1
|
O'Byrne PM, Panettieri RA, Taube C, Brindicci C, Fleming M, Altman P. Development of an inhaled anti-TSLP therapy for asthma. Pulm Pharmacol Ther 2023; 78:102184. [PMID: 36535465 DOI: 10.1016/j.pupt.2022.102184] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine, acts as a key mediator in airway inflammation and modulates the function of multiple cell types, including dendritic cells and group 2 innate lymphoid cells. TSLP plays a role in asthma pathogenesis as an upstream cytokine, and data suggest that TSLP blockade with the anti-TSLP monoclonal antibody, tezepelumab, could be efficacious in a broad asthma population. Currently approved asthma biologic therapies target allergic or eosinophilic disease and require phenotyping; therefore, an unmet need exists for a therapy that can address Type 2 (T2)-high and T2-low inflammation in asthma. All currently approved biologic treatments are delivered intravenously or subcutaneously; an inhaled therapy route that allows direct targeting of the lung with reduced systemic impact may offer advantages. Currently in development, ecleralimab (CSJ117) represents the first inhaled anti-TSLP antibody fragment that binds soluble TSLP and prevents TSLP receptor activation, thereby inhibiting further inflammatory signalling cascades. This anti-TSLP antibody fragment is being developed for patients with severe uncontrolled asthma despite standard of care inhaled therapy. A Phase IIa proof of concept study, using allergen bronchoprovocation as a model for asthma exacerbations, found that ecleralimab was well-tolerated and reduced allergen-induced bronchoconstriction in adult patients with mild asthma. These results suggest ecleralimab may be a promising, new therapeutic class for asthma treatment.
Collapse
Affiliation(s)
- Paul M O'Byrne
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare and McMaster University, Hamilton, Ontario, Canada.
| | | | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen, Germany
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, New Jersey, USA.
| |
Collapse
|
2
|
Wu PL, Zhu JW, Zeng C, Li X, Xue Q, Yang HX. IGFBP7 enhances trophoblast invasion via IGF-1R/c-Jun signaling in unexplained recurrent spontaneous abortion. Reproduction 2022; 164:231-241. [PMID: 35900339 DOI: 10.1530/rep-21-0501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
Abstract
In brief Insufficient trophoblast invasion at the maternal-fetal interface contributes to abortion-prone pregnancy. Our study shows that decreased levels of IGFBP7 in unexplained recurrent spontaneous abortion (URSA) trophoblast cells inhibit MMP2 and Slug expression as well as trophoblast invasion, suggesting that IGFBP7 should be considered a potential therapeutic protein target in URSA. Abstract Insufficient trophoblast invasion at the maternal-fetal interface contributes to abortion-prone pregnancy. Cyclosporine A (CsA) can exert therapeutic effects on URSA by promoting trophoblast invasion. A previous study showed decreased expression of insulin-like growth factor-binding protein 7 (IGFBP7) in the sera of recurrent spontaneous abortion patients. However, the role of IGFBP7 in URSA remains unknown. The aim of this study was to determine whether IGFBP7 modulates trophoblast invasion in URSA and the underlying molecular mechanisms. We found that IGFBP7 was expressed at lower levels in villous specimens from URSA patients. Manipulating IGFBP7 expression significantly affected the MMP2 and Slug expression in HTR-8/SVneo cells as well as trophoblast invasion in vitro. Inactivation of IGF-1R by IGFBP7 was observed, and IGF-1R inhibition increased the IGFBP7-induced MMP2 and Slug expression in HTR-8/SVneo cells. Moreover, the level of c-Jun was significantly upregulated in the URSA group. Silencing IGFBP7 increased the binding of downstream c-Jun to the MMP2 and Slug promoter regions in HTR-8/SVneo cells, thus suppressing transcription. In addition, increased expression of IGFBP7 in HTR-8/SVneo cells was observed upon CsA treatment. Knockdown of IGFBP7 inhibited the CsA-enhanced MMP2 and Slug expression in HTR-8/SVneo cells. Our results suggest that in normal pregnancy, IGFBP7 induces MMP2 and Slug expression via the IGF-1R-mediated c-Jun signaling pathway, thereby promoting trophoblast invasion. IGFBP7 depletion in URSA inhibits MMP2 and Slug expression as well as trophoblast invasion. Moreover, IGFBP7 participates in CsA-induced trophoblast invasion, suggesting that IGFBP7 is a potential therapeutic target for URSA.
