1
|
Liu C, Wang Y, Wu Z, Tang X, Wang G, Wang J. Exploration of effective biomarkers for venous thrombosis embolism in Behçet's disease based on comprehensive bioinformatics analysis. Sci Rep 2024; 14:15884. [PMID: 38987624 PMCID: PMC11236978 DOI: 10.1038/s41598-024-66973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Behçet's disease (BD) is a multifaceted autoimmune disorder affecting multiple organ systems. Vascular complications, such as venous thromboembolism (VTE), are highly prevalent, affecting around 50% of individuals diagnosed with BD. This study aimed to identify potential biomarkers for VTE in BD patients. Three microarray datasets (GSE209567, GSE48000, GSE19151) were retrieved for analysis. Differentially expressed genes (DEGs) associated with VTE in BD were identified using the Limma package and weighted gene co-expression network analysis (WGCNA). Subsequently, potential diagnostic genes were explored through protein-protein interaction (PPI) network analysis and machine learning algorithms. A receiver operating characteristic (ROC) curve and a nomogram were constructed to evaluate the diagnostic performance for VTE in BD patients. Furthermore, immune cell infiltration analyses and single-sample gene set enrichment analysis (ssGSEA) were performed to investigate potential underlying mechanisms. Finally, the efficacy of listed drugs was assessed based on the identified signature genes. The limma package and WGCNA identified 117 DEGs related to VTE in BD. A PPI network analysis then selected 23 candidate hub genes. Four DEGs (E2F1, GATA3, HDAC5, and MSH2) were identified by intersecting gene sets from three machine learning algorithms. ROC analysis and nomogram construction demonstrated high diagnostic accuracy for these four genes (AUC: 0.816, 95% CI: 0.723-0.909). Immune cell infiltration analysis revealed a positive correlation between dysregulated immune cells and the four hub genes. ssGSEA provided insights into potential mechanisms underlying VTE development and progression in BD patients. Additionally, therapeutic agent screening identified potential drugs targeting the four hub genes. This study employed a systematic approach to identify four potential hub genes (E2F1, GATA3, HDAC5, and MSH2) and construct a nomogram for VTE diagnosis in BD. Immune cell infiltration analysis revealed dysregulation, suggesting potential macrophage involvement in VTE development. ssGSEA provided insights into potential mechanisms underlying BD-induced VTE, and potential therapeutic agents were identified.
Collapse
Affiliation(s)
- Chunjiang Liu
- Division of Vascular Surgery, Department of General Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Yuan Wang
- Department of Intervention Vascular, Hefei Hospital of Anhui Medical University, Hefei, 230000, China
| | - Zhifeng Wu
- Division of Vascular Surgery, Department of General Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China
- Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Xiaoqi Tang
- Division of Vascular Surgery, Department of General Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Guohua Wang
- Division of Vascular Surgery, Department of General Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Jiajia Wang
- Department of Rheumatology, Shaoxing People's Hospital, 568# Zhongxing North Road, Shaoxing, 312000, China.
