1
|
Wesley JD, Pagni PP, Bergholdt R, Kreiner FF, von Herrath M. Induction of antigenic immune tolerance to delay type 1 diabetes - challenges for clinical translation. Curr Opin Endocrinol Diabetes Obes 2022; 29:379-385. [PMID: 35776831 DOI: 10.1097/med.0000000000000742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Dissect the field of antigen-specific immunotherapy (ASIT) in type 1 diabetes (T1D), highlighting the major barriers currently blocking clinical translation. RECENT FINDINGS ASIT remains a promising approach in T1D to re-establish the proper balance in the immune system to avoid the autoimmune-mediated attack or destruction of beta-cells in the pancreas. Despite some encouraging preclinical results, ASIT has not yet successfully translated into clinical utility, predominantly due to the lack of validated and clinically useful biomarkers. SUMMARY To restore immune tolerance towards self-antigens, ASIT aims to establish a favourable balance between T effector cells and T regulatory cells. Whilst most ASITs, including systemic or oral administration of relevant antigens, have appeared safe in T1D, meaningful and durable preservation of functional beta-cell mass has not been proven clinically. Development, including clinical translation, remains negatively impacted by lack of predictive biomarkers with confirmed correlation between assay readout and clinical outcomes. To be able to address the high unmet medical need in T1D, we propose continued reinforced research to identify such biomarkers, as well efforts to ensure alignment in terms of trial design and conduct.
Collapse
Affiliation(s)
- Johnna D Wesley
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, Washington, USA
| | - Philippe P Pagni
- Type 1 Diabetes & Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, Washington, USA
| | - Regine Bergholdt
- Type 1 Diabetes & Functional Insulins, Clinical Drug Development
| | | | - Matthias von Herrath
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark
- Type 1 Diabetes Center, The La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|
2
|
Kreiner FF, von Scholten BJ, Coppieters K, von Herrath M. Current state of antigen-specific immunotherapy for type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2021; 28:411-418. [PMID: 34101651 DOI: 10.1097/med.0000000000000647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Update on antigen-specific immunotherapy (ASIT) in type 1 diabetes (T1D) with focus on deoxyribonucleic acid (DNA)-induced immunization and the current obstacles to further research and clinical realization. RECENT FINDINGS In T1D, immune system imbalances together with malfunctioning islet-specific processes cause autoreactive immune cells to destroy beta cells in the islets. ASIT may restore self-tolerance; however, the approach has yet to fully meet its promise and may require co-administration of antigen (preproinsulin) and suitable immune response modifiers. SUMMARY A self-tolerant immune system may be regained using ASIT where T effector cells are repressed and/or T regulatory cells are induced. Administration of exogenous antigens has been safe in T1D. Conversely, adequate and lasting beta cell preservation has yet to be tested in sufficiently large clinical trials in suitable patients and may require targeting of multiple parts of the immunopathophysiology using combination therapies. DNA-based induction of native antigen expression to ensure important posttranscriptional modifications and presentation to the immune system together with tolerance-enhancing immune response modifiers (i.e., cytokines) may be more efficacious than exogenous antigens given alone. Progress is limited mainly by the scarcity of validated biomarkers to track the effects of ASIT in T1D.
Collapse
Affiliation(s)
| | | | | | - Matthias von Herrath
- Global Chief Medical Office, Novo Nordisk A/S, Søborg
- Type 1 Diabetes Center, The La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|
3
|
Zhou L, He X, Cai P, Li T, Peng R, Dang J, Li Y, Li H, Huang F, Shi G, Xie C, Lu Y, Chen Y. Induced regulatory T cells suppress Tc1 cells through TGF-β signaling to ameliorate STZ-induced type 1 diabetes mellitus. Cell Mol Immunol 2021; 18:698-710. [PMID: 33446887 DOI: 10.1038/s41423-020-00623-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic autoimmune condition in which the immune system destroys insulin-producing pancreatic β cells. In addition to well-established pathogenic effector T cells, regulatory T cells (Tregs) have also been shown to be defective in T1D. Thus, an increasing number of therapeutic approaches are being developed to target Tregs. However, the role and mechanisms of TGF-β-induced Tregs (iTregs) in T1D remain poorly understood. Here, using a streptozotocin (STZ)-induced preclinical T1D mouse model, we found that iTregs could ameliorate the development of T1D and preserve β cell function. The preventive effect was associated with the inhibition of type 1 cytotoxic T (Tc1) cell function and rebalancing the Treg/Tc1 cell ratio in recipients. Furthermore, we showed that the underlying mechanisms were due to the TGF-β-mediated combinatorial actions of mTOR and TCF1. In addition to the preventive role, the therapeutic effects of iTregs on the established STZ-T1D and nonobese diabetic (NOD) mouse models were tested, which revealed improved β cell function. Our findings therefore provide key new insights into the basic mechanisms involved in the therapeutic role of iTregs in T1D.