Collapse
Affiliation(s)
- Pei-Li Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jing-Wen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Xin Li
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Hui-Xia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Using Traditional Chinese Medicine to Treat Hepatocellular Carcinoma by Targeting Tumor Immunity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9843486. [PMID: 32595757 PMCID: PMC7305542 DOI: 10.1155/2020/9843486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
As the leading cause of cancer-related death, hepatocellular carcinoma (HCC) threatens human health and limited treatments are available to cure the disease efficiently and effectively. The particularly immunotolerant environment of the liver lowers the efficacy of current therapies in patients with advanced HCC. Traditional Chinese medicine (TCM) is gathering increasing interest due to the immunoregulatory properties of certain compounds. In advanced HCC, TCM can restore immunosurveillance to promote antitumor effects in several ways, including the upregulation of immunostimulatory factors and the downregulation of immunosuppressive factors. The characteristic multitarget regulation of TCM compounds may provide new insights regarding effective HCC immunotherapies. Here, we review the immunoregulatory potency of TCMs for treating HCC and explain how individual TCM drugs and complex formulas remodel the immune environment in various cell- and cytokine-dependent manners.
Collapse
|
4
|
Yu Ping Feng San Exert Anti-Angiogenesis Effects through the Inhibition of TSLP-STAT3 Signaling Pathways in Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1947156. [PMID: 31885639 PMCID: PMC6925680 DOI: 10.1155/2019/1947156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/09/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Background Clinically, Yu ping feng san (YPFS) has been extensively used as a medication for treating immune deficiency, and YPFS is combined with chemotherapy drugs to treat cancer, including hepatocellular carcinoma (HCC), lung cancer, and pancreatic cancer. Previous research has shown that YPFS has a therapeutic effect on HCC by improving the immunosuppressive state of the liver cancer microenvironment. The present study aimed to investigate the effect of YPFS on angiogenesis of HCC. Methods High-performance liquid chromatography (HPLC) was used to certify the composition of YPFS. An orthotopic transplanted model of murine HCC was entrenched. Immunohistochemistry was used to observe the changes of the microvessel density (MVD). The MTT assay was used to detect the cell viability. ELISA was performed to analyze the expression of related factors. Western blot was used to analyze the protein expression. Tube formation assay was used to analyze the anti-angiogenic efficiency. Results YPFS significantly reduced the tumor volume and weight, thus exerted the growth inhibitory effect. The level of MVD and VEGF was obviously decreased in YPFS-treated HCC-bearing mice, and the YPFS treatment also reduced the VEGF level in Hepa1-6 cells. Further study revealed that the expression of TSLP/TSLPR and p-STAT3/STAT3 was decreased by YPFS. The level of MVD and VEGF and the expression of TSLP/TSLPR and p-STAT3/STAT3 in tumor tissue and Hepa1-6 cells were suppressed by incubation with the anti-TSLP antibody, whereas treatment with the anti-TSLP antibody in YPFS-treated cells did not cause further significant inhibition compared with the cells treated only with YPFS. More importantly, YPFS inhibited proliferation, expression of p-STAT3/STAT3, and tube formation of HUVECs induced by TSLP. Conclusions These results indicated that YPFS attenuated the activation of the TSLP-STAT3 signaling pathway by inhibiting the immune-related factor-TSLP, thereby inhibiting the formation of hepatic microvessels and exerting an anti-HCC effect.