| |
Collapse
|
2
|
Tadayon Z, Shahzadeh Fazeli SA, Gholijani N, Daryabor G. Toll-like receptor 9 (TLR9) genetic variants rs187084 and rs352140 confer protection from Behcet's disease among Iranians. BMC Rheumatol 2024; 8:13. [PMID: 38481344 PMCID: PMC10938651 DOI: 10.1186/s41927-024-00382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Behcet's disease (BD) is a multisystem and multifactorial autoimmune disease characterized by relapsing episodes of oral aphthae, genital ulcers, and ocular and skin lesions. Toll-like receptor 9 (TLR9) has pro-inflammatory roles and its genetic variants might be involved in the pathogenesis of inflammatory diseases. METHODS: Two hundred five BD patients and 207 age and sex-matched healthy controls were evaluated for TLR9 single nucleotide polymorphisms - 1486 T/C (rs187084) and + 2848:G/A (rs352140) using polymerase chain reaction-restriction fragment length polymorphism (RFLP-PCR). RESULTS Healthy individuals had a significantly higher frequency of rs187084 AG and AG + GG genotypes than BD patients (p = 0.02 and p = 0.018; respectively). Of interest, healthy males had a significantly higher frequency of rs187084 AG + GG genotype and G allele than male BD patients (p = 0.035 and p = 0.045; respectively). However, rs187084 AG genotype and G allele frequencies were significantly higher in male patients with genital aphthous (p = 0.01 and p = 0.046; respectively). Furthermore, a significantly higher frequency of rs352140 CT and TT + CT genotypes was detected in healthy individuals than in BD patients (p = 0.01, and p = 0.032; respectively). Such results were also seen in healthy females than female patients (p = 0.001, and p = 0.004; respectively). Haplotype analysis revealed a significantly higher frequency of A-C and G-C haplotypes among patients and healthy subjects, respectively (p = 0.002 and p = 0.000; respectively). CONCLUSION Our data suggested that rs187084 AG and AG + GG genotypes and rs352140 CT and TT + CT genotypes protect Iranian individuals from BD but rs187084 AG genotype and G allele predispose male BD individuals to genital aphthous. However, additional studies are required to verify these results.
Collapse
Affiliation(s)
- Zahra Tadayon
- Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | | | - Nasser Gholijani
- Autoimmune Disease Research Center, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1583, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Disease Research Center, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1583, Shiraz, Iran.
| |
Collapse
|
3
|
Su Z, Lu J, Ling Z, Li W, Yang X, Cheng B, Tao X. Upregulation of IL-37 in epithelial cells: A potential new mechanism of T cell inhibition induced by tacrolimus. Biochem Pharmacol 2023; 216:115796. [PMID: 37690572 DOI: 10.1016/j.bcp.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Oral lichen planus (OLP) is a chronic T cell-mediated mucocutaneous disease characterized by T cell infiltration at the connective tissue-epithelium interface. Traditionally, topical corticosteroids are used as the first-line drugs to treat OLP. However, long-term use of corticosteroids may lead to drug tolerance, secondary candidiasis, and autoimmune adrenal insufficiency. Although topical tacrolimus has often been recommended for short-term use in corticosteroid-refractory OLP, the precise role of tacrolimus in epithelial cells remains elusive. This study showed that tacrolimus could directly upregulate the expression of IL-37 in human gingival epithelial cells by promoting the TGF-βRI/Smad3 pathway independently of calcineurin inhibition and MAPKs. In contrast, dexamethasone, one of the corticosteroids, did not have the same effect. Moreover, IL-37 could inhibit the proliferation of activated T cells and the secretion of effector cytokines and alleviate epithelial cell apoptosis and death caused by activated T cells ina co-culturesystem. Furthermore, compared with healthy controls, IL-37 and p-Smad3 levels significantly increased in the oral mucosa affected by OLP, especially in the epithelium. IL-37 might have mediated a negative feedback mechanism to curb excessive inflammation in OLP. However, the expression of IL-37 was not associated with the infiltration of CD8+ T cells and Tregs in OLP, implying that IL-37 might mostly affect T cell activation rather than T cell differentiation and migration. Overall, this study discovered a potential novel mechanism by which tacrolimus might indirectly inhibit T cell-mediated immune damage by upregulating IL-37 in human gingival epithelial cells.
Collapse
Affiliation(s)
- Zhangci Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China
| | - Jingyi Lu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China
| | - Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China
| | - Wei Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China
| | - Xi Yang
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China.
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China.
