and their relationship with common lupus autoantibody specificities is unknown. Herein we investigated associations between AVA isotypes, other autoantibodies, and response to mycophenolate mofetil (MMF) in the presence or absence of rituximab. Methods The Translational Research Initiative in the Department of Medicine (TRIDOM) cross-sectional cohort of 99 lupus patients was assayed for IgG-, IgA- and IgM- AVAs, lupus-associated and rheumatoid arthritis-associated antibodies, and hierarchically clustered. Serum from baseline, 26 and 52 weeks from 132 Lupus Nephritis Assessment with Rituximab (LUNAR) trial enrolled lupus nephritis patients was also analysed and correlated with renal function up to week 78. Results In TRIDOM, AVAs, especially IgM AVAs, clustered with IgG anti-dsDNA and away from anti-Sm and -RNP and rheumatoid arthritis-associated antibodies. In LUNAR at baseline, AVAs correlated weakly with anti-dsDNA and more strongly with anticardiolipin titers. Regardless of treatment, IgG-, but not IgM- or IgA-, AVAs were higher at week 52 than at baseline. In contrast, anti-dsDNA titers declined, regardless of therapeutic regime. High IgG AVA titers at entry predicted less response to therapy. Conclusion AVAs, especially IgG AVAs, are unique in distribution and response to therapy compared with other commonly measured autoantibody specificities. Furthermore, high-titer IgG AVAs identify lupus nephritis patients resistant to conventional therapies. These data suggest that AVAs represent an independent class of prognostic autoantibodies.
Collapse
Affiliation(s)
- Andrew J Kinloch
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA
| | - Matthew D Cascino
- Product Development I20, Genentech Research & Early Development, South San Francisco, USA
| | - Jian Dai
- Early Clinical Development Informatics, Genentech Research & Early Development, South San Francisco, USA
| | - Rene S Bermea
- University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA
| | - Kichul Ko
- University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA
| | - Margaret Vesselits
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA
| | - Leonard L Dragone
- Early Development, Infectious Disease, The Janssen Pharmaceutical Companies of Johnson & Johnson, South San Francisco, California
| | - Nirit Mor Vaknin
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Maureen Legendre
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - David M Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Michael K Okoreeh
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA
| | - Michael J Townsend
- Biomarker Discovery OMNI, Genentech Research & Early Development, South San Francisco, USA
| | - Marcus R Clark
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA.,University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA
| |
Collapse
|
17
|
Starshinova AA, Malkova AM, Basantsova NY, Zinchenko YS, Kudryavtsev IV, Ershov GA, Soprun LA, Mayevskaya VA, Churilov LP, Yablonskiy PK. Sarcoidosis as an Autoimmune Disease. Front Immunol 2020; 10:2933. [PMID: 31969879 PMCID: PMC6960207 DOI: 10.3389/fimmu.2019.02933] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the large number of performed studies, the etiology and pathogenesis of sarcoidosis still remain unknown. Most researchers allude to the possible autoimmune or immune-mediated genesis of the disease. This review attempts an integral analysis of currently available information suggesting an autoimmune genesis of sarcoidosis and is divided into four categories: the evaluation of clinical signs described both in patients with sarcoidosis and “classic” autoimmune diseases, the role of triggering factors in the development of sarcoidosis, the presence of immunogenic susceptibility in the development of the disease, and the analysis of cellular and humoral immune responses in sarcoidosis. Studying the etiology and pathogenesis of sarcoidosis will improve diagnostic procedures as well as the prognosis and patients' quality of life.
Collapse
Affiliation(s)
- Anna A Starshinova
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia
| | - Anna M Malkova
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia
| | - Natalia Y Basantsova
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia.,Phthisiopulmonology Department, St. Petersburg State Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Yulia S Zinchenko
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia.,Phthisiopulmonology Department, St. Petersburg State Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Igor V Kudryavtsev
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia.,Immunology Department, Institute of Experimental Medicine, St. Petersburg, Russia.,Immunology Department, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Gennadiy A Ershov
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia
| | - Lidia A Soprun
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia
| | - Vera A Mayevskaya
- Foreign Languages Department, St. Petersburg University of Economics, St. Petersburg, Russia
| | - Leonid P Churilov
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia.,Phthisiopulmonology Department, St. Petersburg State Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Piotr K Yablonskiy
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, St. Petersburg, Russia.,Phthisiopulmonology Department, St. Petersburg State Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| |
Collapse
|
18
|
Bennett D, Bargagli E, Refini RM, Rottoli P. New concepts in the pathogenesis of sarcoidosis. Expert Rev Respir Med 2019; 13:981-991. [DOI: 10.1080/17476348.2019.1655401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- David Bennett
- Respiratory Diseases and Lung Transplantation Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Department of Medical and Surgical Sciences & Neurosciences, University of Siena, Siena, Italy
| | - Rosa Metella Refini
- Respiratory Diseases and Lung Transplantation Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Department of Medical and Surgical Sciences & Neurosciences, University of Siena, Siena, Italy
| | - Paola Rottoli
- Department of Medical and Surgical Sciences & Neurosciences, University of Siena, Siena, Italy
- Regional Coordinator for Rare Respiratory Diseases for Tuscany, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
19
|
Kaiser Y, Eklund A, Grunewald J. Moving target: shifting the focus to pulmonary sarcoidosis as an autoimmune spectrum disorder. Eur Respir J 2019; 54:13993003.021532018. [PMID: 31000677 DOI: 10.1183/13993003.021532018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Despite more than a century of research, the causative agent(s) in sarcoidosis, a heterogeneous granulomatous disorder mainly affecting the lungs, remain(s) elusive. Following identification of genetic factors underlying different clinical phenotypes, increased understanding of CD4+ T-cell immunology, which is believed to be central to sarcoid pathogenesis, as well as the role of B-cells and other cells bridging innate and adaptive immunity, contributes to novel insights into the mechanistic pathways influencing disease resolution or chronicity. Hopefully, new perspectives and state-of-the-art technology will help to shed light on the still-elusive enigma of sarcoid aetiology. This perspective article highlights a number of recent advances in the search for antigenic targets in sarcoidosis, as well as the main arguments for sarcoidosis as a spectrum of autoimmune conditions, either as a result of an external (microbial) trigger and/or due to defective control mechanisms regulating the balance between T-cell activation and inhibition.