Collapse
|
5
|
Li Y, Song J, Tong Y, Chung SK, Wong YH. RGS19 upregulates Nm23-H1/2 metastasis suppressors by transcriptional activation via the cAMP/PKA/CREB pathway. Oncotarget 2017; 8:69945-69960. [PMID: 29050254 PMCID: PMC5642529 DOI: 10.18632/oncotarget.19509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
The Nm23 metastasis suppressor family is involved in physiological and pathological processes including tumorigenesis and metastasis. Although the inverse correlation of Nm23 level with tumor metastasis potential has been widely observed, the mechanisms that regulate the expression of Nm23 remain poorly understood. Our previous studies have revealed that Nm23-H1/2 isoforms are upregulated by RGS19, a regulator of G protein signaling (RGS) protein which accelerates the termination of Gi signals. Here, we examined the ability of RGS19 to stimulate transcriptional regulation of Nm23 by screening a panel of luciferase reporter genes. Transient and stable overexpression of RGS19 upregulated the Nm23-H1/2 protein levels and activated several transcription factors including CREB, AP-1 and SRE in HEK293 cells. Interestingly, agents that increase the intracellular cAMP level and the phosphorylation of CREB (e.g., adrenergic receptor agonist, forskolin, and cAMP analogues) upregulated the expression of Nm23-H1/2 in HEK293 cells and several cancer cell lines including A549, HeLa, MDA-MB-231, and MDA-MB-435s cells. Conversely, inhibition of protein kinase A (PKA) by H-89 suppressed the phosphorylation of CREB and reduced the expression of Nm23-H1/2. Furthermore, activation of PKA attenuated cancer cell migration in wound healing and transwell assays. Collectively, these results revealed a PKA-dependent mechanism for controlling Nm23-H1/2 expression.
Collapse
Affiliation(s)
- Yuanjun Li
- Division of Life Sciences and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiaxing Song
- Division of Life Sciences and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yao Tong
- Division of Life Sciences and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Sookja Kim Chung
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Yung H Wong
- Division of Life Sciences and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
6
|
Zhang Y, Jin LP. Effects of TSLP on obstetrical and gynecological diseases. Am J Reprod Immunol 2016; 77. [PMID: 27976427 DOI: 10.1111/aji.12612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yuan Zhang
- Laboratory for Reproductive Immunology; Hospital of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Li-Ping Jin
- Laboratory for Reproductive Immunology; Hospital of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
- Clinical and Translational Research Center; Shanghai First Maternity and Infant Hospital; Tongji University School of Medicine; Shanghai China
| |
Collapse
|
7
|
Ying G, Zhang Y, Tang G, Chen S. Functions of thymic stromal lymphopoietin in non-allergic diseases. Cell Immunol 2015; 295:144-9. [DOI: 10.1016/j.cellimm.2015.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 12/26/2022]
|
8
|
Abstract
The pregnancy disorders associated with placental ischemia share many similar pathological and pathophysiological features and are associated with the failure to deliver adequate nutrients and oxygen to the placenta. The origins of this deficiency are a subject of intense study. In this article, I review the genesis and consequences of this pathology addressing the similarities and the differences with the different disorders and addressing current gaps in our knowledge.
Collapse
Affiliation(s)
- James M. Roberts MD
- Obstetrics, Gynecology and Reproductive Sciences, Epidemiology and Clinical and Translational Research, University of Pittsburgh, Pittsburgh PA 15213
| |
Collapse
|
9
|
Zhong J, Sharma J, Raju R, Palapetta SM, Prasad TSK, Huang TC, Yoda A, Tyner JW, van Bodegom D, Weinstock DM, Ziegler SF, Pandey A. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau007. [PMID: 24573880 PMCID: PMC3935308 DOI: 10.1093/database/bau007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T cells. The TSLP/TSLPR axis can activate multiple signaling transduction pathways including the JAK/STAT pathway and the PI-3 kinase pathway. Aberrant TSLP/TSLPR signaling has been associated with a variety of human diseases including asthma, atopic dermatitis, nasal polyposis, inflammatory bowel disease, eosinophilic eosophagitis and, most recently, acute lymphoblastic leukemia. A centralized resource of the TSLP signaling pathway cataloging signaling events is not yet available. In this study, we present a literature-annotated resource of reactions in the TSLP signaling pathway. This pathway map is publicly available through NetPath (http://www.netpath.org/), an open access signal transduction pathway resource developed previously by our group. This map includes 236 molecules and 252 reactions that are involved in TSLP/TSLPR signaling pathway. We expect that the TSLP signaling pathway map will provide a rich resource to study the biology of this important cytokine as well as to identify novel therapeutic targets for diseases associated with dysregulated TSLP/TSLPR signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_24