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
4
|
Liang J, Hu F, Mao L, Qiu Y, Jiang F, Wang Q, Abulikemu K, Hong Y, Ge X, Kang X. Interleukin-37 inhibits desmoglein-3 endocytosis and keratinocyte dissociation via upregulation of Caveolin-1 and inhibition of the STAT3 pathway. J Eur Acad Dermatol Venereol 2023; 37:1920-1927. [PMID: 37262304 DOI: 10.1111/jdv.19239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Pemphigus vulgaris (PV) is a potentially fatal autoimmune bullous disease primarily caused by acantholysis of keratinocytes attributed to pathogenic desmoglein-3 (Dsg3) autoantibodies. Interleukin-37 (IL-37) reportedly plays important roles in a variety of autoimmune diseases, but its role in PV is not clear. OBJECTIVES To investigate whether IL-37 plays a role in the occurrence and progression of PV. METHODS HaCaT keratinocytes were stimulated with anti-Dsg3 antibody to establish an in vitro PV model, which was defined as anti-Dsg3 group. Cells incubated with medium without anti-Dsg3 treatment were used as control. IL-37 was cultured with these cells infected with or without lentiviral vector shRNA-Caveolin-1 (sh-Cav-1-LV). Cell dissociation assay and immunocytofluorescence were performed to assess keratinocyte dissociation, keratin retraction and Dsg3 endocytosis. Real-time PCR was used to detect the mRNA level of Cav-1, and western blot was used to determine the protein expression of Cav-1, Dsg3, STAT3 and phosphorylated-STAT3 (p-STAT3). RESULTS The anti-Dsg3 group showed more cell debris, increased keratin retraction, increased Dsg3 endocytosis, reduced Cav-1 expression and co-localization than the control group, while IL-37 treatment neutralized all of these changes. Interestingly, Cav-1 knockdown supressed the inhibitory effect of IL-37 on keratinocyte dissociation and Dsg3 internalization. The protein expression of p-STAT3 was increased in keratinocytes of the PV model but decreased by IL-37. Re-activation of the STAT3 pathway by colivelin supressed the inhibitory effect of IL-37 on keratinocyte dissociation and Dsg3 internalization, along with upregulation of Cav-1 and Dsg3. CONCLUSIONS IL-37 inhibited keratinocyte dissociation and Dsg3 endocytosis in an in vitro PV model through the upregulating Cav-1 and inhibiting STAT3 pathway.
Collapse
Affiliation(s)
- Junqin Liang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Fengxia Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Lidan Mao
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Yun Qiu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Fanhe Jiang
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
| | - Qian Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Kailibinuer Abulikemu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Yongzhen Hong
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xinyu Ge
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| |
Collapse
|
5
|
Wang M, Gao M, Yi Z. Biological effects of IL-33/ST2 axis on oral diseases: autoimmune diseases and periodontal diseases. Int Immunopharmacol 2023; 122:110524. [PMID: 37393839 DOI: 10.1016/j.intimp.2023.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
IL-33 is a relatively new member of the IL-1 cytokine family, which plays a unique role in autoimmune diseases, particularly some oral diseases dominated by immune factors. The IL-33/ST2 axis is the main pathway by which IL-33 signals affect downstream cells to produce an inflammatory response or tissue repair. As a newly discovered pro-inflammatory cytokine, IL-33 can participate in the pathogenesis of autoimmune oral diseases such as Sjogren's syndrome and Behcet's disease. Moreover, the IL-33/ST2 axis also recruits and activates mast cells in periodontitis, producing inflammatory chemokines and mediating gingival inflammation and alveolar bone destruction. Interestingly, the high expression of IL-33 in the alveolar bone, which exhibits anti-osteoclast effects under appropriate mechanical loading, also confirms its dual role of destruction and repair in an immune-mediated periodontal environment. This study reviewed the biological effects of IL-33 in autoimmune oral diseases, periodontitis and periodontal bone metabolism, and elaborated its potential role and impact as a disease enhancer or a repair factor.
