1
|
Ma J, Gui H, Tang Y, Ding Y, Qian G, Yang M, Wang M, Song X, Lv H. In silico Identification of 10 Hub Genes and an miRNA-mRNA Regulatory Network in Acute Kawasaki Disease. Front Genet 2021; 12:585058. [PMID: 33868359 PMCID: PMC8044791 DOI: 10.3389/fgene.2021.585058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
Kawasaki disease (KD) causes acute systemic vasculitis and has unknown etiology. Since the acute stage of KD is the most relevant, the aim of the present study was to identify hub genes in acute KD by bioinformatics analysis. We also aimed at constructing microRNA (miRNA)–messenger RNA (mRNA) regulatory networks associated with acute KD based on previously identified differentially expressed miRNAs (DE-miRNAs). DE-mRNAs in acute KD patients were screened using the mRNA expression profile data of GSE18606 from the Gene Expression Omnibus. The functional and pathway enrichment analysis of DE-mRNAs were performed with the DAVID database. Target genes of DE-miRNAs were predicted using the miRWalk database and their intersection with DE-mRNAs was obtained. From a protein–protein interaction (PPI) network established by the STRING database, Cytoscape software identified hub genes with the two topological analysis methods maximal clique centrality and Degree algorithm to construct a miRNA-hub gene network. A total of 1,063 DE-mRNAs were identified between acute KD and healthy individuals, 472 upregulated and 591 downregulated. The constructed PPI network with these DE-mRNAs identified 38 hub genes mostly enriched in pathways related to systemic lupus erythematosus, alcoholism, viral carcinogenesis, osteoclast differentiation, adipocytokine signaling pathway and tumor necrosis factor signaling pathway. Target genes were predicted for the up-regulated and down-regulated DE-miRNAs, 10,203, and 5,310, respectively. Subsequently, 355, and 130 overlapping target DE-mRNAs were obtained for upregulated and downregulated DE-miRNAs, respectively. PPI networks with these target DE-mRNAs produced 15 hub genes, six down-regulated and nine upregulated hub genes. Among these, ten genes (ATM, MDC1, CD59, CD177, TRPM2, FCAR, TSPAN14, LILRB2, SIRPA, and STAT3) were identified as hub genes in the PPI network of DE-mRNAs. Finally, we constructed the regulatory network of DE-miRNAs and hub genes, which suggested potential modulation of most hub genes by hsa-miR-4443 and hsa-miR-6510-5p. SP1 was predicted to potentially regulate most of DE-miRNAs. In conclusion, several hub genes are associated with acute KD. An miRNA–mRNA regulatory network potentially relevant for acute KD pathogenesis provides new insights into the underlying molecular mechanisms of acute KD. The latter may contribute to the diagnosis and treatment of acute KD.
Collapse
Affiliation(s)
- Jin Ma
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Huan Gui
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Yunjia Tang
- Cardiology Department, Children's Hospital of Soochow University, Suzhou, China
| | - Yueyue Ding
- Cardiology Department, Children's Hospital of Soochow University, Suzhou, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Mengjie Yang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Mei Wang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Xiudao Song
- Clinical Pharmaceutical Laboratory of Traditional Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Haitao Lv
- Cardiology Department, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Miyabe Y, Miyabe C, Iwai Y, Luster AD. Targeting the Chemokine System in Rheumatoid Arthritis and Vasculitis. JMA J 2020; 3:182-192. [PMID: 33150252 PMCID: PMC7590389 DOI: 10.31662/jmaj.2020-0019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023] Open
Abstract
Arrest of circulating leukocytes and subsequent diapedesis is a fundamental component of inflammation. In general, the leukocyte migration cascade is tightly regulated by chemoattractants, such as chemokines. Chemokines, small secreted chemotactic cytokines, as well as their G-protein-coupled seven transmembrane spanning receptors, control the migratory patterns, positioning and cellular interactions of immune cells. Increased levels of chemokines and their receptors are found in the blood and within inflamed tissue in patients with rheumatoid arthritis (RA) and vasculitis. Chemokine ligand-receptor interactions regulate the recruitment of leukocytes into tissue, thus contributing in important ways to the pathogenesis of RA and vasculitis. Despite the fact that blockade of chemokines and chemokine receptors in animal models have yielded promising results, human clinical trials in RA using inhibitors of chemokines and their receptors have generally failed to show clinical benefits. However, recent early phase clinical trials suggest that strategies blocking specific chemokines may have clinical benefits in RA, demonstrating that the chemokine system remains a promising therapeutic target for rheumatic diseases, such as RA and vasuculitis and requires further study.