Collapse
Affiliation(s)
- Ylva Kaiser
- Respiratory Medicine Unit, Dept of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anders Eklund
- Respiratory Medicine Unit, Dept of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Dept of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
20
|
Abstract
Sarcoidosis is an inflammatory disorder of unknown cause that is characterized by granuloma formation in affected organs, most often in the lungs. Patients frequently suffer from cough, shortness of breath, chest pain and pronounced fatigue and are at risk of developing lung fibrosis or irreversible damage to other organs. The disease develops in genetically predisposed individuals with exposure to an as-yet unknown antigen. Genetic factors affect not only the risk of developing sarcoidosis but also the disease course, which is highly variable and difficult to predict. The typical T cell accumulation, local T cell immune response and granuloma formation in the lungs indicate that the inflammatory response in sarcoidosis is induced by specific antigens, possibly including self-antigens, which is consistent with an autoimmune involvement. Diagnosis can be challenging for clinicians because of the potential for almost any organ to be affected. As the aetiology of sarcoidosis is unknown, no specific treatment and no pathognomic markers exist. Thus, improved biomarkers to determine disease activity and to identify patients at risk of developing fibrosis are needed. Corticosteroids still constitute the first-line treatment, but new treatment strategies, including those targeting quality-of-life issues, are being evaluated and should yield appropriate, personalized and more effective treatments.
Collapse
|
21
|
Lundström SL, Heyder T, Wiklundh E, Zhang B, Eklund A, Grunewald J, Zubarev RA. SpotLight Proteomics-A IgG-Enrichment Phenotype Profiling Approach with Clinical Implications. Int J Mol Sci 2019; 20:ijms20092157. [PMID: 31052352 PMCID: PMC6540603 DOI: 10.3390/ijms20092157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Sarcoidosis is a systemic interstitial lung disease of unknown aetiology. Less invasive diagnostics are needed to decipher disease pathology and to distinguish sub-phenotypes. Here we test if SpotLight proteomics, which combines de novo MS/MS sequencing of enriched IgG and co-extracted proteins with subsequent label-free quantification of new and known peptides, can differentiate controls and sarcoidosis phenotypes (Löfgrens and non-Löfgrens syndrome, LS and nonLS). Intra-individually matched IgG enriched from serum and bronchial lavage fluid (BALF) from controls (n = 12), LS (n = 11) and nonLS (n = 12) were investigated. High-resolution mass-spectrometry SpotLight proteomics and uni- and multivariate-statistical analyses were used for data processing. Major differences were particularly observed in control-BALF versus sarcoidosis-BALF. However, interestingly, information obtained from BALF profiles was still present (but less prominent) in matched serum profiles. By using information from orthogonal partial least squares discriminant analysis (OPLS-DA) differentiating 1) sarcoidosis-BALF and control-BALF and 2) LS-BALF vs. nonLS-BALF, control-serum and sarcoidosis-serum (p = 0.0007) as well as LS-serum and nonLS-serum (p = 0.006) could be distinguished. Noteworthy, many factors prominent in identifying controls and patients were those associated with Fc-regulation, but also features from the IgG-Fab region and novel peptide variants. Differences between phenotypes were mostly IgG-specificity related. The results support the analytical utility of SpotLight proteomics which prospectively have potential to differentiate closely related phenotypes from a simple blood test.
Collapse
Affiliation(s)
- Susanna L Lundström
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Tina Heyder
- Respiratory Medicine Unit, Department of Medicine Solna & Centre for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Emil Wiklundh
- Respiratory Medicine Unit, Department of Medicine Solna & Centre for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Bo Zhang
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Anders Eklund
- Respiratory Medicine Unit, Department of Medicine Solna & Centre for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna & Centre for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
22
|
Musaelyan A, Lapin S, Nazarov V, Tkachenko O, Gilburd B, Mazing A, Mikhailova L, Shoenfeld Y. Vimentin as antigenic target in autoimmunity: A comprehensive review. Autoimmun Rev 2018; 17:926-934. [DOI: 10.1016/j.autrev.2018.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
|
23
|
Kinloch AJ, Kaiser Y, Wolfgeher D, Ai J, Eklund A, Clark MR, Grunewald J. In Situ Humoral Immunity to Vimentin in HLA-DRB1*03 + Patients With Pulmonary Sarcoidosis. Front Immunol 2018; 9:1516. [PMID: 30038611 PMCID: PMC6046378 DOI: 10.3389/fimmu.2018.01516] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Vimentin has been implicated in pulmonary sarcoidosis as a T-cell autoantigen, particularly in the context of HLA-DRB1*03, the Vα2.3/Vβ22 T-cell receptor (TCR), and Löfgren’s syndrome. As vimentin is a known antigenic target in B-cell-mediated autoimmunity, we investigated in situ humoral anti-vimentin responses in pulmonary sarcoidosis and their relationship with HLA-DRB1*03. Sarcoid and healthy control (HC) lung biopsies were analyzed by multi-color confocal microscopy for B-cells, T-cells, proliferation, and vimentin, and compared to tonsillectomy tissue. Bronchoalveolar lavage fluid (BALF) and serum from 48 sarcoidosis patients and 15 healthy volunteers were typed for HLA-DRB1*03 and titrated for antibodies to full-length vimentin, vimentin truncations, and total IgG and IgA by ELISA. Presence of extracellular vimentin in BALF was determined by mass spectrometry and T-cell populations measured by flow cytometry. Sarcoid lung samples, especially from HLA-DRB1*03+ patients, contained vimentin-rich tertiary lymphoid structures and corresponding BALF was highly enriched for both IgG and IgA anti-vimentin antibody (AVA) titers. Furthermore, sarcoidosis patient BALF AVA concentrations (expressed as arbitrary units per milligram of total immunoglobulin isotype) correlated with the percentage of CD4+ T-cells expressing the Vα2.3/Vβ22 TCR. BALF antibody reactivity to the vimentin N-terminus was most prominent in HCs, whereas reactivity to the C-terminus (VimC-term) was enriched in the sarcoid lung. Specifically, HLA-DRB1*03+ patient BALF contained higher concentrations of anti-VimC-term antibodies than BALF from both HCs and HLA-DRB1*03− patients. Consistent with the lung as a site of AVA production, the concentration of AVAs in BALF was dramatically higher than in matched serum samples. Overall, there was a poor correlation between BALF and serum AVA concentrations. Together, these studies reveal the presence of linked in situ recognition of vimentin by both T- and B-cells in HLA-DRB1*03+ sarcoidosis patients, associated with a selective humoral immune response to the vimentin C-terminus.