Collapse
Affiliation(s)
- Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Mingcen Gao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Borgia F, Custurone P, Li Pomi F, Vaccaro M, Alessandrello C, Gangemi S. IL-33 and IL-37: A Possible Axis in Skin and Allergic Diseases. Int J Mol Sci 2022; 24:ijms24010372. [PMID: 36613827 PMCID: PMC9820694 DOI: 10.3390/ijms24010372] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Interleukin (IL)-37 and IL-33 are among the latest cytokines identified, playing a role in several inflammatory conditions, spanning from systemic conditions to tumors to localized diseases. As newly discovered interleukins, their role is still scarcely understood, but their potential role as therapeutic targets or disease activity markers suggests the need to reorganize the current data for a better interpretation. The aim of this review is to collect and organize data produced by several studies to create a complete picture. The research was conducted on the PubMed database, and the resulting articles were sorted by title, abstract, English language, and content. Several studies have been assessed, mostly related to atopic dermatitis and immunologic pathways. Collective data demonstrates a pro-inflammatory role of IL-33 and an anti-inflammatory one for IL-37, possibly related to each other in an IL-33/IL-37 axis. Although further studies are needed to assess the safety and plausibility of targeting these two interleukins for patients affected by skin conditions, the early results indicate that both IL-33 and IL-37 represent markers of disease activity.
Collapse
Affiliation(s)
- Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Paolo Custurone
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Clara Alessandrello
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
7
|
Hussein MA, Ramadan MM, Moneam MAE, Halim HAE, Ghaffar NAE, Fawzy MW. Interleukin 37; a possible marker of arterial stiffness in Behçet's disease. Am J Med Sci 2022; 364:425-432. [PMID: 35469766 DOI: 10.1016/j.amjms.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Interleukin 37 (IL-37) is an anti-inflammatory cytokine previously studied in Behçet's disease (BD) and atherosclerosis. However, little is known about its relation to macro and microcirculations in BD. Previous studies relied mainly on common carotid artery (CCA) intima-media thickness (IMT) and ankle brachial index (ABI) to study atherosclerosis in BD with conflicting results. This study evaluated flow parameters of CCA, ABI and nailfold videocapillaroscopy in relation to serum IL-37 in BD. METHODS Forty BD patients and 30 healthy controls were included. IMT, peak-systolic, end-diastolic velocities, resistivity index of CCA and ABI were measured by duplex ultrasound. Capillary loop, length, diameter and morphology were recorded by nailfold videocapillaroscopy. Serum IL-37 levels were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS Compared to controls, patients had higher mean CCA IMT (p < 0.0001), resistivity index (p < 0.001) and peak-systolic velocity (p=0.09) and lower mean CCA end-diastolic velocity (p=0.002), capillary loop, length, arterial, venous limbs diameter and serum IL-37 (p < 0.001). Patients with ABI ≥ 1.4 "indicating stiff arteries" had higher serum IL-37 (p < 0.05 on left, p>0.05 right sides). Serum IL-37 correlated negatively with left CCA end-diastolic velocity "denoting atherosclerosis" and positively with left posterior tibial artery ABI and CRP (p < 0.03) "denoting inflammation". Multiple regression analysis showed only association with left CCA end-diastolic velocity. CONCLUSIONS IL-37 may be related to arterial stiffness in BD and could be used as a possible marker of arteriosclerosis in the disease for further investigations. Changes of CCA peak-systolic, end-diastolic velocities, resistivity index and IMT refer to increased atherosclerosis in larger elastic arteries. In smaller muscular "crural" arteries, vasculitis with possible medial disease may be more evident.
Collapse
Affiliation(s)
- Mohamed A Hussein
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt.
| | - Mostafa Mahmoud Ramadan
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| | - Manal Abd El Moneam
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| | - Hanan Abd El Halim
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| | | | - Mary Wadie Fawzy
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Expression of Thymic Stromal Lymphopoietin in Immune-Related Dermatoses. Mediators Inflamm 2022; 2022:9242383. [PMID: 36046760 PMCID: PMC9420647 DOI: 10.1155/2022/9242383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP), long known to be involved in Th2 response, is also implicated in multiple inflammatory dermatoses and cancers. The purpose of this study was to improve our understanding of the expression of TSLP in the skin of those dermatoses. Lesional specimens of representative immune-related dermatoses, including lichen planus (LP), discoid lupus erythematosus (DLE), eczema, bullous pemphigoid (BP), psoriasis vulgaris (PsV), sarcoidosis, and mycosis fungoides (MF), were retrospectively collected and analyzed by immunohistochemistry. Morphologically, TSLP was extensively expressed in the epidermis of each dermatosis, but the expression was weak in specimens of DLE. In a semiquantitative analysis, TSLP was significantly expressed in the epidermis in LP, BP, eczema, PsV, sarcoidosis, and MF. TSLP expression was higher in the stratum spinosum in LP, eczema, BP, PsV, and MF and higher in the stratum basale in sarcoidosis and PsV. Moreover, we found positive TSLP staining in the dermal infiltrating inflammatory cells of BP, PsV, and sarcoidosis. Our observation of TSLP in different inflammatory dermatoses might provide a novel understanding of TSLP in the mechanism of diseases with distinctly different immune response patterns and suggest a potential novel therapeutic target of those diseases.
