1
|
Xu F, Zhang C, Zhang M, Zhu X, Cheng S, Cheng Z, Zeng C, Jiang S. Evaluation of the significance of complement-related genes mutations in atypical postinfectious glomerulonephritis: a pilot study. Int Urol Nephrol 2024; 56:1475-1485. [PMID: 37845399 PMCID: PMC10924015 DOI: 10.1007/s11255-023-03831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Postinfectious glomerulonephritis with C3-dominant glomerular deposition (C3-PIGN) involves C3-dominant glomerular deposition without immunoglobulin. Atypical C3-PIGN involves persistent hypocomplementemia. We investigated the clinical features and explored complement-related gene mutations in atypical PIGN patients. METHODS We enrolled atypical C3-PIGN patients and collected data regarding the clinical presentation and pathological characteristics and follow-up data. We measured the levels of complement associated antibodies and performed whole-exome sequencing (WES) to detect mutations in complement-related genes. RESULTS The analysis included six atypical C3-PIGN patients. All patients were antistreptolysin-O (ASO) positive. All patients had varying degrees of hematuria, and four patients had proteinuria. None of the patients were positive for complement-related antibodies. All patients possessed mutations of genes related to the complement pathway, including alternative complement pathway genes-CFI, CFH, CFHR3, CFHR5; the lectin pathway gene-MASP2; and the common complement pathway gene-C8A. The rare variant of CFHR3 has been reported in C3 glomerulonephritis. During 56-73 months of follow-up, the levels of urine markers in three patients recovered within 6 months, and the remaining patients had abnormal urine test results over 12 months. Patients who received glucocorticoid therapy recovered faster. CONCLUSIONS Our study suggested that complement-related gene mutations may be an important cause of persistent hypocomplementemia in atypical C3-PIGN patients. In addition to variations in alternate pathway-related genes, we also found variations in lectin pathway-related genes, especially MASP2 genes. Although the overall prognosis was good, atypical C3-PIGN patients exhibited a longer period for recovery. Our results suggested that atypical C3-PIGN patients should receive more medical attention and need testing for mutations in complement-related genes.
Collapse
Affiliation(s)
- Feng Xu
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Changming Zhang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Mingchao Zhang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Xiaodong Zhu
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Shuiqin Cheng
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Zhen Cheng
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Caihong Zeng
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Song Jiang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China.
| |
Collapse
|
2
|
Tiberti N, Longoni SS, Combes V, Piubelli C. Host-Derived Extracellular Vesicles in Blood and Tissue Human Protozoan Infections. Microorganisms 2023; 11:2318. [PMID: 37764162 PMCID: PMC10536481 DOI: 10.3390/microorganisms11092318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Blood and tissue protozoan infections are responsible for an enormous burden in tropical and subtropical regions, even though they can also affect people living in high-income countries, mainly as a consequence of migration and travel. These pathologies are responsible for heavy socio-economic issues in endemic countries, where the lack of proper therapeutic interventions and effective vaccine strategies is still hampering their control. Moreover, the pathophysiological mechanisms associated with the establishment, progression and outcome of these infectious diseases are yet to be fully described. Among all the players, extracellular vesicles (EVs) have raised significant interest during the last decades due to their capacity to modulate inter-parasite and host-parasite interactions. In the present manuscript, we will review the state of the art of circulating host-derived EVs in clinical samples or in experimental models of human blood and tissue protozoan diseases (i.e., malaria, leishmaniasis, Chagas disease, human African trypanosomiasis and toxoplasmosis) to gain novel insights into the mechanisms of pathology underlying these conditions and to identify novel potential diagnostic markers.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Valéry Combes
- Microvesicles and Malaria Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| |
Collapse
|
3
|
Oliveira Cavalcanti E, Freitas Lidani KC, de Freitas Oliveira Toré C, de Messias Reason IJ, Andrade FA. MASP1 Gene Polymorphism and MASP-3 Serum Levels in Patients with Chronic Chagas Disease. Immunol Invest 2022; 51:2108-2121. [PMID: 36166216 DOI: 10.1080/08820139.2022.2110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Chagas disease (CD), caused by Trypanosoma cruzi, is a major public health issue worldwide affecting 6-7 million people, mainly in Latin America. The complement system plays a crucial role in host immune defense against T. cruzi infection and during the chronic phase of CD; however, the role of the MBL-associated serine protease 1 (MASP1) gene encoding MASP-1, MASP-3, and MAp44 complement proteins has not yet been reported in CD. This study investigated the possible association between MASP1 gene polymorphisms and MASP-3 protein serum levels in chronic CD and its clinical forms. METHODS Five polymorphisms of MASP1 gene regulatory regions were genotyped in 214 patients with CD and 197 healthy controls (rs7609662 G>A, rs13064994 C>T, rs72549262 C>G, rs1109452 C>T and rs850314 G>A). MASP-3 serum levels were assessed in 70 patients and 66 healthy controls. Clinical data, serum levels of complement proteins (ficolin-2, ficolin-3 and MBL) and inflammatory markers (pentraxin-3 and hsCRP) were also included in the analyses. RESULTS A significant association of the MASP1 GC_CCA haplotype with CD (padj= 0.002; OR 3.17 [1.19-8.39]) and chronic chagasic cardiomyopathy (CCC) (padj= 0.013; OR 4.57 [1.37-15.16] was observed. MASP-3 and pentraxin-3 levels were positively correlated in the patients (rho = 0.62; p = 0.0001). MASP-3 levels were not associated with MASP1 polymorphisms or CD and its clinical forms. Furthermore, no correlation was observed between MASP-3 levels and that of ficolin-2, ficolin-3, MBL and hsCRP. CONCLUSION Our findings suggest a possible role for the MASP1 GC_CCA haplotype in susceptibility to chronic CD and CCC clinical forms.
Collapse
Affiliation(s)
- Ednéia Oliveira Cavalcanti
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil.,Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil.,Department of Medicine, Positivo University, Curitiba, Brazil
| |
Collapse
|
4
|
Caputo MB, Elias J, Cesar G, Alvarez MG, Laucella SA, Albareda MC. Role of the Complement System in the Modulation of T-Cell Responses in Chronic Chagas Disease. Front Cell Infect Microbiol 2022; 12:910854. [PMID: 35846776 PMCID: PMC9282465 DOI: 10.3389/fcimb.2022.910854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 01/19/2023] Open
Abstract
Chagas disease, caused by the intracellular pathogen Trypanosoma cruzi, is the parasitic disease with the greatest impact in Latin America and the most common cause of infectious myocarditis in the world. The immune system plays a central role in the control of T. cruzi infection but at the same time needs to be controlled to prevent the development of pathology in the host. It has been shown that persistent infection with T. cruzi induces exhaustion of parasite-specific T cell responses in subjects with chronic Chagas disease. The continuous inflammatory reaction due to parasite persistence in the heart also leads to necrosis and fibrosis. The complement system is a key element of the innate immune system, but recent findings have also shown that the interaction between its components and immune cell receptors might modulate several functions of the adaptive immune system. Moreover, the findings that most of immune cells can produce complement proteins and express their receptors have led to the notion that the complement system also has non canonical functions in the T cell. During human infection by T. cruzi, complement activation might play a dual role in the acute and chronic phases of Chagas disease; it is initially crucial in controlling parasitemia and might later contributes to the development of symptomatic forms of Chagas disease due to its role in T-cell regulation. Herein, we will discuss the putative role of effector complement molecules on T-cell immune exhaustion during chronic human T. cruzi infection.
Collapse
Affiliation(s)
- María Belén Caputo
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Josefina Elias
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Gonzalo Cesar
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - María Gabriela Alvarez
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - Susana Adriana Laucella
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - María Cecilia Albareda
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| |
Collapse
|
5
|
Tirado TC, Moura LL, Shigunov P, Figueiredo FB. Methodological Appraisal of Literature Concerning the Analysis of Genetic Variants or Protein Levels of Complement Components on Susceptibility to Infection by Trypanosomatids: A Systematic Review. Front Immunol 2021; 12:780810. [PMID: 34899745 PMCID: PMC8656155 DOI: 10.3389/fimmu.2021.780810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background Trypanosomatids are protozoa responsible for a wide range of diseases, with emphasis on Chagas Disease (CD) and Leishmaniasis, which are in the list of most relevant Neglected Tropical Diseases (NTD) according to World Health Organization (WHO). During the infectious process, immune system is immediately activated, and parasites can invade nucleated cells through a broad diversity of receptors. The complement system − through classical, alternative and lectin pathways − plays a role in the first line of defense against these pathogens, acting in opsonization, phagocytosis and lysis of parasites. Genetic modifications in complement genes, such as Single Nucleotide Polymorphisms (SNPs), can influence host susceptibility to these parasites and modulate protein expression. Methods In March and April 2021, a literature search was conducted at the PubMed and Google Scholar databases and the reference lists obtained were verified. After applying the inclusion and exclusion criteria, the selected studies were evaluated and scored according to eleven established criteria regarding their thematic approach and design, aiming at the good quality of publications. Results Twelve papers were included in this systematic review: seven investigating CD and five focusing on Leishmaniasis. Most articles presented gene and protein approaches, careful determination of experimental groups, and adequate choice of experimental techniques, although several of them were not up-to-date. Ten studies explored the association of polymorphisms and haplotypes with disease progression, with emphasis on lectin complement pathway genes. Decreased and increased patient serum protein levels were associated with susceptibility to CD and Visceral Leishmaniasis, respectively. Conclusion This systematic review shows the influence of genetic alterations in complement genes on the progression of several infectious diseases, with a focus on conditions caused by trypanosomatids, and contributes suggestions and evidence to improve experimental design in future research proposals.