Collapse
Affiliation(s)
- Andrew J Kinloch
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, United States
| | - Ylva Kaiser
- Respiratory Medicine Unit, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Don Wolfgeher
- Proteomics Core Laboratory, Cummings Life Science Center, University of Chicago, Chicago, IL, United States
| | - Junting Ai
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, United States
| | - Anders Eklund
- Respiratory Medicine Unit, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, United States
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
24
|
Th17-lineage cells in pulmonary sarcoidosis and Löfgren's syndrome: Friend or foe? J Autoimmun 2018; 87:82-96. [DOI: 10.1016/j.jaut.2017.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/17/2023]
|
25
|
The Pathogenesis of Pulmonary Sarcoidosis and Implications for Treatment. Chest 2017; 153:1432-1442. [PMID: 29224832 DOI: 10.1016/j.chest.2017.11.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 12/31/2022] Open
Abstract
Thoracic sarcoidosis is the most common form of sarcoidosis, encompassing a heterogeneous group of patients with a wide range of clinical features and associated outcomes. The distinction between isolated thoracic lymphadenopathy and pulmonary involvement matters. Morbidity is often higher, and long-term outcomes are worse for the latter. Although inflammatory infiltrates in pulmonary sarcoidosis may resolve, persistent disease activity is common and can result in lung fibrosis. Given the distinct clinical features and natural history of pulmonary sarcoidosis, its pathogenesis may differ in important ways from other sarcoidosis manifestations. This review highlights recent advances in the pathogenesis of pulmonary sarcoidosis, including the nature of the sarcoidosis antigen, the role of serum amyloid A and other host factors that contribute to alterations in innate immunity, factors that shape adaptive T-cell profiles in the lung, and how these mechanisms influence the maintenance of granulomatous inflammation in sarcoidosis. We discuss questions raised by recent findings, including the role of innate immunity in the pathogenesis, the meaning of immune cell exhaustion, and mechanisms that may contribute to lung fibrosis in sarcoidosis. We conclude with a reflection on when and how immunosuppressive therapies may be helpful for pulmonary sarcoidosis, a consideration of nonpharmacologic management strategies, and a survey of potential novel therapeutic targets for this vexing disease.
Collapse
|
26
|
Ferrara G, Valentini D, Rao M, Wahlström J, Grunewald J, Larsson LO, Brighenti S, Dodoo E, Zumla A, Maeurer M. Humoral immune profiling of mycobacterial antigen recognition in sarcoidosis and Löfgren's syndrome using high-content peptide microarrays. Int J Infect Dis 2017; 56:167-175. [PMID: 28159576 DOI: 10.1016/j.ijid.2017.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Sarcoidosis is considered an idiopathic granulomatous disease, although similar immunological and clinical features with tuberculosis (TB) suggest mycobacterial involvement in its pathogenesis. High-content peptide microarrays (HCPM) may help to decipher mycobacteria-specific antibody reactivity in sarcoidosis. METHODS Serum samples from patients with sarcoidosis, Löfgren's syndrome, and TB, as well as from healthy individuals (12/group), were tested on HCPM containing 5964 individual peptides spanning 154 Mycobacterium tuberculosis proteins displayed as 15-amino acid stretches. Inclusion/exclusion and significance analyses were performed according to published methods. RESULTS Each study group recognized 68-78% M. tuberculosis peptides at least once. M. tuberculosis epitope recognition by sarcoidosis patient sera was 42.7%, and by TB patient sera was 39.1%. Seven and 16 peptides were recognized in 9/12 (75%) and 8/12 (67%) sarcoidosis patient sera but not in TB patient sera, respectively. Nine (75%) and eight (67%) out of twelve TB patient sera, respectively recognized M. tuberculosis peptides that were not recognized in sarcoidosis patient sera. CONCLUSIONS Specific IgG recognition patterns for M. tuberculosis antigens in sarcoidosis patients re-affirm mycobacterial involvement in sarcoidosis, providing biologically relevant targets for future studies pertaining to diagnostics and immunotherapy.
Collapse
Affiliation(s)
- Giovanni Ferrara
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Solna, Sweden
| | - Davide Valentini
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden; Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Huddinge 14186, Stockholm, Sweden
| | - Martin Rao
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden; Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Huddinge 14186, Stockholm, Sweden
| | - Jan Wahlström
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Johan Grunewald
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Solna, Sweden
| | | | - Susanna Brighenti
- Centre for Infectious Medicine (CIM), Department of Medicine (MedH), Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Huddinge 14186, Stockholm, Sweden
| | - Alimuddin Zumla
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Markus Maeurer
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden; Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Huddinge 14186, Stockholm, Sweden.
| |
Collapse
|
27
|
Proteomic Analysis of Kveim Reagent Identifies Targets of Cellular Immunity in Sarcoidosis. PLoS One 2017; 12:e0170285. [PMID: 28114394 PMCID: PMC5256960 DOI: 10.1371/journal.pone.0170285] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Background Kveim-reagent (Kv) skin testing was a historical method of diagnosing sarcoidosis. Intradermal injection of treated sarcoidosis spleen tissue resulted in a granuloma response at injection site by 4–6 weeks. Previous work indicates proteins as the possible trigger of this reaction. We aimed to identify Kv-specific proteins and characterise the ex vivo response of Peripheral Blood Mononuclear Cells (PBMCs) from sarcoidosis, tuberculosis and healthy control patients when stimulated with both Kv and selected Kv-specific proteins. Methods Kv extracts were separated by 1D-SDS-PAGE and 2D-DIGE and then underwent mass spectrometric analysis for protein identification. Sarcoidosis and control PBMCs were first stimulated with Kv and then with three selected recombinant protein candidates which were identified from the proteomic analysis. PBMC secreted cytokines were subsequently measured by Multiplex Cytokine Assay. Results We observed significantly increased IFN-γ and TNF-α secretion from Kv-stimulated PBMCs of sarcoidosis patients vs. PBMCs from healthy volunteers (IFN-γ: 207.2 pg/mL vs. 3.86 pg/mL, p = 0.0018; TNF-α: 2375 pg/mL vs. 42.82 pg/mL, p = 0.0003). Through proteomic approaches we then identified 74 sarcoidosis tissue-specific proteins. Of these, 3 proteins (vimentin, tubulin and alpha-actinin-4) were identified using both 1D-SDS-PAGE and 2D-DIGE. Data are available via ProteomeXchange with identifier PXD005150. Increased cytokine secretion was subsequently observed with vimentin stimulation of sarcoidosis PBMCs vs. tuberculosis PBMCs (IFN-γ: 396.6 pg/mL vs 0.1 pg/mL, p = 0.0009; TNF-α: 1139 pg/mL vs 0.1 pg/mL, p<0.0001). This finding was also observed in vimentin stimulation of sarcoidosis PBMCs compared to PBMCs from healthy controls (IFN-γ: 396.6 pg/mL vs. 0.1 pg/mL, p = 0.014; TNF-α: 1139 pg/mL vs 42.29 pg/mL, p = 0.027). No difference was found in cytokine secretion between sarcoidosis and control PBMCs when stimulated with either tubulin or alpha-actinin-4. Conclusions Stimulation with both Kveim reagent and vimentin induces a specific pro-inflammatory cytokine secretion from sarcoidosis PBMCs. Further investigation of cellular immune responses to Kveim-specific proteins may identify novel biomarkers to assist the diagnosis of sarcoidosis.