Collapse
Affiliation(s)
- Li Zhou
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Peihong Cai
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Ting Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Rongdong Peng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Yue Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Haicheng Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Feng Huang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Chichu Xie
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
4
|
Chodaczek G, Pagni PP, Christoffersson G, Ratliff SS, Toporkiewicz M, Wegrzyn AS, von Herrath M. The effect of Toll-like receptor stimulation on the motility of regulatory T cells. J Autoimmun 2021; 116:102563. [PMID: 33189487 DOI: 10.1016/j.jaut.2020.102563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Regulatory T cells (Tregs) have suppressive functions and play an important role in controlling inflammation and autoimmunity. The migratory capacity of Tregs determines their location and their location determines whether they inhibit the priming of naïve lymphocytes in lymphoid tissues or the effector phase of immune responses at inflamed sites. Tregs generated or expanded in vitro are currently being tested in clinics for the treatment of autoimmune disorders, however, little is known about the factors controlling their migration towards therapeutically relevant locations. In this study, we have modulated Treg dynamics using Toll-like receptor (TLR) agonists. Dynamic imaging with confocal and two-photon microscopy revealed that Tregs generated in vitro and stimulated with P3C (a TLR2 agonist) but not with R848 (a TLR7 agonist) or LPS (a TLR4 agonist) showed enhanced cell migration within splenic white pulp or draining lymph node when transferred into mice intravenously or into the footpad, respectively. In summary, our data demonstrate that Tregs are more motile in response to direct TLR stimulation in particular towards TLR2 signals. This may have implications for efficient clinical Treg induction protocols.
Collapse
Affiliation(s)
- Grzegorz Chodaczek
- Type 1 Diabetes Center, La Jolla Institute for Immunology, La Jolla, CA, USA; Bioimaging Laboratory, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland.
| | - Philippe P Pagni
- Type 1 Diabetes Center, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Gustaf Christoffersson
- Type 1 Diabetes Center, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Monika Toporkiewicz
- Bioimaging Laboratory, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Agnieszka S Wegrzyn
- Bioimaging Laboratory, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | | |
Collapse
|
5
|
Viral Infections and Autoimmune Disease: Roles of LCMV in Delineating Mechanisms of Immune Tolerance. Viruses 2019; 11:v11100885. [PMID: 31546586 PMCID: PMC6832701 DOI: 10.3390/v11100885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
Viral infections are a natural part of our existence. They can affect us in many ways that are the result of the interaction between the viral pathogen and our immune system. Most times, the resulting immune response is beneficial for the host. The pathogen is cleared, thus protecting our vital organs with no other consequences. Conversely, the reaction of our immune system against the pathogen can cause organ damage (immunopathology) or lead to autoimmune disease. To date, there are several mechanisms for virus-induced autoimmune disease, including molecular mimicry and bystander activation, in support of the “fertile field” hypothesis (terms defined in our review). In contrast, viral infections have been associated with protection from autoimmunity through mechanisms that include Treg invigoration and immune deviation, in support of the “hygiene hypothesis”, also defined here. Infection with lymphocytic choriomeningitis virus (LCMV) is one of the prototypes showing that the interaction of our immune system with viruses can either accelerate or prevent autoimmunity. Studies using mouse models of LCMV have helped conceive and establish several concepts that we now know and use to explain how viruses can lead to autoimmune activation or induce tolerance. Some of the most important mechanisms established during the course of LCMV infection are described in this short review.
Collapse
|
6
|
Jofra T, Di Fonte R, Galvani G, Kuka M, Iannacone M, Battaglia M, Fousteri G. Tr1 cell immunotherapy promotes transplant tolerance via de novo Tr1 cell induction in mice and is safe and effective during acute viral infection. Eur J Immunol 2018; 48:1389-1399. [PMID: 29684247 DOI: 10.1002/eji.201747316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/07/2018] [Accepted: 04/18/2018] [Indexed: 01/16/2023]
Abstract
Tr1 cell therapy is considered an emerging approach to improve transplant tolerance and enhance allogeneic graft survival. However, it remains unclear how Tr1 cells promote transplant tolerance and whether they will be safe and stable in the face of an acute viral infection. By employing a mouse model of pancreatic islet transplantation, we report that Tr1 cell therapy promoted transplant tolerance via de novo induction of Tr1 cells in the recipients. Acute viral infection with lymphocytic choriomeningitis virus (LCMV) had no impact on Tr1 cell number and function, neither on the Tr1 cells infused nor on the ones induced, and that was reflected in the robust maintenance of the graft. Moreover, Tr1 cell immunotherapy had no detrimental effect on CD8 and CD4 anti-LCMV effector T-cell responses and viral control. Together, these data suggest that Tr1 cells did not convert to effector cells during acute infection with LCMV, maintained transplant tolerance and did not inhibit antiviral immunity.
