1
|
Chen M, Tan MH, Liu J, Yang YM, Yu JL, He LJ, Huang YZ, Sun YX, Qian YQ, Yan K, Dong MY. An efficient molecular genetic testing strategy for incontinentia pigmenti based on single-tube long fragment read sequencing. NPJ Genom Med 2024; 9:32. [PMID: 38811629 PMCID: PMC11137062 DOI: 10.1038/s41525-024-00421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024] Open
Abstract
Incontinentia pigmenti (IP) is a rare X-linked dominant neuroectodermal dysplasia that primarily affects females. The only known causative gene is IKBKG, and the most common genetic cause is the recurrent IKBKG△4-10 deletion resulting from recombination between two MER67B repeats. Detection of variants in IKBKG is challenging due to the presence of a highly homologous non-pathogenic pseudogene IKBKGP1. In this study, we successfully identified four pathogenic variants in four IP patients using a strategy based on single-tube long fragment read (stLFR) sequencing with a specialized analysis pipeline. Three frameshift variants (c.519-3_519dupCAGG, c.1167dupC, and c.700dupT) were identified and subsequently validated by Sanger sequencing. Notably, c.519-3_519dupCAGG was found in both IKBKG and IKBKGP1, whereas the other two variants were only detected in the functional gene. The IKBKG△4-10 deletion was identified and confirmed in one patient. These results demonstrate that the proposed strategy can identify potential pathogenic variants and distinguish whether they are derived from IKBKG or its pseudogene. Thus, this strategy can be an efficient genetic testing method for IKBKG. By providing a comprehensive understanding of the whole genome, it may also enable the exploration of other genes potentially associated with IP. Furthermore, the strategy may also provide insights into other diseases with detection challenges due to pseudogenes.
Collapse
Affiliation(s)
- Min Chen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Mei-Hua Tan
- BGI Genomics, Shenzhen, Guangdong, 518083, P. R. China
| | - Jiao Liu
- Lishui Maternity and Child Health Care Hospital, Lishui, Zhejiang, 323000, P. R. China
| | - Yan-Mei Yang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Jia-Ling Yu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Li-Juan He
- BGI Genomics, Shenzhen, Guangdong, 518083, P. R. China
| | - Ying-Zhi Huang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Yi-Xi Sun
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Ye-Qing Qian
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Kai Yan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310006, P. R. China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Min-Yue Dong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P. R. China.
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310006, P. R. China.
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China.
| |
Collapse
|
2
|
Guo Y, Bu W, Jia W, Zhang Y, Li C. An atypical case of incontinentia pigmenti with a hypomorphic variant. Pediatr Dermatol 2024; 41:351-353. [PMID: 37853991 DOI: 10.1111/pde.15456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 09/23/2023] [Indexed: 10/20/2023]
Abstract
Incontinentia pigmenti (IP) is a rare X-linked dominant genodermatosis that affects skin, hair, teeth, eyes and central nervous system. We present the case of a female patient with mild IP caused by a hypomorphic pathogenic variant of the inhibitor of the kappa light polypeptide gene enhancer in B cells, kinase gamma (IKBKG) gene. This is the first report of a female IP patient with the hypomorphic variant, NM_001099856.6: c.1423dup, which is causative of anhidrotic ectodermal dysplasia with immune deficiency in males.