Collapse
|
28
|
Ostadkarampour M, Müller M, Öckinger J, Kullberg S, Lindén A, Eklund A, Grunewald J, Wahlström J. Distinctive Regulatory T Cells and Altered Cytokine Profile Locally in the Airways of Young Smokers with Normal Lung Function. PLoS One 2016; 11:e0164751. [PMID: 27798682 PMCID: PMC5087844 DOI: 10.1371/journal.pone.0164751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/02/2016] [Indexed: 12/31/2022] Open
Abstract
Smoking influences the immune system in different ways and, hypothetically, effects on pulmonary effector and regulatory T cells emerge as potentially detrimental. Therefore, we characterized the frequencies and characteristics of CD4+ and CD8+ T cell subsets in the blood and lungs of young tobacco smokers. Bronchoalveolar lavage (BAL) and peripheral blood were obtained from healthy moderate smokers (n = 18; 2–24 pack-years) and never-smokers (n = 15), all with normal lung function. Cells were stimulated ex vivo and key intracellular cytokines (IFNγ, IL-17, IL-10 and TNFα) and transcription factors (Foxp3, T-bet and Helios) were analyzed using flow cytometry. Our results indicate that smoking is associated with a decline in lung IL-17+ CD4+ T cells, increased IFNγ+ CD8+ T cells and these alterations relate to the history of daily cigarette consumption. There is an increased fraction of Foxp3+ regulatory T cells being Helios- in the lungs of smokers. Cytokine production is mainly confined to the Helios- T cells, both in regulatory and effector subsets. Moreover, we detected a decline of Helios+Foxp3- postulated regulatory CD8+ T cells in smokers. These alterations in the immune system are likely to increase risk for infection and may have implications for autoimmune processes initiated in the lungs among tobacco smokers.
Collapse
Affiliation(s)
- Mahyar Ostadkarampour
- Respiratory Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Malin Müller
- Rheumatology Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
| | - Johan Öckinger
- Respiratory Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kullberg
- Respiratory Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Anders Eklund
- Respiratory Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Jan Wahlström
- Respiratory Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Zissel G, Müller-Quernheim J. Specific antigen(s) in sarcoidosis: a link to autoimmunity? Eur Respir J 2016; 47:707-9. [PMID: 26929312 DOI: 10.1183/13993003.01791-2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gernot Zissel
- Medical Center - University of Freiburg, Center for Medicine, Dept of Pneumology, Freiburg, Germany
| | - Joachim Müller-Quernheim
- Medical Center - University of Freiburg, Center for Medicine, Dept of Pneumology, Freiburg, Germany
| |
Collapse
|
30
|
Martinez-Bravo MJ, Wahlund CJE, Qazi KR, Moulder R, Lukic A, Rådmark O, Lahesmaa R, Grunewald J, Eklund A, Gabrielsson S. Pulmonary sarcoidosis is associated with exosomal vitamin D-binding protein and inflammatory molecules. J Allergy Clin Immunol 2016; 139:1186-1194. [PMID: 27566455 DOI: 10.1016/j.jaci.2016.05.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/18/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Sarcoidosis is an inflammatory granulomatous disorder characterized by accumulation of TH1-type CD4+ T cells and immune effector cells within affected organs, most frequently the lungs. Exosomes are extracellular vesicles conveying intercellular communication with possible diagnostic and therapeutic applications. OBJECTIVES We aimed to provide an understanding of the proinflammatory role of bronchoalveolar lavage fluid (BALF) exosomes in patients with sarcoidosis and to find candidates for disease biomarkers. METHODS We performed a mass spectrometric proteomics characterization of BALF exosomes from 15 patients with sarcoidosis and 5 healthy control subjects and verified the most interesting results with flow cytometry, ELISA, and Western blot analyses in an additional 39 patients and 22 control subjects. RESULTS More than 690 proteins were identified in the BALF exosomes, several of which displayed significant upregulation in patients, including inflammation-associated proteins, such as leukotriene A4 hydrolase. Most of the complement-activating factors were upregulated, whereas the complement regulator CD55 was seen less in patients compared with healthy control subjects. In addition, for the first time, we detected vitamin D-binding protein in BALF exosomes, which was more abundant in patients. To evaluate exosome-associated vitamin D-binding protein as a biomarker for sarcoidosis, we investigated plasma exosomes from 23 patients and 11 healthy control subjects and found significantly higher expression in patients. CONCLUSION Together, these data contribute to understanding the role of exosomes in lung disease and provide suggestions for highly warranted sarcoidosis biomarkers. Furthermore, the validation of an exosome-associated biomarker in the blood of patients provides novel, and less invasive, opportunities for disease diagnosis.
Collapse
Affiliation(s)
- Maria-Jose Martinez-Bravo
- Unit for Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Casper J E Wahlund
- Unit for Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Khaleda Rahman Qazi
- Unit for Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Robert Moulder
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Ana Lukic
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, University Hospital, Solna, Stockholm, Sweden
| | - Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, University Hospital, Solna, Stockholm, Sweden
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Johan Grunewald
- Respiratory Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Anders Eklund
- Respiratory Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Susanne Gabrielsson
- Unit for Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
31
|
Gharib SA, Malur A, Huizar I, Barna BP, Kavuru MS, Schnapp LM, Thomassen MJ. Sarcoidosis activates diverse transcriptional programs in bronchoalveolar lavage cells. Respir Res 2016; 17:93. [PMID: 27460362 PMCID: PMC4962428 DOI: 10.1186/s12931-016-0411-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023] Open
Abstract
Background Sarcoidosis is a multisystem immuno-inflammatory disorder of unknown etiology that most commonly involves the lungs. We hypothesized that an unbiased approach to identify pathways activated in bronchoalveolar lavage (BAL) cells can shed light on the pathogenesis of this complex disease. Methods We recruited 15 patients with various stages of sarcoidosis and 12 healthy controls. All subjects underwent bronchoscopy with lavage. For each subject, total RNA was extracted from BAL cells and hybridized to an Affymetrix U133A microarray. Rigorous statistical methods were applied to identify differential gene expression between subjects with sarcoidosis vs. controls. To better elucidate pathways differentially activated between these groups, we integrated network and gene set enrichment analyses of BAL cell transcriptional profiles. Results Sarcoidosis patients were either non-smokers or former smokers, all had lung involvement and only two were on systemic prednisone. Healthy controls were all non-smokers. Comparison of BAL cell gene expression between sarcoidosis and healthy subjects revealed over 1500 differentially expressed genes. Several previously described immune mediators, such as interferon gamma, were upregulated in the sarcoidosis subjects. Using an integrative computational approach we constructed a modular network of over 80 gene sets that were highly enriched in patients with sarcoidosis. Many of these pathways mapped to inflammatory and immune-related processes including adaptive immunity, T-cell signaling, graft vs. host disease, interleukin 12, 23 and 17 signaling. Additionally, we uncovered a close association between the proteasome machinery and adaptive immunity, highlighting a potentially important and targetable relationship in the pathobiology of sarcoidosis. Conclusions BAL cells in sarcoidosis are characterized by enrichment of distinct transcriptional programs involved in immunity and proteasomal processes. Our findings add to the growing evidence implicating alveolar resident immune effector cells in the pathogenesis of sarcoidosis and identify specific pathways whose activation may modulate disease progression. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0411-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sina A Gharib
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA, USA. .,Computational Medicine Core, Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA, USA. .,, 850 Republican, Box 358052, Seattle, WA, 98109-4725, USA.