Collapse
Affiliation(s)
- Tatiana Jofra
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Di Fonte
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Galvani
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mirela Kuka
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University
| | - Matteo Iannacone
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manuela Battaglia
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Georgia Fousteri
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc Natl Acad Sci U S A 2017; 114:E181-E190. [PMID: 28049829 DOI: 10.1073/pnas.1617115114] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pregnancy is one of the strongest inducers of immunological tolerance. Disease activity of many autoimmune diseases including multiple sclerosis (MS) is temporarily suppressed by pregnancy, but little is known about the underlying molecular mechanisms. Here, we investigated the endocrine regulation of conventional and regulatory T cells (Tregs) during reproduction. In vitro, we found the pregnancy hormone progesterone to robustly increase Treg frequencies via promiscuous binding to the glucocorticoid receptor (GR) in T cells. In vivo, T-cell-specific GR deletion in pregnant animals undergoing experimental autoimmune encephalomyelitis (EAE), the animal model of MS, resulted in a reduced Treg increase and a selective loss of pregnancy-induced protection, whereas reproductive success was unaffected. Our data imply that steroid hormones can shift the immunological balance in favor of Tregs via differential engagement of the GR in T cells. This newly defined mechanism confers protection from autoimmunity during pregnancy and represents a potential target for future therapy.
Collapse
|
8
|
Seay HR, Putnam AL, Cserny J, Posgai AL, Rosenau EH, Wingard JR, Girard KF, Kraus M, Lares AP, Brown HL, Brown KS, Balavage KT, Peters LD, Bushdorf AN, Atkinson MA, Bluestone JA, Haller MJ, Brusko TM. Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:178-191. [PMID: 28345003 PMCID: PMC5363324 DOI: 10.1016/j.omtm.2016.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/16/2016] [Indexed: 12/29/2022]
Abstract
Umbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs) are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA)-matched cell product for treating autoimmune diseases, such as type 1 diabetes. Here, we describe a good manufacturing practice (GMP)-compatible Treg expansion protocol using fluorescence-activated cell sorting, resulting in a mean 2,092-fold expansion of Tregs over a 16-day culture for a median yield of 1.26 × 109 Tregs from single-donor cryopreserved units. The resulting Tregs passed prior clinical trial release criteria for Treg purity and sterility, including additional rigorous assessments of FOXP3 and Helios expression and epigenetic analysis of the FOXP3 Treg-specific demethylated region (TSDR). Compared with expanded adult peripheral blood Tregs, expanded cord blood Tregs remained more naive, as assessed by continued expression of CD45RA, produced reduced IFN-γ following activation, and effectively inhibited responder T cell proliferation. Immunosequencing of the T cell receptor revealed a remarkably diverse receptor repertoire within cord blood Tregs that was maintained following in vitro expansion. These data support the feasibility of generating GMP-compliant Tregs from cord blood for adoptive cell transfer therapies and highlight potential advantages in terms of safety, phenotypic stability, autoantigen specificity, and tissue distribution.