Collapse
Affiliation(s)
- Youming Guo
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wenbo Bu
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Weixue Jia
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yuanyuan Zhang
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Chengrang Li
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
3
|
Surucu Yilmaz N, Bilgic Eltan S, Kayaoglu B, Geckin B, Heredia RJ, Sefer AP, Kiykim A, Nain E, Kasap N, Dogru O, Yucelten AD, Cinel L, Karasu G, Yesilipek A, Sozeri B, Kaya GG, Yilmaz IC, Baydemir I, Aydin Y, Cansen Kahraman D, Haimel M, Boztug K, Karakoc-Aydiner E, Gursel I, Ozen A, Baris S, Gursel M. Low Density Granulocytes and Dysregulated Neutrophils Driving Autoinflammatory Manifestations in NEMO Deficiency. J Clin Immunol 2022; 42:582-596. [PMID: 35028801 DOI: 10.1007/s10875-021-01176-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
NF-κB essential modulator (NEMO, IKK-γ) deficiency is a rare combined immunodeficiency caused by mutations in the IKBKG gene. Conventionally, patients are afflicted with life threatening recurrent microbial infections. Paradoxically, the spectrum of clinical manifestations includes severe inflammatory disorders. The mechanisms leading to autoinflammation in NEMO deficiency are currently unknown. Herein, we sought to investigate the underlying mechanisms of clinical autoinflammatory manifestations in a 12-years old male NEMO deficiency (EDA-ID, OMIM #300,291) patient by comparing the immune profile of the patient before and after hematopoietic stem cell transplantation (HSCT). Response to NF-kB activators were measured by cytokine ELISA. Neutrophil and low-density granulocyte (LDG) populations were analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMC) transcriptome before and after HSCT and transcriptome of sorted normal-density neutrophils and LDGs were determined using the NanoString nCounter gene expression panels. ISG15 expression and protein ISGylation was based on Immunoblotting. Consistent with the immune deficiency, PBMCs of the patient were unresponsive to toll-like and T cell receptor-activators. Paradoxically, LDGs comprised 35% of patient PBMCs and elevated expression of genes such as MMP9, LTF, and LCN2 in the granulocytic lineage, high levels of IP-10 in the patient's plasma, spontaneous ISG15 expression and protein ISGylation indicative of a spontaneous type I interferon (IFN) signature were observed, all of which normalized after HSCT. Collectively, our results suggest that type I IFN signature observed in the patient, dysregulated LDGs and spontaneously activated neutrophils, potentially contribute to tissue damage in NEMO deficiency.
Collapse
Affiliation(s)
- Naz Surucu Yilmaz
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Basak Kayaoglu
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Busranur Geckin
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kiykim
- Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ercan Nain
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Nurhan Kasap
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Omer Dogru
- Division of Pediatric Hematology-Oncology, Marmara University, Istanbul, Turkey
| | | | - Leyla Cinel
- Division of Pathology, Marmara University, Istanbul, Turkey
| | - Gulsun Karasu
- Goztepe Medicalpark Hospital, Pediatric Stem Cell Transplantation Unit, İstanbul, Turkey
| | - Akif Yesilipek
- Goztepe Medicalpark Hospital, Pediatric Stem Cell Transplantation Unit, İstanbul, Turkey
| | - Betul Sozeri
- Division of Pediatric Rheumatology, University of Health Sciences, Umraniye Research and Training Hospital, Istanbul, Turkey
| | - Goksu Gokberk Kaya
- Therapeutic ODN Research Lab, Department of Molecular Biology and Genetics, Bilkent University, Bilkent, 06800, Ankara, Turkey
| | - Ismail Cem Yilmaz
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Ilayda Baydemir
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Yagmur Aydin
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Deniz Cansen Kahraman
- KanSiL, Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Matthias Haimel
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ihsan Gursel
- Therapeutic ODN Research Lab, Department of Molecular Biology and Genetics, Bilkent University, Bilkent, 06800, Ankara, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey. .,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey. .,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| | - Mayda Gursel
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey.