Collapse
Affiliation(s)
- Thais Cristina Tirado
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| | - Larine Lowry Moura
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| | - Patrícia Shigunov
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| | - Fabiano Borges Figueiredo
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
| |
Collapse
|
6
|
Cortes-Serra N, Mendes MT, Mazagatos C, Segui-Barber J, Ellis CC, Ballart C, Garcia-Alvarez A, Gállego M, Gascon J, Almeida IC, Pinazo MJ, Fernandez-Becerra C. Plasma-Derived Extracellular Vesicles as Potential Biomarkers in Heart Transplant Patient with Chronic Chagas Disease. Emerg Infect Dis 2021; 26:1846-1851. [PMID: 32687028 PMCID: PMC7392439 DOI: 10.3201/eid2608.191042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chagas disease is emerging in countries to which it is not endemic. Biomarkers for earlier therapeutic response assessment in patients with chronic Chagas disease are needed. We profiled plasma-derived extracellular vesicles from a heart transplant patient with chronic Chagas disease and showed the potential of this approach for discovering such biomarkers.
Collapse
|
7
|
Lidani KCF, Andrade FA, Beltrame MH, Chakravarti I, Tizzot MR, Cavalcanti EO, Sandri TL, Luz PR, Messias-Reason IJ. Ficolin-3 in chronic Chagas disease: Low serum levels associated with the risk of cardiac insufficiency. Parasite Immunol 2021; 43:e12829. [PMID: 33686686 DOI: 10.1111/pim.12829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
AIMS To investigate whether FCN3 polymorphisms and circulating ficolin-3 levels were associated with clinical forms of chronic Chagas disease (CD) and to assess their potential use as biomarkers for the disease or its severity. METHODS AND RESULTS FCN3 polymorphisms (g.1637delC (rs532781899) in exon 5; g.3524_3532insTATTTGGCC (rs28362807) in intron 5 and g.4473C > A) (rs4494157) in intron 7) were determined in 178 chronic CD patients (65 asymptomatic, 68 cardiac, 21 digestive and 24 cardiodigestive), and 285 healthy controls by sequence-specific PCR. Ficolin-3 serum levels, measured by ELISA in 80 patients and 80 controls, did not differ between groups. On the other hand, ficolin-3 levels were positively correlated with left ventricular ejection fraction (P = .002; r = .5), with lower levels associated with increased risk of cardiac insufficiency (P = .033; OR 7.21, 95%IC 1.17-44.4). Ficolin-3 levels were positively correlated with ficolin-2 (P = .021; r = .63), and negatively with MBL (P = .002; r = -.36) and pentraxin-3 (P = .04; r = -.32) levels. No significant results were observed for the investigated FCN3 polymorphisms and CD. The g.1637del/1637C heterozygotes presented lower ficolin-3 levels than g.1637C/1637C homozygotes in the control group (P = .023). CONCLUSION Low ficolin-3 levels may play a role in the pathophysiology of cardiac insufficiency associated with CD.
Collapse
Affiliation(s)
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Marcia Holsbach Beltrame
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Indira Chakravarti
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maria Regina Tizzot
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Edneia Oliveira Cavalcanti
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Paola Rosa Luz
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Iara J Messias-Reason
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
8
|
Cláudia Freitas Lidani K, Andrade FA, Kozlowski RK, Luz PR, Messias-Reason IJ. Case Report: High Mannose-Binding Lectin Serum Determined by MBL2 Genotype and Risk for Clinical Progression to Chagasic Cardiomyopathy: A Case Report of Three Patients. Am J Trop Med Hyg 2019; 100:93-96. [PMID: 30526728 DOI: 10.4269/ajtmh.17-0701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chagas disease (CD), caused by infection with the parasite Trypanosoma cruzi, leads to severe cardiomyopathy in 20-30% of patients, whereas the remainder may stay asymptomatic and never develop cardiomyopathy or other clinical manifestations. The underlying cause for this variable outcome is not fully characterized, although previous studies have found high levels of circulating mannose-binding lectin (MBL) to be associated with cardiac failure echocardiographic changes. We report three indeterminate (asymptomatic) chronic Chagas patients who were followed up for 10 years. Two of these patients developed chronic chagasic cardiomyopathy (CCC) during this follow-up period and, when genotyped, were found to be carriers of the high MBL producer HYPA/HYPA genotype, suggesting that genetically determined high MBL serum might be associated with the risk of CCC development. These results suggest the use of MBL quantification and MBL2 genotyping as tools for clinical assessment in patients with chronic CD.
Collapse
Affiliation(s)
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | | | - Paola Rosa Luz
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Iara J Messias-Reason
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
9
|
Acosta-Herrera M, Strauss M, Casares-Marfil D, Martín J. Genomic medicine in Chagas disease. Acta Trop 2019; 197:105062. [PMID: 31201776 DOI: 10.1016/j.actatropica.2019.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Genetic approaches have been proposed for improving the understanding of the causes of differential susceptibility to Trypanosoma cruzi infection and Chagas disease outcome. Polymorphisms in genes involved in the immune/inflammatory response are being studied in order to clarify their possible role in the occurrence or severity of the cardiac and/or gastrointestinal complications. However still today, the number of significant associated genes is limited and the pathophysiological mechanisms underlying this condition are unknown. This article review the information currently available from the published scientific literature regarding the genetic variants of molecules of the immune system and other variants that can contribute to the clinical presentation of the disease. Genomic medicine will improve our knowledge about the molecular basis of Chagas disease, will open new avenues for developing biomarkers of disease progression, new therapeutic strategies to suit the requirements of individual patients, and will contribute to the control of one of the infections with the greatest socio-economic impact in the Americas.
Collapse
|
10
|
Sandri TL, Andrade FA, Lidani KCF, Einig E, Boldt ABW, Mordmüller B, Esen M, Messias-Reason IJ. Human collectin-11 (COLEC11) and its synergic genetic interaction with MASP2 are associated with the pathophysiology of Chagas Disease. PLoS Negl Trop Dis 2019; 13:e0007324. [PMID: 30995222 PMCID: PMC6488100 DOI: 10.1371/journal.pntd.0007324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/29/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Chagas Disease (CD) is an anthropozoonosis caused by Trypanosoma cruzi. With complex pathophysiology and variable clinical presentation, CD outcome can be influenced by parasite persistence and the host immune response. Complement activation is one of the primary defense mechanisms against pathogens, which can be initiated via pathogen recognition by pattern recognition molecules (PRMs). Collectin-11 is a multifunctional soluble PRM lectin, widely distributed throughout the body, with important participation in host defense, homeostasis, and embryogenesis. In complex with mannose-binding lectin-associated serine proteases (MASPs), collectin-11 may initiate the activation of complement, playing a role against pathogens, including T. cruzi. In this study, collectin-11 plasma levels and COLEC11 variants in exon 7 were assessed in a Brazilian cohort of 251 patients with chronic CD and 108 healthy controls. Gene-gene interactions between COLEC11 and MASP2 variants were analyzed. Collectin-11 levels were significantly decreased in CD patients compared to controls (p<0.0001). The allele rs7567833G, the genotypes rs7567833AG and rs7567833GG, and the COLEC11*GGC haplotype were related to T. cruzi infection and clinical progression towards symptomatic CD. COLEC11 and MASP2*CD risk genotypes were associated with cardiomyopathy (p = 0.014; OR 9.3, 95% CI 1.2–74) and with the cardiodigestive form of CD (p = 0.005; OR 15.2, 95% CI 1.7–137), suggesting that both loci act synergistically in immune modulation of the disease. The decreased levels of collectin-11 in CD patients may be associated with the disease process. The COLEC11 variant rs7567833G and also the COLEC11 and MASP2*CD risk genotype interaction were associated with the pathophysiology of CD. The heterogeneity of clinical progression during chronic Trypanosoma cruzi infection and the mechanisms determining why some individuals develop symptoms whereas others remain asymptomatic are still poorly understood. The pathogenesis of chronic Chagas Disease (CD) has been attributed mainly to the persistence of the causing parasite and the character of individual host immune responses. Collectin-11 is a host immune response molecule with affinity for sugars found on the T. cruzi’s surface. Together with mannose-binding lectin-associated serine proteases (MASPs), it triggers the host defense response against pathogens. Genetic variants and protein levels of MASP-2 and the mannose-binding lectin (MBL), a molecule structurally similar to collectin-11, have been found to be associated with susceptibility to T. cruzi infection and clinical progression to cardiomyopathy. This prompted us to investigate collectin-11 genetic variants and protein levels in 251 patients with chronic CD and 108 healthy individuals, and to examine the effect of gene interaction between COLEC11 and MASP2 risk mutations. We found an association to CD infection with COLEC11 gene variants and reduced collectin-11 levels. The concomitant presence of these genetic variants and MASP2 risk mutations greatly increased the odds for cardiomyopathy. This is the first study to reveal a role for collectin-11 and COLEC11-MASP2 gene interaction in the pathogenesis of CD.
Collapse
Affiliation(s)
- Thaisa Lucas Sandri
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
- * E-mail:
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Elias Einig
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Angelica Beate Winter Boldt
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | | | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Iara J. Messias-Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
11
|
Genetic Polymorphisms in Sepsis and Cardiovascular Disease: Do Similar Risk Genes Suggest Similar Drug Targets? Chest 2019; 155:1260-1271. [PMID: 30660782 DOI: 10.1016/j.chest.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 01/10/2023] Open
Abstract
Genetic variants are associated with altered clinical outcome of patients with sepsis and cardiovascular diseases. Common gene signaling pathways may be involved in the pathophysiology of these diseases. A better understanding of genetic commonality among these diseases may enable the discovery of important genes, signaling pathways, and therapeutic targets for these diseases. We investigated the common genetic factors by a systematic search of the literature. Twenty-four genes (ADRB2, CD14, FGB, FV, HMOX1, IL1B, IL1RN, IL6, IL10, IL17A, IRAK1, MASP2, MBL, MIR608, MIF, NOD2, PCSK9, PPARG, PROC, SERPINE1, SOD2, SVEP1, TF, TIRAP, TLR1) were extracted as reported genetic variations associated with altered outcome of both sepsis and cardiovascular diseases. Of these genes, the adverse allele (or combinations) was same in nine (ADRB2, FV, HMOX1, IL6, MBL, MIF, NOD2, PCSK9, SERPINE1), and the effect appears to be in the same direction in both sepsis and cardiovascular disease. Shared gene signaling pathways suggest that these are true biological results and could point to overlapping drug targets in sepsis and cardiovascular disease.