Collapse
Affiliation(s)
- Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Amy L Putnam
- Diabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Judit Cserny
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Emma H Rosenau
- Division of Hematology and Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - John R Wingard
- Division of Hematology and Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | - Angela P Lares
- Diabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Kristi T Balavage
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Leeana D Peters
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ashley N Bushdorf
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA; Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Jeffrey A Bluestone
- Diabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael J Haller
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, Zheng S, Ni B, Fang D, Song J. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep 2016; 6:20588. [PMID: 26846186 PMCID: PMC4742827 DOI: 10.1038/srep20588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/07/2016] [Indexed: 01/03/2023] Open
Abstract
Pluripotent stem cells (PSCs) have the potential to produce almost all of the cells in the body, including regulatory T cells (Tregs). However, the exact conditions required for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) are not well delineated. Ag-specific PSC-Tregs can be tissue/organ-associated and migrate to local inflamed tissues/organs to suppress the autoimmune response after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. In this study, we developed a new approach to generate functional Ag-specific Tregs from induced PSCs (iPSCs), i.e., iPSC-Tregs, which had the ability to generate an Ag-specific immunosuppressive response in a murine model of arthritis. We retrovirally transduced murine iPSCs with a construct containing genes of Ag-specific T cell receptor (TCR) and the transcriptional factor FoxP3. We differentiated the iPSCs into Ag-specific iPSC-Tregs using in vitro or in vivo Notch signaling, and demonstrated that adoptive transfer of such Tregs dramatically suppressed autoimmunity in a well-established Ag-induced arthritis model, including the inflammation, joint destruction, cartilage prostaglandin depletion, osteoclast activity, and Th17 production. Our results indicate that PSCs can be used to develop Ag-specific Tregs, which have a therapeutic potential for Treg-based therapies of autoimmune disorders.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jianyong Song
- Institutes of Irradiation/Immunology, The Third Military Medical University, Chongqing 400038, China
| | - Kristin Fino
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Praneet Sandhu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xinmeng Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Fengyang Lei
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Songguo Zheng
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Bing Ni
- Institutes of Irradiation/Immunology, The Third Military Medical University, Chongqing 400038, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
10
|
Treiber G, Prietl B, Fröhlich-Reiterer E, Lechner E, Ribitsch A, Fritsch M, Rami-Merhar B, Steigleder-Schweiger C, Graninger W, Borkenstein M, Pieber TR. Cholecalciferol supplementation improves suppressive capacity of regulatory T-cells in young patients with new-onset type 1 diabetes mellitus - A randomized clinical trial. Clin Immunol 2015; 161:217-24. [PMID: 26277548 DOI: 10.1016/j.clim.2015.08.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 12/14/2022]
Abstract
It is unknown if cholecalciferol is able to modify defects in regulatory T cells (Tregs) in type 1 diabetes (T1D). In this randomized, double-blind, placebo controlled trial 30 young patients with new-onset T1D were assigned to cholecalciferol (70IU/kgbodyweight/day) or placebo for 12months. Tregs were determined by FACS-analysis and functional tests were assessed with ex vivo suppression co-cultures at months 0, 3, 6 and 12. Suppressive capacity of Tregs increased (p<0.001) with cholecalciferol from baseline (-1.59±25.6%) to 3 (30.5±39.4%), 6 (44.6±23.8%) and 12months (37.2±25.0%) and change of suppression capacity from baseline to 12months was significantly higher (p<0.05) with cholecalciferol (22.2±47.2%) than placebo (-16.6±21.1%). Serum calcium and parathormone stayed within normal range. This is the first study, which showed that cholecalciferol improved suppressor function of Tregs in patients with T1D and vitamin D could serve as one possible agent in the development of immunomodulatory combination therapies for T1D.
Collapse
Affiliation(s)
- Gerlies Treiber
- Division of Endocrinology and Metabolism, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Barbara Prietl
- Division of Endocrinology and Metabolism, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Elke Fröhlich-Reiterer
- Department of General Paediatrics, Medical University Graz, Auenbruggerplatz 34, 8036 Graz, Austria.
| | - Evelyne Lechner
- Division of Endocrinology and Metabolism, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Anja Ribitsch
- Division of Endocrinology and Metabolism, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Maria Fritsch
- Department of Paediatrics, Medical University Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria.
| | - Birgit Rami-Merhar
- Department of Paediatrics, Medical University Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria.
| | - Claudia Steigleder-Schweiger
- Department of Paediatrics, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria.
| | - Winfried Graninger
- Division of Rheumatology and Immunology, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Martin Borkenstein
- Department of General Paediatrics, Medical University Graz, Auenbruggerplatz 34, 8036 Graz, Austria.
| | - Thomas R Pieber
- Division of Endocrinology and Metabolism, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| |
Collapse
|
11
|
ElEssawy B, Li XC. Type 1 diabetes and T regulatory cells. Pharmacol Res 2015; 98:22-30. [PMID: 25959211 DOI: 10.1016/j.phrs.2015.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
T-regulatory cells (Tregs) play a fundamental role in the creation and maintenance of peripheral tolerance. Deficits in the numbers and/or function of Tregs may be an underlying cause of human autoimmune diseases including type 1 Diabetes Mellitus (T1D), whereas an over-abundance of Tregs can hinder immunity against cancer or pathogens. The importance of Tregs in the control of autoimmunity is well established in a variety of experimental animal models. In mice, manipulating the numbers and/or function of Tregs can decrease pathology in a wide range of contexts, including autoimmunity and it is widely assumed that similar approaches will be possible in humans. T1D, the most prevalent human autoimmune disease, has been a focus of interventions either through direct and indirect in vivo proliferations or through adoptive transfer of the in vitro generated antigen specific and non specific Treg. Some challenges still need to be addressed, including a more specific phenotype marker for Tregs; the reproducibility of satisfactory animal results in human and the reconcile of discrepancies between in vitro and in vivo studies. In this article, we will highlight the role of Tregs in autoimmune disease in general with a special focus on T1D, highlighting progress made and challenges ahead in developing Treg-based therapies.