| |
Collapse
|
4
|
Gibson DC, Couser NL, King KB. Co-occurrence of incontinentia pigmenti and down syndrome: examining patients' potential susceptibility to autoimmune disease, autoinflammatory disease, cancer, and significant ocular disease. Ophthalmic Genet 2020; 42:92-95. [PMID: 33115299 DOI: 10.1080/13816810.2020.1839917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- David C Gibson
- Virginia Commonwealth University School of Medicine , Richmond, Virginia, USA
| | - Natario L Couser
- Department of Ophthalmology, Virginia Commonwealth University School of Medicine , Richmond, Virginia, USA.,Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine , Richmond, Virginia, USA.,Children's Hospital of Richmond at VCU, Department of Pediatrics, Virginia Commonwealth University School of Medicine , Richmond, Virginia, USA
| | - Kayla B King
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine , Richmond, Virginia, USA.,Department of Human and Molecular Genetics, Virginia Commonwealth University Health , Richmond, Virginia, USA
| |
Collapse
|
5
|
Heller S, Kölsch U, Magg T, Krüger R, Scheuern A, Schneider H, Eichinger A, Wahn V, Unterwalder N, Lorenz M, Schwarz K, Meisel C, Schulz A, Hauck F, von Bernuth H. T Cell Impairment Is Predictive for a Severe Clinical Course in NEMO Deficiency. J Clin Immunol 2020; 40:421-434. [DOI: 10.1007/s10875-019-00728-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
|
6
|
Zhu F, Hu Y. Integrity of IKK/NF-κB Shields Thymic Stroma That Suppresses Susceptibility to Autoimmunity, Fungal Infection, and Carcinogenesis. Bioessays 2018. [PMID: 29522649 DOI: 10.1002/bies.201700131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A pathogenic connection between autoreactive T cells, fungal infection, and carcinogenesis has been demonstrated in studies of human autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) as well as in a mouse model in which kinase-dead Ikkα knock-in mice develop impaired central tolerance, autoreactive T cell-mediated autoimmunity, chronic fungal infection, and esophageal squamous cell carcinoma, which recapitulates APECED. IκB kinase α (IKKα) is one subunit of the IKK complex required for NF-κB activation. IKK/NF-κB is essential for central tolerance establishment by regulating the development of medullary thymic epithelial cells (mTECs) that facilitate the deletion of autoreactive T cells in the thymus. In this review, we extensively discuss the pathogenic roles of inborn errors in the IKK/NF-κB loci in the phenotypically related diseases APECED, immune deficiency syndrome, and severe combined immunodeficiency; differentiate how IKK/NF-κB components, through mTEC (stroma), T cells/leukocytes, or epithelial cells, contribute to the pathogenesis of infectious diseases, autoimmunity, and cancer; and highlight the medical significance of IKK/NF-κB in these diseases.
Collapse
Affiliation(s)
- Feng Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21701, Maryland, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21701, Maryland, USA
| |
Collapse
|
7
|
Maubach G, Schmädicke AC, Naumann M. NEMO Links Nuclear Factor-κB to Human Diseases. Trends Mol Med 2017; 23:1138-1155. [PMID: 29128367 DOI: 10.1016/j.molmed.2017.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
The nuclear factor (NF)-κB essential modulator (NEMO) is a key regulator in NF-κB-mediated signaling. By transmitting extracellular or intracellular signals, NEMO can control NF-κB-regulated genes. NEMO dysfunction is associated with inherited diseases such as incontinentia pigmenti (IP), ectodermal dysplasia, anhidrotic, with immunodeficiency (EDA-ID), and some cancers. We focus on molecular studies, human case reports, and mouse models emphasizing the significance of NEMO molecular interactions and modifications in health and diseases. This knowledge opens new opportunities to engineer suitable drugs that may putatively target precise NEMO functions attributable to various diseases, while leaving other functions intact, and eliminating cytotoxicity. Indeed, with the advent of novel gene editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9, treating some inherited diseases may in the long run, become a reality.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Ann-Christin Schmädicke
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
8
|
Rae W, Ward D, Mattocks CJ, Gao Y, Pengelly RJ, Patel SV, Ennis S, Faust SN, Williams AP. Autoimmunity/inflammation in a monogenic primary immunodeficiency cohort. Clin Transl Immunology 2017; 6:e155. [PMID: 28983403 PMCID: PMC5628267 DOI: 10.1038/cti.2017.38] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are rare inborn errors of immunity that have a heterogeneous phenotype that can include severe susceptibility to life-threatening infections from multiple pathogens, unique sensitivity to a single pathogen, autoimmune/inflammatory (AI/I) disease, allergies and/or malignancy. We present a diverse cohort of monogenic PID patients with and without AI/I diseases who underwent clinical, genetic and immunological phenotyping. Novel pathogenic variants were identified in IKBKG, CTLA4, NFKB1, GATA2, CD40LG and TAZ as well as previously reported pathogenic variants in STAT3, PIK3CD, STAT1, NFKB2 and STXBP2. AI/I manifestations were frequently encountered in PIDs, including at presentation. Autoimmunity/inflammation was multisystem in those effected, and regulatory T cell (Treg) percentages were significantly decreased compared with those without AI/I manifestations. Prednisolone was used as the first-line immunosuppressive agent in all cases, however steroid monotherapy failed long-term control of autoimmunity/inflammation in the majority of cases and additional immunosuppression was required. Patients with multisystem autoimmunity/inflammation should be investigated for an underlying PID, and in those with PID early assessment of Tregs may help to assess the risk of autoimmunity/inflammation.