| | - Anagha Malur
- Division of Pulmonary, Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Isham Huizar
- Division of Pulmonary and Critical Care Medicine, Texas Technical University Health Science Center, Lubbock, TX, USA
| | - Barbara P Barna
- Division of Pulmonary, Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Mani S Kavuru
- Division of Pulmonary and Critical Care Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Lynn M Schnapp
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Mary Jane Thomassen
- Division of Pulmonary, Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
32
|
Heyder T, Kohler M, Tarasova NK, Haag S, Rutishauser D, Rivera NV, Sandin C, Mia S, Malmström V, Wheelock ÅM, Wahlström J, Holmdahl R, Eklund A, Zubarev RA, Grunewald J, Ytterberg AJ. Approach for Identifying Human Leukocyte Antigen (HLA)-DR Bound Peptides from Scarce Clinical Samples. Mol Cell Proteomics 2016; 15:3017-29. [PMID: 27452731 DOI: 10.1074/mcp.m116.060764] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 01/30/2023] Open
Abstract
Immune-mediated diseases strongly associating with human leukocyte antigen (HLA) alleles are likely linked to specific antigens. These antigens are presented to T cells in the form of peptides bound to HLA molecules on antigen presenting cells, e.g. dendritic cells, macrophages or B cells. The identification of HLA-DR-bound peptides presents a valuable tool to investigate the human immunopeptidome. The lung is likely a key player in the activation of potentially auto-aggressive T cells prior to entering target tissues and inducing autoimmune disease. This makes the lung of exceptional interest and presents an ideal paradigm to study the human immunopeptidome and to identify antigenic peptides.Our previous investigation of HLA-DR peptide presentation in the lung required high numbers of cells (800 × 10(6) bronchoalveolar lavage (BAL) cells). Because BAL from healthy nonsmokers typically contains 10-15 × 10(6) cells, there is a need for a highly sensitive approach to study immunopeptides in the lungs of individual patients and controls.In this work, we analyzed the HLA-DR immunopeptidome in the lung by an optimized methodology to identify HLA-DR-bound peptides from low cell numbers. We used an Epstein-Barr Virus (EBV) immortalized B cell line and bronchoalveolar lavage (BAL) cells obtained from patients with sarcoidosis, an inflammatory T cell driven disease mainly occurring in the lung. Specifically, membrane complexes were isolated prior to immunoprecipitation, eluted peptides were identified by nanoLC-MS/MS and processed using the in-house developed ClusterMHCII software. With the optimized procedure we were able to identify peptides from 10 × 10(6) cells, which on average correspond to 10.9 peptides/million cells in EBV-B cells and 9.4 peptides/million cells in BAL cells. This work presents an optimized approach designed to identify HLA-DR-bound peptides from low numbers of cells, enabling the investigation of the BAL immunopeptidome from individual patients and healthy controls in order to identify disease-associated peptides.
Collapse
Affiliation(s)
- Tina Heyder
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; §Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maxie Kohler
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Nataliya K Tarasova
- §Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Haag
- ¶Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Dorothea Rutishauser
- §Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Natalia V Rivera
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Charlotta Sandin
- ‖Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sohel Mia
- ‖Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Vivianne Malmström
- ‖Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Åsa M Wheelock
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jan Wahlström
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rikard Holmdahl
- ¶Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anders Eklund
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Roman A Zubarev
- §Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Grunewald
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - A Jimmy Ytterberg
- §Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; ‖Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Abstract
Current hypotheses on the pathogenesis of sarcoidosis assume that it is induced by a nondegradable antigen inducing immune reactions, which are mediated by a panel of immune cells of the innate and adoptive immune system. This immune reaction leads to an accumulation of immune cells that is mainly alveolar macrophages, T cells, and neutrophils in the lung. As the antigen persists and cannot be eliminated, the ongoing immune reaction results in granuloma formation and remodeling of the lung. The current review aims to elucidate the different roles of the cellular players in the immunopathogenesis of sarcoidosis.
Collapse
|
34
|
Abstract
Sarcoidosis is a systemic inflammatory disorder characterised by tissue infiltration by mononuclear phagocytes and lymphocytes with associated non-caseating granuloma formation. Originally described as a disorder of the skin, sarcoidosis can involve any organ with wide-ranging clinical manifestations and disease course. Recent studies have provided new insights into the mechanisms involved in disease pathobiology, and we now know that sarcoidosis has a clear genetic basis largely involving human leukocyte antigen (HLA) genes. In contrast to Mendelian-monogenic disorders--which are generally due to specific and relatively rare mutations often leading to a single amino acid change in an encoded protein--sarcoidosis results from genetic variations relatively common in the general population and involving multiple genes, each contributing an effect of varying magnitude. However, an individual may have the necessary genetic profile and yet the disease will not develop unless an environmental or infectious factor is encountered. Genetics appears also to contribute to the huge variability in clinical phenotype and disease behaviour. Moreover, it has been established that sarcoidosis granulomatous inflammation is a highly polarized T helper 1 immune response that starts with an antigenic stimulus followed by T cell activation via a classic HLA class II-mediated pathway. A complex network of lymphocytes, macrophages, and cytokines is pivotal in the orchestration and evolution of the granulomatous process. Despite these advances, the aetiology of sarcoidosis remains elusive and its pathogenesis incompletely understood. As such, there is an urgent need for a better understanding of disease pathogenesis, which hopefully will translate into the development of truly effective therapies.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Nonnecrotizing granulomas in the affected organ are the hallmark of sarcoidosis. This review summarizes most recent genetic findings in sarcoidosis with a focus on genes that might influence granuloma formation or resolution. Specific results in multiple ethnic groups and certain clinical subphenotypes, such as extra-pulmonary organ involvement, are discussed. RECENT FINDINGS Associations of genetic variants in antigen-presenting molecules (HLA-DRB1) were shown to confer risk to sarcoidosis and certain disease phenotypes in populations of different ethnic origins. Specific DRB1 alleles, such as *0301 and *0302, appear to confer protection against chronic disease, but in an ethnic-specific manner illustrating the extensive genetic heterogeneity and complexity at this locus. Mechanistic studies of putative sarcoid antigens lend further credence to a role of HLA-DRB1 in disease pathogenesis. With relevance to granuloma formation, genes involved in apoptotic processes and immune cell activation were further confirmed (ANXA11 and BTNL2) in multiple ethnicities; others were newly identified (XAF1). Linking mechanism to clinical application, a TNF variant was shown to correlate with anti-TNF response in sarcoidosis patients. SUMMARY The investigation of known and novel risk variants for sarcoidosis and specific clinical phenotypes in various ethnicities highlights the genetic complexity of the disease. Detailed subanalysis of disease phenotypes revealed the potential for prediction of extra-pulmonary organ involvement and therapy response based on the patient's genotype.