Collapse
|
12
|
De Bona E, Lidani KCF, Bavia L, Omidian Z, Gremski LH, Sandri TL, de Messias Reason IJ. Autoimmunity in Chronic Chagas Disease: A Road of Multiple Pathways to Cardiomyopathy? Front Immunol 2018; 9:1842. [PMID: 30127792 PMCID: PMC6088212 DOI: 10.3389/fimmu.2018.01842] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
Chagas disease (CD), a neglected tropical disease caused by the protozoan Trypanosoma cruzi, affects around six million individuals in Latin America. Currently, CD occurs worldwide, becoming a significant public health concern due to its silent aspect and high morbimortality rate. T. cruzi presents different escape strategies which allow its evasion from the host immune system, enabling its persistence and the establishment of chronic infection which leads to the development of chronic Chagas cardiomyopathy (CCC). The potent immune stimuli generated by T. cruzi persistence may result in tissue damage and inflammatory response. In addition, molecular mimicry between parasites molecules and host proteins may result in cross-reaction with self-molecules and consequently in autoimmune features including autoantibodies and autoreactive cells. Although controversial, there is evidence demonstrating a role for autoimmunity in the clinical progression of CCC. Nevertheless, the exact mechanism underlying the generation of an autoimmune response in human CD progression is unknown. In this review, we summarize the recent findings and hypotheses related to the autoimmune mechanisms involved in the development and progression of CCC.
Collapse
Affiliation(s)
- Elidiana De Bona
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Zahra Omidian
- Department of Pathology, Division of Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | | | - Thaisa Lucas Sandri
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Iara J de Messias Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
13
|
Lidani KCF, Sandri TL, Andrade FA, Bavia L, Nisihara R, Messias-Reason IJ. Complement Factor H as a potential atherogenic marker in chronic Chagas’ disease. Parasite Immunol 2018; 40:e12537. [DOI: 10.1111/pim.12537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/10/2018] [Indexed: 02/03/2023]
Affiliation(s)
- K. C. F. Lidani
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - T. L. Sandri
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
- Institute of Tropical Medicine; University of Tübingen; Tübingen Germany
| | - F. A. Andrade
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - L. Bavia
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - R. Nisihara
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - I. J. Messias-Reason
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| |
Collapse
|
14
|
Binding capacity of mannose-binding lectin (MBL) is associated with the severity of chronic Chagas cardiomyopathy. Parasitol Int 2018; 67:593-596. [PMID: 29775825 DOI: 10.1016/j.parint.2018.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
Abstract
Chagas disease (CD) is a global problem. Currently, it affects approximately 15 million individuals in Latin America. It is well know that the human immune response is related to different clinical manifestations. Mannose binding lectin (MBL) plays an important role in innate immunity, and it mediates the phagocytosis and complement-mediated destruction of pathogens. The binding capacity is enhanced by the oligomerization of MBL. In this study, we evaluated the serum concentration and the binding capacity of MBL in patients with chronic chagasic cardiomyopathy. A total of 77 patients with chronic CD were included with indeterminate (n = 19), mild cardiac (n = 29) and severe cardiac (n = 29) forms. The serum concentration and the binding capacity were measured using enzyme-linked immunosorbent assays (ELISA). There was no significant difference in the serum MBL levels between the groups of patients. However, we found a relationship between the binding capacity and the groups studied. Our results suggest that binding capacity of MBL could be an indicator of clinical manifestation in Chronic Chagas cardiomyopathy. Furthermore, combined with the Mannose Binding Index results in a useful clinical tool for management of Chronic Chagas Patients.
Collapse
|
15
|
Sandri TL, Lidani KCF, Andrade FA, Meyer CG, Kremsner PG, de Messias-Reason IJ, Velavan TP. Human complement receptor type 1 (CR1) protein levels and genetic variants in chronic Chagas Disease. Sci Rep 2018; 8:526. [PMID: 29323238 PMCID: PMC5765048 DOI: 10.1038/s41598-017-18937-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Complement is an essential element in both innate and acquired immunity contributing to the immunopathogenesis of many disorders, including Chagas Disease (CD). Human complement receptor 1 (CR1) plays a role in the clearance of complement opsonized molecules and may facilitate the entry of pathogens into host cells. Distinct CR1 exon 29 variants have been found associated with CR1 expression levels, increased susceptibility and pathophysiology of several diseases. In this study, CR1 plasma levels were assessed by ELISA and CR1 variants in exon 29 by sequencing in a Brazilian cohort of 232 chronic CD patients and 104 healthy controls. CR1 levels were significantly decreased in CD patients compared to controls (p < 0.0001). The CR1 rs1704660G, rs17047661G and rs6691117G variants were significantly associated with CD and in high linkage disequilibrium. The CR1*AGAGTG haplotype was associated with T. cruzi infection (p = 0.035, OR 3.99, CI 1.1-14.15) whereas CR1*AGGGTG was related to the risk of chagasic cardiomyopathy (p = 0.028, OR 12.15, CI 1.13-113). This is the first study that provides insights on the role of CR1 in development and clinical presentation of chronic CD.
Collapse
Affiliation(s)
- Thaisa Lucas Sandri
- Laboratory of Molecular Immunopathology, Federal University of Paraná, Curitiba, Brazil
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | | | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
- Vietnamese - German Center for Medical Research, Hanoi, Vietnam
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam.
- Vietnamese - German Center for Medical Research, Hanoi, Vietnam.
| |
Collapse
|
16
|
Tsakanova G, Stepanyan A, Nahapetyan K, Sim RB, Arakelyan A, Boyajyan A. Serine proteases of the complement lectin pathway and their genetic variations in ischaemic stroke. J Clin Pathol 2017; 71:141-147. [PMID: 28720568 DOI: 10.1136/jclinpath-2017-204403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/12/2017] [Accepted: 06/12/2017] [Indexed: 12/19/2022]
Abstract
AIMS The aim of the current study was to assess the proteolytic activities of collectin-bound MASP-1 and MASP-2 in the blood of patients with ischaemic stroke, as well as the association of their six genetic polymorphisms (rs3203210, rs28945070, rs28945073 in MASP1 gene and rs2273343, rs12711521, rs147270785 in MASP2 gene) with this pathology. METHODS In total, 250 patients and 300 healthy subjects were involved in this study. MBL-associated serine protease (MASP)-1 and MASP-2 activities were measured using in-house developed immunofluorescent and enzyme-linked immunosorbent assays, respectively. Sequence specific primer PCR was used to study the association of MASP1 and MASP2 genetic polymorphisms with ischaemic stroke. RESULTS The results obtained demonstrate that the activities of collectin-bound MASP-1 and MASP-2 in patients with ischaemic stroke are significantly higher than those in healthy subjects (p<0.001). According to the data obtained for genotyping, the rs3203210 polymorphism in the MASP1 gene and the rs147270785 polymorphism in the MASP2 gene are associated with ischaemic stroke (p<0.0001). CONCLUSIONS In conclusion we suggest that the complement lectin pathway serine proteases, MASP-1 and MASP-2, can be associated with ischaemic stroke development risk and may participate in pathological events leading to post-ischaemic brain damage. Moreover rs3203210 and rs147270785 single nucleotide polymorphisms in the MASP1 and MASP2 genes, respectively, are strongly associated with ischaemic stroke, and the minor rs3203210*C and rs147270785*A alleles of these polymorphisms may be considered as protective factors for ischameic stroke, at least in the Armenian population.