Collapse
Affiliation(s)
- Jun Zhong
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 N. Broadway, Maryland, 21205, USA, Department of Oncology, Johns Hopkins University School of Medicine, 733 N. Broadway, Maryland, 21205, USA, Department of Pathology, Johns Hopkins University School of Medicine, 733 N. Broadway, Maryland, 21205, USA, Institute of Bioinformatics, International Technology Park, Bangalore 560066, India, Manipal University, Madhav Nagar, Manipal 576104, India, Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA, Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mailcode L592, Portland, OR 97239, USA and Immunology Program, Benaroya Research Institute at Virginia Mason, 1201 9th Avenue S&C, Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Duan J, Jiang XP, Li MQ, Fan DX, Wang Y, Li DJ, Jin LP. Thymic Stromal Lymphopoietin Suppresses the Apoptosis of Decidual Gamma-delta T Cells via Regulation of the Signal Transduction and Activation of Transcription 3/Caspase-3 Signaling Pathway. Am J Reprod Immunol 2013; 70:464-71. [PMID: 24028796 DOI: 10.1111/aji.12158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/16/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jie Duan
- Laboratory for Reproductive Immunology; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases; Hospital and Institute of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Xiao-Ping Jiang
- Department of Gynecology and Obstetrics; Shanghai Corps Hospital of Chinese People's Armed Police Forces; Shanghai China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases; Hospital and Institute of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Deng-Xuan Fan
- Laboratory for Reproductive Immunology; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases; Hospital and Institute of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Ying Wang
- Laboratory for Reproductive Immunology; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases; Hospital and Institute of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases; Hospital and Institute of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| | - Li-Ping Jin
- Laboratory for Reproductive Immunology; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases; Hospital and Institute of Obstetrics and Gynecology; Fudan University Shanghai Medical College; Shanghai China
| |
Collapse
|
11
|
Li MQ, Shao J, Meng YH, Mei J, Wang Y, Li H, Zhang L, Chang KK, Wang XQ, Zhu XY, Li DJ. NME1 suppression promotes growth, adhesion and implantation of endometrial stromal cells via Akt and MAPK/Erk1/2 signal pathways in the endometriotic milieu. Hum Reprod 2013; 28:2822-31. [DOI: 10.1093/humrep/det248] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
12
|
Xie F, Meng YH, Liu LB, Chang KK, Li H, Li MQ, Li DJ. Cervical carcinoma cells stimulate the angiogenesis through TSLP promoting growth and activation of vascular endothelial cells. Am J Reprod Immunol 2013; 70:69-79. [PMID: 23495958 DOI: 10.1111/aji.12104] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/29/2013] [Indexed: 02/01/2023] Open
Abstract
PROBLEM To explore whether cervical carcinomas cells-derived thymic stromal lymphopoietin (TSLP) modulates the biologic behavior of vascular endothelial cells and herein participates in the angiogenesis in the cervical cancer pathogenesis. METHOD OF STUDY We analyzed expression of TSLP and its receptor (TSLPR) in cervical cancer cells by immunohistochemistry, ELISA, and flow cytometry, respectively. We further investigated the effects of TSLP on the proliferation, apoptosis, activation, and angiogenesis in vitro of human umbilical vein endothelial cells (HUVECs). RESULTS It has been found that the cervical cancer cells translate TSLP and endothelial cells express TSLPR in cervical cancer tissues. Both HeLa and CaSki cells secret TSLP in a time-dependent manner, and the ratio of TSLPR-positive HUVECs is about 30%. It has been showed that recombinant human TSLP (rhTSLP) can significantly increase Ki67 and CD62E expression in HUVECs and interleukin-6 (IL-6) levels from HeLa and CaSki cells; on the contrary, anti-human TSLP or TSLPR neutralizing antibody down-regulates the expression of Ki67, angiogenesis-relative molecules CD62E, and CD105 in HUVECs cocultured with HeLa or CasKi cells and inhibits IL-6 secretion from HeLa and CaSki cells. Moreover, both rhTSLP and endogenous TSLP from HeLa or CaSki cells obviously stimulate the proliferation, activation, and angiogenesis, but not influence the apoptosis of HUVECs in vitro. CONCLUSION This study has demonstrated that TSLP secreted by cervical carcinomas cells is involved in the angiogenesis of cervical cancer in a paracrine manner.
Collapse
Affiliation(s)
- Feng Xie
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|