Collapse
Affiliation(s)
- William Rae
- Department of Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Southampton NIHR Wellcome Trust Clinical Research Facility, University of Southampton, University Hospital Southampton, Southampton, UK
| | - Daniel Ward
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK.,Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher J Mattocks
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK.,Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Yifang Gao
- Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Cancer Research UK Experimental Cancer Medicine Centre, Southampton, UK
| | - Reuben J Pengelly
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sanjay V Patel
- Department of Paediatric Immunology and Infectious Diseases, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Saul N Faust
- Southampton NIHR Wellcome Trust Clinical Research Facility, University of Southampton, University Hospital Southampton, Southampton, UK.,Department of Paediatric Immunology and Infectious Diseases, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Faculty of Medicine, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Anthony P Williams
- Department of Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Wessex Investigational Sciences Hub Laboratory, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Cancer Research UK Experimental Cancer Medicine Centre, Southampton, UK
| |
Collapse
|
9
|
Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood 2017; 130:1456-1467. [PMID: 28679735 DOI: 10.1182/blood-2017-03-771600] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022] Open
Abstract
X-linked recessive ectodermal dysplasia with immunodeficiency is a rare primary immunodeficiency caused by hypomorphic mutations of the IKBKG gene encoding the nuclear factor κB essential modulator (NEMO) protein. This condition displays enormous allelic, immunological, and clinical heterogeneity, and therapeutic decisions are difficult because NEMO operates in both hematopoietic and nonhematopoietic cells. Hematopoietic stem cell transplantation (HSCT) is potentially life-saving, but the small number of case reports available suggests it has been reserved for only the most severe cases. Here, we report the health status before HSCT, transplantation outcome, and clinical follow-up for a series of 29 patients from unrelated kindreds from 11 countries. Between them, these patients carry 23 different hypomorphic IKBKG mutations. HSCT was performed from HLA-identical related donors (n = 7), HLA-matched unrelated donors (n = 12), HLA-mismatched unrelated donors (n = 8), and HLA-haploidentical related donors (n = 2). Engraftment was documented in 24 patients, and graft-versus-host disease in 13 patients. Up to 7 patients died 0.2 to 12 months after HSCT. The global survival rate after HSCT among NEMO-deficient children was 74% at a median follow-up after HSCT of 57 months (range, 4-108 months). Preexisting mycobacterial infection and colitis were associated with poor HSCT outcome. The underlying mutation does not appear to have any influence, as patients with the same mutation had different outcomes. Transplantation did not appear to cure colitis, possibly as a result of cell-intrinsic disorders of the epithelial barrier. Overall, HSCT can cure most clinical features of patients with a variety of IKBKG mutations.
Collapse
|
10
|
Lougaris V, Facchini E, Baronio M, Lorenzini T, Moratto D, Specchia F, Plebani A. Progressive severe B cell deficiency in pediatric Rubinstein-Taybi syndrome. Clin Immunol 2016; 173:181-183. [DOI: 10.1016/j.clim.2016.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 11/26/2022]
|