Collapse
Affiliation(s)
| | - Ani Stepanyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Karen Nahapetyan
- Department of Neurosurgery, 'Armenia' Republican Medical Center, Yerevan, Armenia
| | - Robert B Sim
- Department of Pharmacology, Oxford University, Oxford, UK.,Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | - Anna Boyajyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
| |
Collapse
|
17
|
Chakraborti S, Dhalla NS, Catarino SJ, Messias-Reason IJ. Serine Proteases in the Lectin Pathway of the Complement System. PROTEASES IN PHYSIOLOGY AND PATHOLOGY 2017. [PMCID: PMC7120406 DOI: 10.1007/978-981-10-2513-6_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complement system plays a crucial role in host defense against pathogen infections and in the recognition and removal of damaged or altered self-components. Complement system activation can be initiated by three different pathways—classical, alternative, and lectin pathways—resulting in a proteolytic cascade, which culminates in multiple biological processes including opsonization and phagocytosis of intruders, inflammation, cell lysis, and removal of immune complexes and apoptotic cells. Furthermore, it also functions as a link between the innate and adaptive immune responses. The lectin pathway (LP) activation is mediated by serine proteases, termed mannan-binding lectin (MBL)-associated serine proteases (MASPs), which are associated with the pattern recognition molecules (PRMs) that recognize carbohydrates or acetylated compounds on surfaces of pathogens or apoptotic cells. These result in the proteolysis of complement C2 and C4 generating C3 convertase (C4b2a), which carries forward the activation cascade of complements, culminating in the elimination of foreign molecules. This chapter presents an overview of the complement system focusing on the characterization of MASPs and its genes, as well as its functions in the immune response.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal India
| | - Naranjan S. Dhalla
- St. Boniface Hospital Research Centre, University of Manitoba, Faculty of Health Sciences, College of Medicine, Institute of Cardiovascular Sciences, Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
18
|
Lidani KCF, Bavia L, Ambrosio AR, de Messias-Reason IJ. The Complement System: A Prey of Trypanosoma cruzi. Front Microbiol 2017; 8:607. [PMID: 28473804 PMCID: PMC5397499 DOI: 10.3389/fmicb.2017.00607] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/24/2017] [Indexed: 12/27/2022] Open
Abstract
Trypanosoma cruzi is a protozoan parasite known to cause Chagas disease (CD), a neglected sickness that affects around 6-8 million people worldwide. Originally, CD was mainly found in Latin America but more recently, it has been spread to countries in North America, Asia, and Europe due the international migration from endemic areas. Thus, at present CD represents an important concern of global public health. Most of individuals that are infected by T. cruzi may remain in asymptomatic form all lifelong, but up to 40% of them will develop cardiomyopathy, digestive mega syndromes, or both. The interaction between the T. cruzi infective forms and host-related immune factors represents a key point for a better understanding of the physiopathology of CD. In this context, the complement, as one of the first line of host defense against infection was shown to play an important role in recognizing T. cruzi metacyclic trypomastigotes and in controlling parasite invasion. The complement consists of at least 35 or more plasma proteins and cell surface receptors/regulators, which can be activated by three pathways: classical (CP), lectin (LP), and alternative (AP). The CP and LP are mainly initiated by immune complexes or pathogen-associated molecular patterns (PAMPs), respectively, whereas AP is spontaneously activated by hydrolysis of C3. Once activated, several relevant complement functions are generated which include opsonization and phagocytosis of particles or microorganisms and cell lysis. An important step during T. cruzi infection is when intracellular trypomastigotes are release to bloodstream where they may be target by complement. Nevertheless, the parasite uses a sequence of events in order to escape from complement-mediated lysis. In fact, several T. cruzi molecules are known to interfere in the initiation of all three pathways and in the assembly of C3 convertase, a key step in the activation of complement. Moreover, T. cruzi promotes secretion of plasma membrane-derived vesicles from host cells, which prevent the activity of C3 convertase C4b2a and thereby may hinder complement. In this review, we aim to present an overview on the strategies used by T. cruzi in order to circumvent the activation of complement and, consequently, its biological effects.
Collapse
Affiliation(s)
| | | | | | - Iara J. de Messias-Reason
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of ParanáCuritiba, Brazil
| |
Collapse
|
19
|
Fu J, Wang J, Luo Y, Zhang L, Zhang Y, Dong X, Yu H, Cao M, Ma X. Association between MASP-2 gene polymorphism and risk of infection diseases: A meta-analysis. Microb Pathog 2016; 100:221-228. [PMID: 27725284 DOI: 10.1016/j.micpath.2016.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 10/01/2016] [Accepted: 10/06/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND The role of MASP-2 is vital in the process of complement activation by the lectin pathway. It is generally considered that the functional activation of MASP-2 contribute to the infection disease development process. AIMS To analyze the association between MASP-2 functional gene (rs72550870) polymorphism and the infection disease risk by a meta-analysis. METHOD Relevant case-control studies were identified by searching Cochrane Library, PubMed, Emabase, DOAJ, CAB Abstracts, CSA, CINAHL, EBSCO, Scopus, Global Health, Index Copernicus, CA, China National Knowledge Infrastructure (CNKI) databases up to 10th January 2016. The data were extracted and the methodological quality of studies were evaluated. The STATA 12.0 software was used to perform statistical analysis. RESULTS 9 studies were included. There was no significant association between masp-2 gene (p.D120G, rs72550870) polymorphism and the risk of infection disease under the allele model (G vs. A: OR = 0.89, 95%CI = 0.66-1.21)(P = 0.445>0.05) and the recessive model (AG + GG vs.AA: OR = 0.88, 95%CI = 0.65-1.20) (P = 0.428>0.05). CONCLUSION This is the first comprehensive meta-analysis indicates that the MASP-2 functional gene (rs72550870) polymorphism is not associated with the infection diseases, and the key functional gene polymorphism of rs72550870 did not increase susceptibility to the infection diseases. Similarly, there were no obvious difference in subgroup analysis based on geographical areas and pathogenic microorganisms.
Collapse
Affiliation(s)
- Jie Fu
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; National Hospital of Linxia City, Linxia, 731100, China
| | - Jingqiu Wang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanping Luo
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lifeng Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xinfang Dong
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hongjuan Yu
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingqiang Cao
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xingming Ma
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
20
|
Boldt ABW, Beltrame MH, Catarino SJ, Meissner CG, Tizzot R, Messias-Reason IJ. A dual role for Mannan-binding lectin-associated serine protease 2 (MASP-2) in HIV infection. Mol Immunol 2016; 78:48-56. [PMID: 27588826 DOI: 10.1016/j.molimm.2016.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mannan-binding lectin (MBL) - associated serine protease 2 (MASP-2) co-activates the lectin pathway of complement in response to several viral infections. The quality of this response partly depends on MASP2 gene polymorphisms, which modulate MASP-2 function and serum levels. In this study we investigated a possible role of MASP2 polymorphisms, MASP-2 serum levels and MBL-mediated complement activation in the susceptibility to HIV/AIDS and HBV/HCV coinfection. METHODS A total of 178 HIV patients, 89 (50%) coinfected with HBV/HCV, 51.7% female, average age 40 (12-73) years, and 385 controls were evaluated. MASP-2 levels and MBL-driven complement activation were evaluated by enzyme-linked immunosorbent assay and 11 MASP2 polymorphisms from the promoter to the last exon were haplotyped using multiplex sequence-specific PCR. RESULTS Genotype distribution was in Hardy-Weinberg equilibrium and differed between HIV+ patients and controls (P=0.030), irrespective of HBV or HCV coinfection. The p.126L variant, which was associated with MASP-2 levels <200ng/mL (OR=5.0 [95%CI=1.3-19.2] P=0.019), increased the susceptibility to HIV infection (OR=5.67 [95%CI=1.75-18.33], P=0.004) and to HIV+HBV+ status (OR=6.44 [95%CI=1.69-24.53, P=0.006). A similar association occurred with the ancient haplotype harboring this variant, AGCDV (OR=2.35 [95%CI=1.31-4.23], P=0.004). On the other hand, p.126L in addition to other variants associated with low MASP-2 levels-p.120G, p.377A and p.439H, presented a protective effect against AIDS (OR=0.25 [95%CI=0.08-0.80], P=0.020), independently of age, sex, hepatic function and viral load. MASP-2 serum levels were lower in HIV+ and HIV+HBV+ patients than in controls (P=0.0004). Among patients, MASP-2 levels were higher in patients with opportunistic diseases (P=0.001) and AIDS (P=0.004). MASP-2 levels correlated positively with MBL/MASP2-mediated C4 deposition (r=0.29, P=0.0002) and negatively with CD4+ cell counts (r=-0.21, P=0.018), being related to decreased CD4+ cell counts (OR=5.8 [95%CI=1.23-27.5, P=0.026). CONCLUSIONS Genetically determined MASP-2 levels seem to have a two-edge effect in HIV and probably HCV/HBV coinfection, whereas low levels increase the susceptibility to infection, but on the other side protects against AIDS.
Collapse
Affiliation(s)
- Angelica Beate Winter Boldt
- Laboratório de Imunopatologia Molecular, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil; Laboratório de Genética Molecular Humana, Universidade Federal do Paraná, Curitiba, Brazil
| | - Márcia Holsbach Beltrame
- Laboratório de Imunopatologia Molecular, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Sandra Jeremias Catarino
- Laboratório de Imunopatologia Molecular, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Caroline Grisbach Meissner
- Laboratório de Imunopatologia Molecular, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Regina Tizzot
- Laboratório de Imunopatologia Molecular, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Iara Jose Messias-Reason
- Laboratório de Imunopatologia Molecular, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
21
|
Li E, Tako EA, Singer SM. Complement Activation by Giardia duodenalis Parasites through the Lectin Pathway Contributes to Mast Cell Responses and Parasite Control. Infect Immun 2016; 84:1092-1099. [PMID: 26831470 PMCID: PMC4807472 DOI: 10.1128/iai.00074-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 11/20/2022] Open
Abstract
Infection with Giardia duodenalis is one of the most common causes of diarrheal disease in the world. While numerous studies have identified important contributions of adaptive immune responses to parasite control, much less work has examined innate immunity and its connections to the adaptive response during this infection. We explored the role of complement in immunity to Giardia using mice deficient in mannose-binding lectin (Mbl2) or complement factor 3a receptor (C3aR). Both strains exhibited delayed clearance of parasites and a reduced ability to recruit mast cells in the intestinal submucosa. C3aR-deficient mice had normal production of antiparasite IgA, butex vivo T cell recall responses were impaired. These data suggest that complement is a key factor in the innate recognition of Giardia and that recruitment of mast cells and activation of T cell immunity through C3a are important for parasite control.