Collapse
Affiliation(s)
- Yoshishige Miyabe
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Chie Miyabe
- Department of Dermatology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiko Iwai
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
3
|
Cong Y, Wu H, Bian X, Xie Q, Lyu Q, Cui J, Suo L, Kuang Y. Ptk2b deletion improves mice folliculogenesis and fecundity via inhibiting follicle loss mediated by Erk pathway. J Cell Physiol 2020; 236:1043-1053. [PMID: 32608523 DOI: 10.1002/jcp.29914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/20/2020] [Indexed: 11/09/2022]
Abstract
Ptk2b has been found playing critical roles in oocyte maturation and subsequent fertilization in vitro. But what is the exact in vivo function in reproduction still elusive. Here, by constructing Ptk2b mutant mice, we found Ptk2b was not essential for mice fertility, unexpectedly, contrary to previously reported in vitro findings, we found Ptk2b ablation significantly improved female fecundity. Follicle counting indicated that the number of primordial follicles and growing follicles in matured mice was significantly increased in the absence of Ptk2b, whereas the primordial follicle formation showed no defects. We also found this regulation was in an autophosphorylation independent pathway, as autophosphorylation site mutant mice (PTK2BY402F ) show no phenotype in female fertility. Further biochemistry studies revealed that Ptk2b ablation promotes folliculogenesis via Erk pathway mediate follicle survival. Together, we found a novel biological function of Ptk2b in folliculogenesis, which could be potentially used as a therapeutic target for corresponding infertility.
Collapse
Affiliation(s)
- Yanyan Cong
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejiao Bian
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Xie
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lun Suo
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Yanai C, Tanaka H, Miura NN, Ishibashi KI, Yamanaka D, Ohnishi H, Ohno N, Adachi Y. Coronary Vasculitis Induced in Mice by the Cell Wall Mannoprotein of Candida krusei. Biol Pharm Bull 2020; 43:848-858. [PMID: 32161223 DOI: 10.1248/bpb.b19-01060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances, such as the hot water extract of C. albicans (CADS) and Candida water-soluble fraction (CAWS), induced coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the hot water extract of C. krusei, inherently resistant to fluconazole, induces vasculitis in mice. Three strains of C. krusei, NBRC1395, NBRC1162, and NBRC10737, were cultured in natural (Y) and chemically defined (C) media and cell wall mannoprotein (MN) fractions were prepared by autoclaving cells (CKY1395MN, CKC1395MN, CKY1162MN, CKC1162MN, CKY10737MN, and CKC10737MN). All MN fractions reacted strongly with Concanavalin A (Con A) and dectin-2 and induced anaphylactoid shock in ICR mice. MNs induced severe coronary vasculitis in DBA/2 mice, resulting in cardiac hypertrophy. MNs also induced coronary vasculitis in C57Bl/6 mice. These results suggest that the MNs of non-albicans Candida, such as C. krusei, induce similar toxicity to those of C. albicans.
Collapse
Affiliation(s)
- Chiho Yanai
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Tanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kyorin University Hospital
| | - Noriko N Miura
- Center for Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Ken-Ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
5
|
Chemokines in rheumatic diseases: pathogenic role and therapeutic implications. Nat Rev Rheumatol 2019; 15:731-746. [PMID: 31705045 DOI: 10.1038/s41584-019-0323-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
Chemokines, a family of small secreted chemotactic cytokines, and their G protein-coupled seven transmembrane spanning receptors control the migratory patterns, positioning and cellular interactions of immune cells. The levels of chemokines and their receptors are increased in the blood and within inflamed tissue of patients with rheumatic diseases, such as rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, vasculitis or idiopathic inflammatory myopathies. Chemokine ligand-receptor interactions control the recruitment of leukocytes into tissue, which are central to the pathogenesis of these rheumatic diseases. Although the blockade of various chemokines and chemokine receptors has yielded promising results in preclinical animal models of rheumatic diseases, human clinical trials have, in general, been disappointing. However, there have been glimmers of hope from several early-phase clinical trials that suggest that sufficiently blocking the relevant chemokine pathway might in fact have clinical benefits in rheumatic diseases. Hence, the chemokine system remains a promising therapeutic target for rheumatic diseases and requires further study.