Collapse
Affiliation(s)
| | - Xian C Li
- Immunobiology & Transplantation Research, Houston Methodist Hospital, Texas Medical Center, 6670 Bertner Avenue, R7-211, Houston, TX 77030, United States.
| |
Collapse
|
12
|
Fousteri G, Jofra T, Di Fonte R, Kuka M, Iannacone M, Battaglia M. PTPN22 controls virally-induced autoimmune diabetes by modulating cytotoxic T lymphocyte responses in an epitope-specific manner. Clin Immunol 2014; 156:98-108. [PMID: 25513733 DOI: 10.1016/j.clim.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 11/15/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Abstract
Ptpn22 is one of the most potent autoimmunity predisposing genes and strongly associates with type 1 diabetes (T1D). Previous studies showed that non-obese diabetic mice with reduced expression levels of Ptpn22 are protected from T1D due to increased number of T regulatory (Treg) cells. We report that lack of Ptpn22 exacerbates virally-induced T1D in female rat insulin promoter lymphocytic choriomeningitis virus (RIP-LCMV-GP) mice, while maintaining higher number of Treg cells throughout the antiviral response in the blood and spleen but not in the pancreatic lymph nodes. GP33-41-specific pentamer-positive cytotoxic lymphocytes (CTLs) are numerically reduced in the absence of Ptpn22 at the expansion and contraction phase but reach wild-type levels at the memory phase. However, they show similar effector function and even a subtle increase in the production of IL-2. In contrast, NP396-404-specific CTLs develop normally at all phases but display enhanced effector function. Lack of Ptpn22 also augments the memory proinflammatory response of GP61-80 CD4 T cells. Hence, lack of Ptpn22 largely augments antiviral effector T cell responses, suggesting that caution should be taken when targeting Ptpn22 to treat autoimmune diseases where viral infections are considered environmental triggers.
Collapse
Affiliation(s)
- Georgia Fousteri
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) Istituto Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.
| | - Tatiana Jofra
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) Istituto Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Di Fonte
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) Istituto Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Mirela Kuka
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) Istituto Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) Istituto Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Manuela Battaglia
- Division of Immunology Transplantation and Infectious Diseases (DITID), Diabetes Research Institute (DRI) Istituto Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
13
|
Drescher KM, von Herrath M, Tracy S. Enteroviruses, hygiene and type 1 diabetes: toward a preventive vaccine. Rev Med Virol 2014; 25:19-32. [PMID: 25430610 DOI: 10.1002/rmv.1815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 12/24/2022]
Abstract
Enteroviruses and humans have long co-existed. Although recognized in ancient times, poliomyelitis and type 1 diabetes (T1D) were exceptionally rare and not epidemic, due in large part to poor sanitation and personal hygiene which resulted in repeated exposure to fecal-oral transmitted viruses and other infectious agents and viruses and the generation of a broad protective immunity. As a function of a growing acceptance of the benefits of hygienic practices and microbiologically clean(er) water supplies, the likelihood of exposure to diverse infectious agents and viruses declined. The effort to vaccinate against poliomyelitis demonstrated that enteroviral diseases are preventable by vaccination and led to understanding how to successfully attenuate enteroviruses. Type 1 diabetes onset has been convincingly linked to infection by numerous enteroviruses including the group B coxsackieviruses (CVB), while studies of CVB infections in NOD mice have demonstrated not only a clear link between disease onset but an ability to reduce the incidence of T1D as well: CVB infections can suppress naturally occurring autoimmune T1D. We propose here that if we can harness and develop the capacity to use attenuated enteroviral strains to induce regulatory T cell populations in the host through vaccination, then a vaccine could be considered that should function to protect against both autoimmune as well as virus-triggered T1D. Such a vaccine would not only specifically protect from certain enterovirus types but more importantly, also reset the organism's regulatory rheostat making the further development of pathogenic autoimmunity less likely.
Collapse
Affiliation(s)
- Kristen M Drescher
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | | | | |
Collapse
|