Collapse
Affiliation(s)
- Erqiu Li
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Ernest A Tako
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
22
|
Luz PR, Miyazaki MI, Chiminacio Neto N, Padeski MC, Barros ACM, Boldt ABW, Messias-Reason IJ. Genetically Determined MBL Deficiency Is Associated with Protection against Chronic Cardiomyopathy in Chagas Disease. PLoS Negl Trop Dis 2016; 10:e0004257. [PMID: 26745156 PMCID: PMC4706301 DOI: 10.1371/journal.pntd.0004257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
Chagas disease (CD) is caused by Trypanosoma cruzi, whose sugar moieties are recognized by mannan binding lectin (MBL), a soluble pattern-recognition molecule that activates the lectin pathway of complement. MBL levels and protein activity are affected by polymorphisms in the MBL2 gene. We sequenced the MBL2 promoter and exon 1 in 196 chronic CD patients and 202 controls. The MBL2*C allele, which causes MBL deficiency, was associated with protection against CD (P = 0.007, OR = 0.32). Compared with controls, genotypes with this allele were completely absent in patients with the cardiac form of the disease (P = 0.003). Furthermore, cardiac patients with genotypes causing MBL deficiency presented less heart damage (P = 0.003, OR = 0.23), compared with cardiac patients having the XA haplotype causing low MBL levels, but fully capable of activating complement (P = 0.005, OR = 7.07). Among the patients, those with alleles causing MBL deficiency presented lower levels of cytokines and chemokines possibly implicated in symptom development (IL9, p = 0.013; PDGFB, p = 0.036 and RANTES, p = 0.031). These findings suggest a protective effect of genetically determined MBL deficiency against the development and progression of chronic CD cardiomyopathy. Chagas disease is considered an important neglected tropical disease, affecting approximately ten million people in Latin America. Although most infected individuals remain asymptomatic, one third of patients develop a chronic heart disease, with progressive inflammation, increase of myocardium, arrhythmia, cardiac insufficiency and heart failure. To date, there is no available marker to indicate the progression neither to determinate the severity of heart damage. Mannan binding lectin (MBL) is an important protein of the immune system able to recognize specific regions on the microorganism surfaces (including Trypanosoma cruzi, the causal agent of Chagas disease) which activate the complement system, a crucial mechanism of the effector immunity. MBL levels and protein activity are affected by genetic differences, named polymorphisms, in the MBL2 gene. This is the first Brazilian study with MBL2 polymorphisms in chronic Chagas disease. We sequenced two regions of MBL2 gene in 196 patients and 202 controls. We found that a polymorphism associated with deficient complement activation protects against Chagas disease and patients with deficiency-associated genotypes presented less echocardiographic alterations. Among the patients, those with alleles causing MBL deficiency presented lower levels of cytokines and chemokines possibly implicated in symptom development (IL9, p = 0.013; PDGFB, p = 0.036 and RANTES, p = 0.031). These findings lead us to suggest that genetically determined MBL deficiency plays a protective role against the development and progression of chronic Chagas disease.
Collapse
Affiliation(s)
- Paola Rosa Luz
- Laboratório de Imunopatologia Molecular–Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brasil
| | - Márcia I. Miyazaki
- Ambulatório de Atenção ao Paciente Chagásico—Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brasil
| | - Nelson Chiminacio Neto
- Serviço de Ecocardiografia—Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brasil
| | - Marcela C. Padeski
- Laboratório de Imunopatologia Molecular–Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brasil
| | - Ana Cláudia M. Barros
- Laboratório de Imunopatologia Molecular–Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brasil
| | - Angelica B. W. Boldt
- Laboratório de Imunopatologia Molecular–Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brasil
- Laboratório de Genética Molecular Humana–Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brasil
| | - Iara J. Messias-Reason
- Laboratório de Imunopatologia Molecular–Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brasil
- * E-mail:
| |
Collapse
|
23
|
Teixeira TL, Machado FC, Alves da Silva A, Teixeira SC, Borges BC, Dos Santos MA, Martins FA, Brígido PC, Rodrigues AA, Notário AFO, Ferreira BA, Servato JPS, Deconte SR, Lopes DS, Ávila VMR, Araújo FDA, Tomiosso TC, Silva MJB, da Silva CV. Trypanosoma cruzi P21: a potential novel target for chagasic cardiomyopathy therapy. Sci Rep 2015; 5:16877. [PMID: 26574156 PMCID: PMC4648062 DOI: 10.1038/srep16877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of cardiomyopathy in Latin America. It is estimated that 10%–30% of all infected individuals will acquire chronic chagasic cardiomyopathy (CCC). The etiology of CCC is multifactorial and involves parasite genotype, host genetic polymorphisms, immune response, signaling pathways and autoimmune progression. Herein we verified the impact of the recombinant form of P21 (rP21), a secreted T. cruzi protein involved in host cell invasion, on progression of inflammatory process in a polyester sponge-induced inflammation model. Results indicated that rP21 can recruit immune cells induce myeloperoxidase and IL-4 production and decrease blood vessels formation compared to controls in vitro and in vivo. In conclusion, T. cruzi P21 may be a potential target for the development of P21 antagonist compounds to treat chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Thaise Lara Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Fabrício Castro Machado
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil.,Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, SP, Brasil
| | - Aline Alves da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | | | | | - Flávia Alves Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | | | - Adele Aud Rodrigues
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | | | | | | | - Simone Ramos Deconte
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Daiana Silva Lopes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, MG, Brasil
| | | | | | | | | | | |
Collapse
|
24
|
Ojurongbe O, Antony JS, Van Tong H, Meyer CG, Akindele AA, Sina-Agbaje OR, Kremsner PG, Velavan TP. Low MBL-associated serine protease 2 (MASP-2) levels correlate with urogenital schistosomiasis in Nigerian children. Trop Med Int Health 2015; 20:1311-9. [PMID: 26046446 DOI: 10.1111/tmi.12551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The human mannose-binding lectin (MBL) and ficolins (FCN) are involved in pathogen recognition in the first line of defence. They support activation of the complement lectin cascade in the presence of MBL-associated serine protease 2 (MASP-2), a protein that cleaves the C4 and C2 complement components. Recent studies found that distinct MBL2 and FCN2 promoter variants and their corresponding serum levels are associated with relative protection from urogenital schistosomiasis. METHODS We investigated the contribution of MASP-2 levels and MASP2 polymorphisms in a Nigerian study group, of 163 individuals infected with Schistosoma haematobium and 183 healthy subjects. RESULTS MASP-2 serum levels varied between younger children (≤12 years) and older children (>12 years) and adults (P = 0.0001). Younger children with a patent infection had significantly lower MASP-2 serum levels than uninfected children (P = 0.0074). Older children and adults (>12 years) with a current infection had higher serum MASP-2 levels than controls (P = 0.032). MBL serum levels correlated positively with MASP-2 serum levels (P = 0.01). MASP2 secretor haplotypes were associated with MASP-2 serum levels in healthy subjects. The heterozygous MASP2 p.P126L variant was associated with reduced serum MASP-2 levels (P = 0.01). CONCLUSIONS The findings indicate that higher MASP-2 serum levels are associated with relative protection from urogenital schistosomiasis in Nigerian children.
Collapse
Affiliation(s)
- Olusola Ojurongbe
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Justin S Antony
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Hoang Van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | | | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Fondation Congolaise pour la Recherche Medicale, Brazzaville, Republic of Congo
| |
Collapse
|
25
|
Beltrame MH, Boldt ABW, Catarino SJ, Mendes HC, Boschmann SE, Goeldner I, Messias-Reason I. MBL-associated serine proteases (MASPs) and infectious diseases. Mol Immunol 2015; 67:85-100. [PMID: 25862418 PMCID: PMC7112674 DOI: 10.1016/j.molimm.2015.03.245] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
MASP-1 and MASP-2 are central players of the lectin pathway of complement. MASP1 and MASP2 gene polymorphisms regulate protein serum levels and activity. MASP deficiencies are associated with increased infection susceptibility. MASP polymorphisms and serum levels are associated with disease progression.
The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. After binding of mannan-binding lectin (MBL), ficolins or collectin 11 to carbohydrates or acetylated residues on pathogen surfaces, dimers of MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2) activate a proteolytic cascade, which culminates in the formation of the membrane attack complex and pathogen lysis. Alternative splicing of the pre-mRNA encoding MASP-1 results in two other products, MASP-3 and MAp44, which regulate activation of the cascade. A similar mechanism allows the gene encoding MASP-2 to produce the truncated MAp19 protein. Polymorphisms in MASP1 and MASP2 genes are associated with protein serum levels and functional activity. Since the first report of a MASP deficiency in 2003, deficiencies in lectin pathway proteins have been associated with recurrent infections and several polymorphisms were associated with the susceptibility or protection to infectious diseases. In this review, we summarize the findings on the role of MASP polymorphisms and serum levels in bacterial, viral and protozoan infectious diseases.
Collapse
Affiliation(s)
- Marcia H Beltrame
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Angelica B W Boldt
- Department of Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Sandra J Catarino
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Hellen C Mendes
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Stefanie E Boschmann
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Isabela Goeldner
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Iara Messias-Reason
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
26
|
Chen M, Liang Y, Li W, Wang M, Hu L, Abuaku BK, Huang X, Tan H, Wen SW. Impact of MBL and MASP-2 gene polymorphism and its interaction on susceptibility to tuberculosis. BMC Infect Dis 2015; 15:151. [PMID: 25887173 PMCID: PMC4399571 DOI: 10.1186/s12879-015-0879-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/10/2015] [Indexed: 12/17/2022] Open
Abstract
Background Mannose-binding lectin (MBL) and MBL-associated serine proteases 2 (MASP-2) are important proteins in the lectin pathway of the immune system. Polymorphism of MBL and MASP-2 genes may affect the serum concentration of MBL and MASP-2. This study explores the association between MBL and MASP-2 gene polymorphism and their interactions and the susceptibility to tuberculosis (TB). Method A total of 503 patients with TB and 419 healthy controls were recruited to participate in this case-control study. PCR-SSP technology was applied to genotype rs7096206 of MBL genes and rs2273346 and rs6695096 of MASP-2 genes. Demographic data and some exposure information were also obtained from study participants. Unconditional logistic regression analysis was used to identify association between the various factors and TB whilst Marginal Structural Linear Odds Models were used to estimate the interactions. Results Both genotype GC at rs7096206 of MBL genes and genotype TC at rs2273346 and rs6695096 of MASP-2 genes were more prevalent in the TB patient group than the healthy control group (P < 0.05, OR 1.393, 1.302 and 1.426 respectively). The relative excess risk of interaction (RERI) between rs7096206 of MBL genes and rs2273346 and rs6695096 of MASP-2 genes was 0.897 (95% CI: 0.282, 1.513) and 1.142 (95% CI: 0.755, 1.530) respectively (P < 0.05). Conclusion Polymorphisms of MBL (rs7096206) and MASP-2 (rs2273346 and rs6695096) were associated with the susceptibility of TB, and there were gene-gene interactions among them.