Collapse
|
6
|
Zhang Y, Huo W, Wen Y, Li H. Silencing Nogo-B receptor inhibits penile corpus cavernosum vascular smooth muscle cell apoptosis of rats with diabetic erectile dysfunction by down-regulating ICAM-1. PLoS One 2019; 14:e0220715. [PMID: 31442237 PMCID: PMC6707583 DOI: 10.1371/journal.pone.0220715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Erectile dysfunction (ED) is a major sexual problem for men. Nogo-B receptor (NgBR) has been found to be involved in the regulation of vascular remodeling and angiogenesis. The present study explores the effects of NgBR in penile corpus cavernosum in rats with diabetic ED. Firstly, the ED model of Sprague Dawley rats was established. Hematoxylin-eosin staining and Masson staining were conducted to observe pathological morphology. Immunochemical assay was adopted to detect α-smooth muscle actin (α-SMA), NgBR and intercellular cell adhesion molecule-1 (ICAM-1) expression. Reverse transcription quantitative polymerase chain reaction assay and Western blot analysis were carried out for the assessment of NgBR, factors correlated to ICAM-1, including steroid receptor coactivator (SRC) and proline-rich tyrosine kinase2 (PYK2), and factors associated with apoptosis, including B-cell lymphoma-2 (Bcl-2), Bcl-2 associated protein X (Bax), caspase 3 and cleaved-caspase 3. The results found that capillaries and vascular smooth muscle cell content reduced, and NgBR and ICAM-1 were elevated in rats with diabetic ED. si-NgBR relieved ED by decreasing penile corpus cavernosum smooth muscle systolic percentage and increasing erectile time and rate, intracavernous pressure (ICP)/mean arterial pressure (MAP) and diastolic percentage, improving the pathological changes and inhibiting cavernosum cell apoptosis. si-NgBR also resulted in the down-regulation of ICAM-1 and downstream SRC and PYK2 and promoted α-SMA expression. In conclusion, si-NgBR can provide a potential therapy for diabetic ED in rats by down-regulating ICAM-1, SRC and PYK2, making it a potential therapeutic option for diabetic ED.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R.China
| | - Wei Huo
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R.China
| | - Yan Wen
- Department of Endocrine, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Hai Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R.China
| |
Collapse
|
7
|
Nakamura A, Ikeda K, Hamaoka K. Aetiological Significance of Infectious Stimuli in Kawasaki Disease. Front Pediatr 2019; 7:244. [PMID: 31316950 PMCID: PMC6611380 DOI: 10.3389/fped.2019.00244] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/29/2019] [Indexed: 01/23/2023] Open
Abstract
Kawasaki disease (KD) is a pediatric vasculitis syndrome that is often involves coronary artery lesions (e. g., coronary artery aneurysms). Although its causal factors and entire pathogenesis remain elusive, the available evidence indicates that the pathogenesis of KD is closely associated with dysregulation of immune responses to various viruses or microbes. In this short review, we address several essential aspects of the etiology of KD with respect to the immune response to infectious stimuli: 1) the role of viral infections, 2) the role of bacterial infections and the superantigen hypothesis, 3) involvement of innate immune response including pathogens/microbe-associated molecular patterns and complement pathways, and 4) the influence of genetic background on the response to infectious stimuli. Based on the clinical and experimental evidence, we discuss the possibility that a wide range of microbes and viruses could cause KD through common and distinct immune processes.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Central Research Laboratory, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuyuki Ikeda
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Hamaoka
- Pediatric Cardiology and Kawasaki Disease Center, Uji-Tokushukai Medical Center, Kyoto, Japan.,Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|