Collapse
|
36
|
Grunewald J, Kaiser Y, Ostadkarampour M, Rivera NV, Vezzi F, Lötstedt B, Olsen RA, Sylwan L, Lundin S, Käller M, Sandalova T, Ahlgren KM, Wahlström J, Achour A, Ronninger M, Eklund A. T-cell receptor–HLA-DRB1 associations suggest specific antigens in pulmonary sarcoidosis. Eur Respir J 2015; 47:898-909. [DOI: 10.1183/13993003.01209-2015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/30/2015] [Indexed: 11/05/2022]
Abstract
In pulmonary sarcoidosis, CD4+ T-cells expressing T-cell receptor Vα2.3 accumulate in the lungs of HLA-DRB1*03+ patients. To investigate T-cell receptor-HLA-DRB1*03 interactions underlying recognition of hitherto unknown antigens, we performed detailed analyses of T-cell receptor expression on bronchoalveolar lavage fluid CD4+ T-cells from sarcoidosis patients.Pulmonary sarcoidosis patients (n=43) underwent bronchoscopy with bronchoalveolar lavage. T-cell receptor α and β chains of CD4+ T-cells were analysed by flow cytometry, DNA-sequenced, and three-dimensional molecular models of T-cell receptor-HLA-DRB1*03 complexes generated.Simultaneous expression of Vα2.3 with the Vβ22 chain was identified in the lungs of all HLA-DRB1*03+ patients. Accumulated Vα2.3/Vβ22-expressing T-cells were highly clonal, with identical or near-identical Vα2.3 chain sequences and inter-patient similarities in Vβ22 chain amino acid distribution. Molecular modelling revealed specific T-cell receptor-HLA-DRB1*03-peptide interactions, with a previously identified, sarcoidosis-associated vimentin peptide, (Vim)429–443 DSLPLVDTHSKRTLL, matching both the HLA peptide-binding cleft and distinct T-cell receptor features perfectly.We demonstrate, for the first time, the accumulation of large clonal populations of specific Vα2.3/Vβ22 T-cell receptor-expressing CD4+ T-cells in the lungs of HLA-DRB1*03+ sarcoidosis patients. Several distinct contact points between Vα2.3/Vβ22 receptors and HLA-DRB1*03 molecules suggest presentation of prototypic vimentin-derived peptides.
Collapse
|
37
|
Ostadkarampour M, Eklund A, Moller D, Glader P, Olgart Höglund C, Lindén A, Grunewald J, Wahlström J. Higher levels of interleukin IL-17 and antigen-specific IL-17 responses in pulmonary sarcoidosis patients with Löfgren's syndrome. Clin Exp Immunol 2014; 178:342-52. [PMID: 24962673 DOI: 10.1111/cei.12403] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 01/26/2023] Open
Abstract
Sarcoidosis is a granulomatous disorder of unknown aetiology. The presence of Mycobacterium tuberculosis catalase-peroxidase (mKatG) in sarcoidosis tissue has been reported. T helper type 1 (Th1) responses against mKatG have previously been observed. However, little is known about interleukin (IL)-17 and Th17 responses in sarcoidosis. Here, we investigated the levels of IL-17 and frequencies of IL-17-producing cells responding to mKatG in sarcoidosis patients with different prognosis. Peripheral blood and bronchoalveolar lavage (BAL) cells were obtained from sarcoidosis patients with or without Löfgren's syndrome (often associated with spontaneous recovery), and also stratified according to human leucocyte antigen (HLA) type. Cells producing IL-17 and interferon (IFN)-γ after stimulation with mKatG were enumerated by enzyme-linked immunospot (ELISPOT). The level of IL-17 in the BAL fluid of sarcoidosis patients and healthy controls was measured by quantitative immuno-polymerase chain reaction (qIPCR). We also performed flow cytometry and immunohistochemistry for further characterization of IL-17 expression. Patients with Löfgren's syndrome had a higher frequency of IL-17-producing cells responding to mKatG in BAL fluid compared to patients without Löfgren's syndrome (P < 0·05). The HLA-DR3(+) sarcoidosis patients with Löfgren's syndrome (known to have a particularly good prognosis) also had a clearly higher level of IL-17 in BAL fluid compared to healthy controls and sarcoidosis patients without Löfgren's syndrome (P < 0·01) and (P < 0·05), respectively. No such difference between patient groups was observed with regard to IFN-γ and not with regard to either cytokine in peripheral blood. These findings suggest that IL-17-producing cells may be a useful biomarker for the prognosis of sarcoidosis and play a role in the spontaneous recovery typical of patients with Löfgren's syndrome.
Collapse
Affiliation(s)
- M Ostadkarampour
- Respiratory Medicine Unit, Department of Medicine Solna and CMM, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ringkowski S, Thomas PS, Herbert C. Interleukin-12 family cytokines and sarcoidosis. Front Pharmacol 2014; 5:233. [PMID: 25386143 PMCID: PMC4209812 DOI: 10.3389/fphar.2014.00233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022] Open
Abstract
Sarcoidosis is a systemic granulomatous disease predominantly affecting the lungs. It is believed to be caused by exposure to pathogenic antigens in genetically susceptible individuals but the causative antigen has not been identified. The formation of non-caseating granulomas at sites of ongoing inflammation is the key feature of the disease. Other aspects of the pathogenesis are peripheral T-cell anergy and disease progression to fibrosis. Many T-cell-associated cytokines have been implicated in the immunopathogenesis of sarcoidosis, but it is becoming apparent that IL-12 cytokine family members including IL-12, IL-23, IL-27, and IL-35 are also involved. Although the members of this unique cytokine family are heterodimers of similar subunits, their biological functions are very diverse. Whilst IL-23 and IL-12 are pro-inflammatory regulators of Th1 and Th17 responses, IL-27 is bidirectional for inflammation and the most recent family member IL-35 is inhibitory. This review will discuss the current understanding of etiology and immunopathogenesis of sarcoidosis with a specific focus on the bidirectional impact of IL-12 family cytokines on the pathogenesis of sarcoidosis.