Collapse
Affiliation(s)
- Mengshi Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, 410008, PR China. .,Hunan Children's Hospital, Ziyuan RD 86, Changsha, Hunan, 410007, PR China.
| | - Ying Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, 410008, PR China. .,School of Public Health, Xinjiang Medical University, Urumqi, Xijiang, 830054, PR China.
| | - Wufei Li
- Department of Nursing, Shaoyang Medical College, Shaoyang, Hunan, 422000, PR China.
| | - Mian Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, 410008, PR China.
| | - Li Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, 410008, PR China. .,Beijing Center for Diseases Prevention and Control, Beijing, 100013, PR China.
| | - Benjamin Kwaku Abuaku
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, 410008, PR China. .,Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, PO Box LG581, Legon, Accra, Ghana.
| | - Xin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, 410008, PR China.
| | - Hongzhuan Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, 410008, PR China.
| | - Shi Wu Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, 410008, PR China. .,Department of Obstetrics & Gynecology, University of Ottawa, The Ottawa Hospital, 501 Smyth Road, Ottawa, Ontario, Canada.
| |
Collapse
|
27
|
Ribeiro CH, Lynch NJ, Stover CM, Ali YM, Valck C, Noya-Leal F, Schwaeble WJ, Ferreira A. Deficiency in mannose-binding lectin-associated serine protease-2 does not increase susceptibility to Trypanosoma cruzi infection. Am J Trop Med Hyg 2014; 92:320-4. [PMID: 25548381 DOI: 10.4269/ajtmh.14-0236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas' disease, a chronic illness affecting 10 million people around the world. The complement system plays an important role in fighting microbial infections. The recognition molecules of the lectin pathway of complement activation, mannose-binding lectin (MBL), ficolins, and CL-11, bind to specific carbohydrates on pathogens, triggering complement activation through MBL-associated serine protease-2 (MASP-2). Previous in vitro work showed that human MBL and ficolins contribute to T. cruzi lysis. However, MBL-deficient mice are only moderately compromised in their defense against the parasite, as they may still activate the lectin pathway through ficolins and CL-11. Here, we assessed MASP-2-deficient mice, the only presently available mouse line with total lectin pathway deficiency, for a phenotype in T. cruzi infection. Total absence of lectin pathway functional activity did not confer higher susceptibility to T. cruzi infection, suggesting that it plays a minor role in the immune response against this parasite.
Collapse
Affiliation(s)
- Carolina H Ribeiro
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nicholas J Lynch
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Cordula M Stover
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Youssif M Ali
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Carolina Valck
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Francisca Noya-Leal
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Wilhelm J Schwaeble
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Arturo Ferreira
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
28
|
Chen M, Deng J, Su C, Li J, Wang M, Abuaku BK, Hu S, Tan H, Wen SW. Impact of passive smoking, cooking with solid fuel exposure, and MBL/MASP-2 gene polymorphism upon susceptibility to tuberculosis. Int J Infect Dis 2014; 29:1-6. [PMID: 25312983 DOI: 10.1016/j.ijid.2014.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 07/15/2014] [Accepted: 08/16/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To explore the impact of passive smoking, cooking with solid fuel, mannose-binding lectin (MBL) gene, MBL-associated serine proteases 2 (MASP-2) gene, and gene-environment interactions on the susceptibility to tuberculosis (TB) in non-smokers. METHODS A total of 205 TB patients and 216 healthy controls were recruited to participate in this case-control study. PCR with sequence-specific primers (PCR-SSP) technology was leveraged to genotype rs7096206 of MBL genes and rs2273346 and rs6695096 of MASP-2 genes. Demographic data and information on exposures of participants were collected. Unconditioned logistic regression analysis was conducted to identify associations between the various factors and TB, and marginal structural linear odds models were used to estimate the interactions. RESULTS Passive smoking and cooking with solid fuel were associated with the risk of TB, with odds ratios (OR) of 1.58 and 2.93, respectively (p<0.05). Genotype CG at rs7096206 of MBL genes (OR 2.02) and genotype TC at rs6695096 of MASP-2 genes (OR 1.67) were more prevalent in the TB patients than in healthy controls (p<0.05). The relative excess risk of interaction (RERI) between rs7096206 of MBL genes and passive smoking or cooking with solid fuel exposure was 1.86 (95% confidence interval (CI) 0.59-3.16) and 2.66 (95% CI 1.85-3.47), respectively. The RERI between rs6695096 of MASP-2 genes and cooking with solid fuel exposure was 3.70 (95% CI 2.63-4.78), which was also a positive interaction. However, the RERI between rs6695096 of MASP-2 genes and passive smoking was not statistically significant. CONCLUSIONS Passive smoking, cooking with solid fuel, and polymorphisms of MBL (rs7096206) and MASP-2 (rs6695096) genes were associated with susceptibility to TB in non-smokers, and there were gene-environment interactions among them. Further studies are needed to explore details of the mechanisms of association.
Collapse
Affiliation(s)
- Mengshi Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan 410008, PR China; Hunan Children's Hospital, Changsha, Hunan, PR China
| | - Jing Deng
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan 410008, PR China
| | - Congxu Su
- Yueyanglou Center for Disease Control and Prevention, Yueyang, Hunan, PR China
| | - Jun Li
- Hunan Provincial Tumor Hospital, Changsha, Hunan, PR China
| | - Mian Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan 410008, PR China
| | - Benjamin Kwaku Abuaku
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan 410008, PR China
| | - ShiMin Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan 410008, PR China
| | - Hongzhuan Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan 410008, PR China.
| | - Shi Wu Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan 410008, PR China; Department of Obstetrics and Gynecology, University of Ottawa, The Ottawa Hospital, Ottawa, Ontario, Canada; Department of Epidemiology and Community Medicine, University of Ottawa, The Ottawa Hospital, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Catarino SJDS, Boldt ABW, Beltrame MH, Nisihara RM, Schafranski MD, de Messias-Reason IJ. Association of MASP2 polymorphisms and protein levels with rheumatic fever and rheumatic heart disease. Hum Immunol 2014; 75:1197-202. [PMID: 25318078 DOI: 10.1016/j.humimm.2014.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
MASP-2 is a key protein of the lectin pathway of complement system. Several MASP2 polymorphisms were associated with MASP-2 serum levels or functional activity. Here we investigated a possible association between MASP2 polymorphisms and MASP-2 serum levels with the susceptibility to rheumatic fever (RF) and rheumatic heart disease (RHD). We haplotyped 11 MASP2 polymorphisms with multiplex sequence-specific PCR in 145 patients with history of RF from south Brazil (103 with RHD and 42 without cardiac lesion [RFo]) and 342 healthy controls. MASP-2 levels were determined by ELISA. The low MASP-2 producing p.377A and p.439H variants were negatively associated with RF (P=0.02, OR=0.36) and RHD (P=0.01, OR=0.25). In contrast, haplotypes that share the intron 9 - exon 12 g.1961795C, p.371D, p.377V and p.439R polymorphisms increased the susceptibility to RHD (P=0.02, OR=4.9). MASP-2 levels were associated with MASP2 haplotypes and were lower in patients (P<0.0001), which may reflect protein consumption due to complement activation. MASP2 gene polymorphisms and protein levels seem to play an important role in the development of RF and establishment of RHD.
Collapse
Affiliation(s)
- Sandra Jeremias dos Santos Catarino
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil; Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Marcia Holsbach Beltrame
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Renato Mitsunori Nisihara
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Iara Jose de Messias-Reason
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
30
|
Goeldner I, Skare T, Boldt ABW, Nass FR, Messias-Reason IJ, Utiyama SR. Association of MASP-2 levels and MASP2 gene polymorphisms with rheumatoid arthritis in patients and their relatives. PLoS One 2014; 9:e90979. [PMID: 24632598 PMCID: PMC3954616 DOI: 10.1371/journal.pone.0090979] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/05/2014] [Indexed: 01/31/2023] Open
Abstract
Background Mannan-binding lectin-associated serine protease 2 (MASP-2) is a key protein of the lectin pathway of complement. MASP-2 levels have been associated with different polymorphisms within MASP2 gene as well as with the risk for inflammatory disorders and infections. Despite its clinical importance, MASP-2 remains poorly investigated in rheumatoid arthritis (RA). Methods In this case-control study, we measured MASP-2 serum levels in 156 RA patients, 44 patient relatives, and 100 controls from Southern Brazil, associating the results with nine MASP2 polymorphisms in all patients, 111 relatives, and 230 controls genotyped with multiplex SSP-PCR. Results MASP-2 levels were lower in patients than in controls and relatives (medians 181 vs. 340 or 285 ng/ml, respectively, P<0.0001). Conversely, high MASP-2 levels were associated with lower susceptibility to RA and to articular symptoms independently of age, gender, ethnicity, smoking habit, anti-CCP and rheumatoid factor positivity (OR = 0.05 [95%CI = 0.019–0.13], P<0.0001 between patients and controls; OR = 0.12, [95%CI = 0.03–0.45], P = 0.002 between patients and relatives; OR = 0.06, [95%CI = 0.004–0.73], P = 0.03 between relatives with and without articular symptoms). MASP2 haplotypes *2A1 and *2B1-i were associated with increased susceptibility to RA (OR = 3.32 [95%CI = 1.48–7.45], P = 0.004). Deficiency-causing p.120G and p.439H substitutions were associated with five times increased susceptibility to articular symptoms in relatives (OR = 5.13 [95%CI = 1.36–20.84], P = 0.02). There was no association of MASP-2 levels or MASP2 polymorphisms with autoantibodies, Sjögren's syndrome, nodules and functional class. Conclusions In this study, we found the first evidence that MASP-2 deficiency might play an important role in the development of RA and articular symptoms among relatives of RA patients.
Collapse
Affiliation(s)
- Isabela Goeldner
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
- * E-mail:
| | - Thelma Skare
- Rheumatology Unit, Evangelical University Hospital, Curitiba, Brazil
| | | | - Flavia R. Nass
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | - Shirley R. Utiyama
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
31
|
Evans-Osses I, Mojoli A, Beltrame MH, da Costa DE, DaRocha WD, Velavan TP, de Messias-Reason I, Ramirez MI. Differential ability to resist to complement lysis and invade host cells mediated by MBL in R4 and 860 strains of Trypanosoma cruzi. FEBS Lett 2014; 588:956-61. [PMID: 24560788 DOI: 10.1016/j.febslet.2014.01.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/23/2014] [Accepted: 01/25/2014] [Indexed: 11/29/2022]
Abstract
To produce an infection Trypanosoma cruzi must evade lysis by the complement system. During early stages of infection, the lectin pathway plays an important role in host defense and can be activated by binding of mannan-binding lectin (MBL) to carbohydrates on the surface of pathogens. We hypothesized that MBL has a dual role during parasite-host cell interaction as lectin complement pathway activator and as binding molecule to invade the host cell. We used two polarized strains of T. cruzi, R4 (susceptible) and 860 (resistant) strains, to investigate the role of MBL in complement-mediated lysis. Interestingly R4, but not 860 metacyclic strain, markedly increases the invasion of host cells, suggesting that MBL drives the invasion process while the parasite deactivates the Lectin complement pathway.
Collapse
Affiliation(s)
- Ingrid Evans-Osses
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz., Av Brasil, 4550. Manguinhos-Rio de Janeiro, Brazil
| | - Andres Mojoli
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz., Av Brasil, 4550. Manguinhos-Rio de Janeiro, Brazil
| | - Marcia Holsbach Beltrame
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Denise Endo da Costa
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Wanderson Duarte DaRocha
- Laboratório de Genômica Funcional de Parasitos, Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Parana, Curitiba, Brazil
| | | | - Iara de Messias-Reason
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Marcel Ivan Ramirez
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz., Av Brasil, 4550. Manguinhos-Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Zaveri HP, Beck TF, Hernández-García A, Shelly KE, Montgomery T, van Haeringen A, Anderlid BM, Patel C, Goel H, Houge G, Morrow BE, Cheung SW, Lalani SR, Scott DA. Identification of critical regions and candidate genes for cardiovascular malformations and cardiomyopathy associated with deletions of chromosome 1p36. PLoS One 2014; 9:e85600. [PMID: 24454898 PMCID: PMC3893250 DOI: 10.1371/journal.pone.0085600] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/26/2013] [Indexed: 01/19/2023] Open
Abstract
Cardiovascular malformations and cardiomyopathy are among the most common phenotypes caused by deletions of chromosome 1p36 which affect approximately 1 in 5000 newborns. Although these cardiac-related abnormalities are a significant source of morbidity and mortality associated with 1p36 deletions, most of the individual genes that contribute to these conditions have yet to be identified. In this paper, we use a combination of clinical and molecular cytogenetic data to define five critical regions for cardiovascular malformations and two critical regions for cardiomyopathy on chromosome 1p36. Positional candidate genes which may contribute to the development of cardiovascular malformations associated with 1p36 deletions include DVL1, SKI, RERE, PDPN, SPEN, CLCNKA, ECE1, HSPG2, LUZP1, and WASF2. Similarly, haploinsufficiency of PRDM16–a gene which was recently shown to be sufficient to cause the left ventricular noncompaction–SKI, PRKCZ, RERE, UBE4B and MASP2 may contribute to the development of cardiomyopathy. When treating individuals with 1p36 deletions, or providing prognostic information to their families, physicians should take into account that 1p36 deletions which overlie these cardiac critical regions may portend to cardiovascular complications. Since several of these cardiac critical regions contain more than one positional candidate gene–and large terminal and interstitial 1p36 deletions often overlap more than one cardiac critical region–it is likely that haploinsufficiency of two or more genes contributes to the cardiac phenotypes associated with many 1p36 deletions.
Collapse
Affiliation(s)
- Hitisha P. Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tyler F. Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrés Hernández-García
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Katharine E. Shelly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tara Montgomery
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Britt-Marie Anderlid
- Clinical Genetic Department, Karolinska University Hospital and Institution of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Chirag Patel
- Department of Clinical Genetics, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Himanshu Goel
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Gunnar Houge
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bernice E. Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Beltrame MH, Catarino SJ, Goeldner I, Boldt ABW, de Messias-Reason IJ. The lectin pathway of complement and rheumatic heart disease. Front Pediatr 2014; 2:148. [PMID: 25654073 PMCID: PMC4300866 DOI: 10.3389/fped.2014.00148] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever.
Collapse
Affiliation(s)
- Marcia Holsbach Beltrame
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná , Curitiba , Brazil
| | - Sandra Jeremias Catarino
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná , Curitiba , Brazil
| | - Isabela Goeldner
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná , Curitiba , Brazil
| | | | | |
Collapse
|
34
|
Boldt ABW, Goeldner I, Stahlke ERS, Thiel S, Jensenius JC, de Messias-Reason IJT. Leprosy association with low MASP-2 levels generated by MASP2 haplotypes and polymorphisms flanking MAp19 exon 5. PLoS One 2013; 8:e69054. [PMID: 23935922 PMCID: PMC3728295 DOI: 10.1371/journal.pone.0069054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/04/2013] [Indexed: 01/31/2023] Open
Abstract
Background The gene MASP2 (mannan-binding lectin (MBL)-associated serine protease 2) encodes two proteins, MASP-2 and MAp19 (MBL-associated protein of 19 kDa), bound in plasma to MBL and ficolins. The binding of MBL/MASP-2 and ficolin/MASP-2 complexes to microorganisms activates the lectin pathway of complement and may increase the ingestion of intracellular pathogens such as Mycobacterium leprae. Methods We haplotyped 11 MASP2 polymorphisms with multiplex sequence-specific PCR in 219 Brazilian leprosy patients (131 lepromatous, 29 borderline, 21 tuberculoid, 14 undetermined, 24 unspecified), 405 healthy Brazilians and 291 Danish blood donors with previously determined MASP-2 and MAp19 levels. We also evaluated MASP-2 levels in further 46 leprosy patients and 69 Brazilian controls. Results Two polymorphisms flanking exon 5 of MASP2 were associated with a dominant effect on high MASP-2 levels and an additive effect on low MAp19 levels. Patients presented lower MASP-2 levels (P = 0.0012) than controls. The frequency of the p.126L variant, associated with low MASP-2 levels (below 200 ng/mL), was higher in the patients (P = 0.0002, OR = 4.92), as was the frequency of genotypes with p.126L (P = 0.00006, OR = 5.96). The *1C2-l [AG] haplotype, which harbors p.126L and the deficiency-causing p.439H variant, has a dominant effect on the susceptibility to the disease (P = 0.007, OR = 4.15). Genotypes composed of the *2B1-i and/or *2B2A-i haplotypes, both associated with intermediate MASP-2 levels (200–600 ng/mL), were found to be protective against the disease (P = 0.0014, OR = 0.6). Low MASP-2 levels (P = 0.022), as well as corresponding genotypes with *1C2-l and/or *2A2-l but without *1B1-h or *1B2-h, were more frequent in the lepromatous than in other patients (P = 0.008, OR = 8.8). Conclusions In contrast with MBL, low MASP-2 levels increase the susceptibility to leprosy in general and to lepromatous leprosy in particular. MASP2 genotypes and MASP-2 levels might thus be of prognostic value for leprosy progression.
Collapse
Affiliation(s)
- Angelica Beate Winter Boldt
- Laboratório de Imunopatologia Molecular - Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, BR.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Genetic adaptation to external stimuli occurs through the combined action of mutation and selection. A central problem in genetics is to identify loci responsive to specific selective constraints. Many tests have been proposed to identify the genomic signatures of natural selection by quantifying the skew in the site frequency spectrum (SFS) under selection relative to neutrality. We build upon recent work that connects many of these tests under a common framework, by describing how selective sweeps affect the scaled SFS. We show that the specific skew depends on many attributes of the sweep, including the selection coefficient and the time under selection. Using supervised learning on extensive simulated data, we characterize the features of the scaled SFS that best separate different types of selective sweeps from neutrality. We develop a test, SFselect, that consistently outperforms many existing tests over a wide range of selective sweeps. We apply SFselect to polymorphism data from a laboratory evolution experiment of Drosophila melanogaster adapted to hypoxia and identify loci that strengthen the role of the Notch pathway in hypoxia tolerance, but were missed by previous approaches. We further apply our test to human data and identify regions that are in agreement with earlier studies, as well as many novel regions.