Collapse
Affiliation(s)
- Sabine Ringkowski
- Inflammation and Infection Research Centre, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia ; Respiratory Medicine Department, Prince of Wales Hospital Sydney, NSW, Australia ; Faculty of Medicine, University of Heidelberg Heidelberg, Germany
| | - Paul S Thomas
- Inflammation and Infection Research Centre, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia ; Respiratory Medicine Department, Prince of Wales Hospital Sydney, NSW, Australia
| | - Cristan Herbert
- Inflammation and Infection Research Centre, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
39
|
Exploring the MHC-peptide matrix of central tolerance in the human thymus. Nat Commun 2013; 4:2039. [PMID: 23783831 DOI: 10.1038/ncomms3039] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/21/2013] [Indexed: 01/22/2023] Open
Abstract
Ever since it was discovered that central tolerance to self is imposed on developing T cells in the thymus through their interaction with self-peptide major histocompatibility complexes on thymic antigen-presenting cells, immunologists have speculated about the nature of these peptides, particularly in humans. Here, to shed light on the so-far unknown human thymic peptide repertoire, we analyse peptides eluted from isolated thymic dendritic cells, dendritic cell-depleted antigen-presenting cells and whole thymus. Bioinformatic analysis of the 842 identified natural major histocompatibility complex I and II ligands reveals significant cross-talk between major histocompatibility complex-class I and II pathways and differences in source protein representation between individuals as well as different antigen-presenting cells. Furthermore, several autoimmune- and tumour-related peptides, from enolase and vimentin for example, are presented in the healthy thymus. 302 peptides are directly derived from negatively selecting dendritic cells, thus providing the first global view of the peptide matrix in the human thymus that imposes self-tolerance in vivo.
Collapse
|
40
|
Sarcoidosis: Immunopathogenesis and Immunological Markers. Int J Chronic Dis 2013; 2013:928601. [PMID: 26464848 PMCID: PMC4590933 DOI: 10.1155/2013/928601] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/17/2013] [Indexed: 12/26/2022] Open
Abstract
Sarcoidosis is a multisystem granulomatous disorder invariably affecting the lungs. It is a disease with noteworthy variations in clinical manifestation and disease outcome and has been described as an “immune paradox” with peripheral anergy despite exaggerated inflammation at disease sites. Despite extensive research, sarcoidosis remains a disease with undetermined aetiology. Current evidence supports the notion that the immune response in sarcoidosis is driven by a putative antigen in a genetically susceptible individual. Unfortunately, there currently exists no reliable biomarker to delineate the disease severity and prognosis. As such, the diagnosis of sarcoidosis remains a vexing clinical challenge. In this review, we outline the immunological features of sarcoidosis, discuss the evidence for and against various candidate etiological agents (infective and noninfective), describe the exhaled breath condensate, a novel method of identifying immunological biomarkers, and suggest other possible immunological biomarkers to better characterise the immunopathogenesis of sarcoidosis.
Collapse
|
41
|
Kasuga K. Comprehensive analysis of MHC ligands in clinical material by immunoaffinity-mass spectrometry. Methods Mol Biol 2013; 1023:203-218. [PMID: 23765629 DOI: 10.1007/978-1-4614-7209-4_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Major histocompatibility complexes (MHC) are expressed on antigen-presenting cells (APC) that display peptide antigens. This is a crucial step to activate a T-cell response. Since immunogenic ligand of MHC is closely related with autoimmunity, inflammatory diseases, and cancer, comprehensive analysis of MHC ligands (the so-called Ligandome) is essential to unveil disease pathogenesis. Recently, immunotherapies such as vaccination have been focused on as new therapies of cancer, HIV, and infectious diseases. Therefore, the importance of comprehensive analysis of MHC ligands is increasing. Mass spectrometry has been the core technology of ligand identification since the 1990s. The sensitivity of mass spectrometers has been improved dramatically in recent years; thus, it enables to identify MHC ligands in clinical materials. This chapter lays out the workflow of MHC ligand identification in clinical materials, especially human bronchoalveolar (BAL) cells. MHC-ligand complexes are enriched by immunoaffinity extraction and captured ligand peptides are identified by LC-MS/MS. MHC class II ligand in BAL cells is described in this text; however, this approach is applicable to MHC class I and other clinical materials such as tissues.
Collapse
Affiliation(s)
- Kie Kasuga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Sarcoidosis. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Abstract
Patients with sarcoidosis can be subgrouped according to organ engagement and clinical manifestations. One such subgroup is Löfgren's syndrome (LS), constituting a distinct group of sarcoidosis patients with typical clinical manifestations, separate genetic associations and an immune response that seems to differ from that of non-LS patients. In particular, LS patients have strong associations with HLA-DRB1 alleles, and the well-known association with HLA-DRB1*03 is particularly striking. This particular HLA-DRB1 allele is also a very strong marker within that particular group of patients for a prognostically favorable disease course. This article will mainly discuss genetic associations with LS, and the possible implications of such associations.
Collapse
Affiliation(s)
- Johan Grunewald
- Department of Medicine, Division of Respiratory Medicine, Karolinska Institutet, Lung Research Laboratory L4:01, Karolinska University Hospital Solna, S-171 76 Stockholm, Sweden.
| |
Collapse
|
44
|
Ahmadzai H, Cameron B, Chui JJY, Lloyd A, Wakefield D, Thomas PS. Peripheral blood responses to specific antigens and CD28 in sarcoidosis. Respir Med 2012; 106:701-9. [PMID: 22349068 DOI: 10.1016/j.rmed.2012.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 01/12/2012] [Accepted: 01/30/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Potential antigens inducing sarcoid inflammation include mycobacterial and auto-antigens. Paradoxically, peripheral anergy to common recall antigens also occurs, possibly due to impaired dendritic cell or regulatory T-cell responses, or impaired T-cell co-stimulation. The purpose of this study was to compare peripheral blood responses of patients with sarcoidosis to candidate antigens, and examine CD28 T-cell co-stimulation. METHODS Peripheral blood mononuclear cell (PBMC) responses were examined from patients with sarcoidosis (n=16) and healthy control subjects (n=22) following PBMC stimulation with: anti-CD3/CD28 coated beads; Mycobacterium tuberculosis ESAT-6 and KatG peptides; vimentin and lysyl tRNA peptides; and common recall antigens, including cytomegalovirus (CMV) cell lysate as well as CMV, Epstein-Barr virus, influenza virus (CEF) peptides. RESULTS ESAT-6/KatG peptide stimulation induced greater numbers of IFN-γ producing T-cells, and elevated IL-2, IL-6 and TNF-α production in sarcoidosis compared to purified protein derivative (PPD)-negative healthy control subjects. PBMCs from patients with sarcoidosis showed reduced IFN-γ producing T-cells following stimulation with CMV lysate, CEF peptides and CD3/CD28 beads; and reduced IL-4 and TNF-α production following CD3/CD28 activation. CONCLUSIONS Patients with sarcoidosis exhibit greater PBMC responses to M. tuberculosis antigens compared to PPD-negative controls, but reduced T-cell responses to common recall antigens. One contributing mechanism may be impairment of T-cell CD28 co-stimulation.
Collapse
Affiliation(s)
- Hasib Ahmadzai
- Inflammation and Infection Research Centre (IIRC), Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Sarcoidosis is an uncommon systemic inflammatory disorder characterized by noncaseating granulomatous inflammation that most commonly affects the lungs, intrathoracic lymph nodes, eyes and skin. One-third or more of patients with sarcoidosis have chronic, unremitting inflammation with progressive organ impairment. Findings of family and genetic studies indicate a genetic susceptibility to sarcoidosis, with genes in the MHC region having a dominant role. Immunologic hallmarks of the disease include highly polarized expression of cytokines produced by type 1 T helper cells and tumor necrosis factor (TNF) at sites of inflammation. Increasing evidence obtained within the past decade suggests the etiology of sarcoidosis predominantly involves microbial triggers, with the most convincing data implicating mycobacterial or propionibacterial organisms. Innate immune mechanisms, possibly involving misfolding and aggregation of serum amyloid A, might have a critical role in the pathobiology of sarcoidosis. Despite these advances, there are no clinically useful biomarkers that can assist the clinician in diagnosis, prognosis or assessment of treatment effects. Corticosteroids remain the cornerstone of therapy when organ function is threatened or progressively impaired. The role of immunosuppressive drugs and anti-TNF agents in the treatment of sarcoidosis remains uncertain, and there are no FDA-approved therapies. Meaningful progress in developing clinically useful tools and new therapies will depend on further advances in understanding the pathogenesis of sarcoidosis and its disease-specific pathways.
Collapse
Affiliation(s)
- Edward S Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University, 5501 Hopkins Bayview Circle, Room 4B63, Baltimore, MD 21224, USA
| | | |
Collapse
|
46
|
Functional variant ANXA11 R230C: true marker of protection and candidate disease modifier in sarcoidosis. Genes Immun 2011; 12:490-4. [DOI: 10.1038/gene.2011.27] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Indoleamine 2,3-dioxygenase-expressing myeloid dendritic cells and macrophages in infectious and noninfectious cutaneous granulomas. J Am Acad Dermatol 2011; 65:819-832. [PMID: 21501890 DOI: 10.1016/j.jaad.2010.07.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 07/06/2010] [Accepted: 07/20/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND The enzyme indoleamine 2,3-dioxygenase (IDO) degrades the essential amino acid tryptophan, and this degradation is an immunosuppressive mechanism that is mainly used by antigen-presenting cells. IDO-expressing dendritic cells and macrophages have previously been identified as components of lymph node granulomas after Listeria monocytogenes infection. In this study we undertook an analysis of IDO expression in granulomas of infectious and noninfectious origin in the human skin. METHODS Lesional skin biopsy specimens (n = 22) from different granulomatous skin disorders (lupus vulgaris, sarcoidosis, granuloma annulare, leprosy) were analyzed. Immunohistochemistry was performed to identify and locate the enzyme IDO within the inflammatory granulomatous infiltrate (IDO, CD11c, CD68, S100, CD3, Foxp3). Two-color immunofluorescence of IDO in combination with multiple markers was applied to characterize the IDO-expressing cells. RESULTS Cutaneous granulomas of different origin strongly express IDO, mainly in the center and in the ring wall of the granulomas. We demonstrate that in infectious, but also in noninfectious human cutaneous granulomas the large myeloid CD11c(+)S100(+)CD68(-) dendritic cells and the CD68(+) macrophages express IDO. LIMITATIONS This study was limited by the lack of details about the exact stage or maturity of granuloma formation in the specimens investigated. CONCLUSION These findings reveal that IDO expression in myeloid dendritic cells and macrophages is part of an integrated response of granuloma formation, which may be a unifying feature of granulomatous reactions in the skin.
Collapse
|
48
|
Ahmadzai H, Wakefield D, Thomas PS. The potential of the immunological markers of sarcoidosis in exhaled breath and peripheral blood as future diagnostic and monitoring techniques. Inflammopharmacology 2011; 19:55-68. [DOI: 10.1007/s10787-011-0079-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/26/2011] [Indexed: 01/17/2023]
|
49
|
Ali MM, Atwan AA, Gonzalez ML. Cutaneous sarcoidosis: updates in the pathogenesis. J Eur Acad Dermatol Venereol 2009; 24:747-55. [PMID: 20015176 DOI: 10.1111/j.1468-3083.2009.03517.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sarcoidosis is a multiorgan granulomatous disease in which the skin is one of the frequently involved target organs. Cutaneous involvement occurs in a third of patients with sarcoidosis and has protean manifestations. More than a century has passed since the initial description of sarcoidosis, but its cause continues to be an enigma. Recent studies have introduced several new insights into the pathogenesis of this disease. The aim of this literature review was to provide a comprehensive overview on the current updates in the pathogenesis of sarcoidosis. This review has revealed that several genetic polymorphisms are associated with an increased risk of developing sarcoidosis, suggesting that genetic susceptibility to sarcoidosis is probably polygenic. Environmental factors may also modify the susceptibility to sarcoidosis. Evidence favouring an infectious aetiology has been accumulating, but the results of studies are conflicting. The current concept is that the pathogenesis of sarcoidosis involves a T-helper-1-mediated immune response to environmental antigens in a genetically susceptible host. The studies carried out on sarcoidosis have largely focused on the pulmonary aspects and have been mainly conducted by respiratory physicians. In contrast, research conducted on the cutaneous aspects of sarcoidosis is comparatively limited. Although tremendous advances have been made, there is a significant gap between the vast knowledge accumulated on sarcoidosis in recent years and the understanding of this disease.
Collapse
Affiliation(s)
- M M Ali
- Department of Dermatology, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|