Collapse
|
36
|
Luz PR, Boldt ABW, Grisbach C, Kun JFJ, Velavan TP, Messias-Reason IJT. Association of L-ficolin levels and FCN2 genotypes with chronic Chagas disease. PLoS One 2013; 8:e60237. [PMID: 23593180 PMCID: PMC3617223 DOI: 10.1371/journal.pone.0060237] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/23/2013] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND L-ficolin (encoded by FCN2) binds to acetylated sugar moieties of many pathogens, including Trypanosoma cruzi, promoting their phagocytosis and lysis by the complement system. METHODS We investigated L-ficolin levels in 160 T. cruzi infected patients with chronic Chagas disease and 71 healthy individuals, and FCN2 polymorphisms (-986 G>A, -602 G>A, and -4 A>G in the promoter and A258S in exon 8) in 243 patients, being 88 indeterminate (asymptomatic), 96 with cardiac, 23 with digestive and 33 with cardiodigestive manifestations (two were unspecified) and 305 controls (135 for A258S). RESULTS Patients presented lower L-ficolin plasma levels than controls (p<0.0001). Among the different groups of cardiac commitment, individuals with moderate forms had higher L-ficolin levels than the severe forms (P = 0.039). Lower L-ficolin levels were found associated with the 258S variant in the patients (P = 0.034). We found less -4A/G heterozygotes in the cardiac patients, than in the controls (OR = 0.56 [95% CI = 0.33-0.94], P = 0.034). Heterozygote -4A/G genotypes with the 258S variant and 258SS homozygotes were nevertheless more frequent among cardiodigestive patients than in controls (OR = 14.1 [95% CI = 3.5-56.8], P = 0.0001) and in indeterminate patients (OR = 3.2 [95% CI = 1.1-9.4], P = 0.037). We also found an association of the allelic frequency of the 258S variant with cardiodigestive Chagas disease compared to controls (OR = 2.24 [95% CI = 1.1-4.5], P = 0.037). Thus, decreased patient levels of L-ficolin reflect not only protein consumption due to the disease process, but also the higher frequency of the 258S variant in patients with cardiodigestive symptoms. CONCLUSION The very first study on Brazilian cohort associates both L-ficolin plasma levels and FCN2 variants to Chagas disease and subsequent disease progression. The prognostic value of L-ficolin levels and the FCN2*A258S polymorphism should be further evaluated in other settings.
Collapse
Affiliation(s)
- Paola R. Luz
- Laboratório de Imunopatologia Molecular – Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Angelica B. W. Boldt
- Laboratório de Imunopatologia Molecular – Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Caroline Grisbach
- Laboratório de Imunopatologia Molecular – Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jürgen F. J. Kun
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | | | - Iara J. T. Messias-Reason
- Laboratório de Imunopatologia Molecular – Departamento de Patologia Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
37
|
Cestari I, Evans-Osses I, Schlapbach LJ, de Messias-Reason I, Ramirez MI. Mechanisms of complement lectin pathway activation and resistance by trypanosomatid parasites. Mol Immunol 2013; 53:328-34. [PMID: 23063472 DOI: 10.1016/j.molimm.2012.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/15/2012] [Indexed: 11/28/2022]
Abstract
Studies in the past decade have demonstrated a crucial role for the complement lectin pathway in host defence against protozoan microbes. Recognition of pathogen surface molecules by mannan-binding lectin and ficolins revealed new mechanisms of innate immune defence and a diversity of parasite strategies of immune evasion. In the present review, we will discuss the current knowledge of: (1) the molecular mechanism of lectin pathway activation by trypanosomes; (2) the mechanisms of complement evasion by trypanosomes; and (3) host genetic deficiencies of complement lectin pathway factors that contribute to infection susceptibility and disease progression. This review will focus on trypanosomatids, the parasites that cause Chagas disease, leishmaniasis and sleeping sickness (African trypanosomiasis).
Collapse
Affiliation(s)
- Igor Cestari
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
38
|
The emerging role of complement lectin pathway in trypanosomatids: molecular bases in activation, genetic deficiencies, susceptibility to infection, and complement system-based therapeutics. ScientificWorldJournal 2013; 2013:675898. [PMID: 23533355 PMCID: PMC3595680 DOI: 10.1155/2013/675898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/01/2013] [Indexed: 12/21/2022] Open
Abstract
The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP) was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL) and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection.
Collapse
|
39
|
Rothfuchs AG, Roffê E, Gibson A, Cheever AW, Ezekowitz RAB, Takahashi K, Steindel M, Sher A, Báfica A. Mannose-binding lectin regulates host resistance and pathology during experimental infection with Trypanosoma cruzi. PLoS One 2012; 7:e47835. [PMID: 23139754 PMCID: PMC3490958 DOI: 10.1371/journal.pone.0047835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 09/21/2012] [Indexed: 01/19/2023] Open
Abstract
Mannose-binding lectin (MBL) is a humoral pattern-recognition molecule important for host defense. Although recent genetic studies suggest an involvement of MBL/MASP2-associated pathways in Chagas’ disease, it is currently unknown whether MBL plays a role in host resistance to the intracellular protozoan Trypanosoma cruzi, the causative agent of Chagas’ disease. In this study we employed MBL−/− mice to assess the role of MBL in resistance to experimental infection with T. cruzi. T. cruzi infection enhanced tissue expression of MBL both at the mRNA and protein level. Similarly, symptomatic acute Chagas’ disease patients displayed increased serum concentrations of MBL compared to patients with indeterminate, asymptomatic forms of the disease. Furthermore, increased parasite loads in the blood and/or tissue were observed in MBL−/− mice compared to WT controls. This was associated with reduced systemic levels of IL-12/23p40 in MBL−/− mice. Importantly, MBL−/− mice infected with a cardiotropic strain of T. cruzi displayed increased myocarditis and cardiac fibrosis compared to WT controls. The latter was accompanied by elevated hydroxyproline content and mRNA levels of collagen-1 and -6 in the heart. These observations point to a previously unappreciated role for MBL in regulating host resistance and cardiac inflammation during infection with a major human pathogen.
Collapse
Affiliation(s)
- Antonio Gigliotti Rothfuchs
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- * E-mail: (AGR); (AB)
| | - Ester Roffê
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amanda Gibson
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Allen W. Cheever
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Biomedical Research Institute, Rockville, Maryland, United States of America
| | - R. Alan B. Ezekowitz
- Laboratory of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kazue Takahashi
- Laboratory of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mario Steindel
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - André Báfica
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- * E-mail: (AGR); (AB)
| |
Collapse
|
40
|
Henao-Martínez AF, Schwartz DA, Yang IV. Chagasic cardiomyopathy, from acute to chronic: is this mediated by host susceptibility factors? Trans R Soc Trop Med Hyg 2012; 106:521-7. [DOI: 10.1016/j.trstmh.2012.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 01/06/2023] Open
|
41
|
Weitzel T, Zulantay I, Danquah I, Hamann L, Schumann RR, Apt W, Mockenhaupt FP. Mannose-binding lectin and Toll-like receptor polymorphisms and Chagas disease in Chile. Am J Trop Med Hyg 2012; 86:229-32. [PMID: 22302853 DOI: 10.4269/ajtmh.2012.11-0539] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Mannose-binding lectin (MBL) and Toll-like receptor (TLR) polymorphisms may influence susceptibility and manifestation of Trypanosoma cruzi infection. In northern Chile, we examined 61 asymptomatic patients with chronic Chagas disease (CD), 64 patients with chronic Chagas cardiomyopathy (CCC), and 45 healthy individuals. Low-producer MBL2*B genotypes were more common in CD patients (48%) than healthy individuals (31%; adjusted odds ratio = 2.3, 95% confidence interval = 1.01-5.4, P = 0.047) but did not differ with manifestation. In contrast, the heterozygous Toll-like receptor 4 (TLR4)-deficiency genotype D299G/T399I occurred more frequently in asymptomatic (14.8%) than CCC patients (3.1%; P = 0.02). TLR1-I602S, TLR2-R753Q, TLR6-S249P, and MAL/TIRAP-S180L did not associate with CD or CCC. These findings support the complement system to be involved in defense against Trypanosoma cruzi infection and indicate that curbed TLR4 activation might be beneficial in preventing CCC.
Collapse
Affiliation(s)
- Thomas Weitzel
- Laboratorio Clinico, Clinica Alemana/Universidad de Desarrollo, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
42
|
Biologic and genetics aspects of chagas disease at endemic areas. J Trop Med 2012; 2012:357948. [PMID: 22529863 PMCID: PMC3317048 DOI: 10.1155/2012/357948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/28/2011] [Indexed: 11/17/2022] Open
Abstract
The etiologic agent of Chagas Disease is the Trypanosoma cruzi, transmitted through blood-sucking insect vectors of the Triatominae subfamily, representing one of the most serious public health concerns in Latin America. There are geographic variations in the prevalence of clinical forms and morbidity of Chagas disease, likely due to genetic variation of the T. cruzi and the host genetic and environmental features. Increasing evidence has supported that inflammatory cytokines and chemokines are responsible for the generation of the inflammatory infiltrate and tissue damage. Moreover, genetic polymorphisms, protein expression levels, and genomic imbalances are associated with disease progression. This paper discusses these key aspects. Large surveys were carried out in Brazil and served as baseline for definition of the control measures adopted. However, Chagas disease is still active, and aspects such as host-parasite interactions, genetic mechanisms of cellular interaction, genetic variability, and tropism need further investigations in the attempt to eradicate the disease.
Collapse
|
43
|
MASP2 gene polymorphism is associated with susceptibility to hepatitis C virus infection. Hum Immunol 2011; 72:912-5. [PMID: 21843573 PMCID: PMC7115369 DOI: 10.1016/j.humimm.2011.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/29/2011] [Accepted: 06/07/2011] [Indexed: 11/23/2022]
Abstract
Hepatitis C virus (HCV) has become a major public health issue and is prevalent in most countries. We examined several MASP2 functional polymorphisms in 104 Brazilian patients with moderate and severe chronic hepatitis C using the primers set to amplify the region encoding the first domain (CUB1), a critical region for the formation of functional mannan-binding lectin (MBL)/MBL-associated serine proteases (MASP)-2 complexes, and the fifth domain (CCP2), which is essential for C4 cleavage of the MASP2 gene. We identified five single nucleotide polymorphisms in patients and controls: p. R99Q, p. D120G, p.P126L, p.D371Y, and p.V377A. Our results show that the p.D371Y variant (c.1111 G > T) is associated with susceptibility to HCV infection (p = 0.003, odds ratio = 6.33, 95% confidence interval = 1.85-21.70). Considered as a dominant function for the T allele, this variant is associated with high plasma levels of the MASP-2 in hepatitis C patients (p < 0.001). However, further functional investigations are necessary to understand the degree of involvement between MASP2 and the HCV susceptibility.
Collapse
|