Collapse
|
9
|
Qin YF, Ren SH, Shao B, Qin H, Wang HD, Li GM, Zhu YL, Sun CL, Li C, Zhang JY, Wang H. The intellectual base and research fronts of IL-37: A bibliometric review of the literature from WoSCC. Front Immunol 2022; 13:931783. [PMID: 35935954 PMCID: PMC9354626 DOI: 10.3389/fimmu.2022.931783] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 01/09/2023] Open
Abstract
Background IL-37 is a recently identified cytokine with potent immunosuppressive functions. The research fronts of IL-37 are worth investigating, and there is no bibliometric analysis in this field. The purpose of this study is to construct the intellectual base and predict research hotspots of IL-37 research both quantitatively and qualitatively according to bibliometric analysis. Methods The articles were downloaded from the Web of Science Core Collection (WoSCC) database from the inception of the database to 1 April 2022. CiteSpace 5.8.R3 (64-bit, Drexel University, Philadelphia, PA, USA) and Online Analysis Platform of Literature Metrology (https://bibliometric.com/) were used to perform bibliometric and knowledge-map analyses. Results A total of 534 papers were included in 200 academic journals by 2,783 authors in 279 institutions from 50 countries/regions. The journal Cytokine published the most papers on IL-37, while Nature Immunology was the most co-cited journal. The publications belonged mainly to two categories of Immunology and Cell Biology. USA and China were the most productive countries. Meanwhile, the University of Colorado Denver in USA produced the highest number of publications followed by Radboud University Nijmegen in the Netherlands and Monash University in Australia. Charles A. Dinarello published the most papers, while Marcel F. Nold had the most co-citations. Top 10 co-citations on reviews, mechanisms, and diseases were regarded as the knowledge base. The keyword co-occurrence and co-citations of references revealed that the mechanisms and immune-related disorders were the main aspects of IL-37 research. Notably, the involvement of IL-37 in various disorders and the additional immunomodulatory mechanisms were two emerging hotspots in IL-37 research. Conclusions The research on IL-37 was thoroughly reviewed using bibliometrics and knowledge-map analyses. The present study is a benefit for academics to master the dynamic evolution of IL-37 and point out the direction for future research.
Collapse
Affiliation(s)
- Ya-fei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shao-hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-ming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Hao Wang, ;
| |
Collapse
|
10
|
Danieli MG, Antonelli E, Piga MA, Claudi I, Palmeri D, Tonacci A, Allegra A, Gangemi S. Alarmins in autoimmune diseases. Autoimmun Rev 2022; 21:103142. [PMID: 35853572 DOI: 10.1016/j.autrev.2022.103142] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/10/2022] [Indexed: 12/18/2022]
Abstract
Alarmins are endogenous, constitutively expressed, chemotacting and immune activating proteins or peptides released because of non-programmed cell death (i.e. infections, trauma, etc). They are considered endogenous damage-associated molecular patterns (DAMPs), able to induce a sterile inflammation. In the last years, several studies highlighted a possible role of different alarmins in the pathogenesis of various autoimmune and immune-mediated diseases. We reviewed the relevant literature about this topic, for about 160 articles. Particularly, we focused on systemic autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, idiopathic inflammatory myopathies, ANCA-associated vasculitides, Behçet's disease) and cutaneous organ-specific autoimmune diseases (vitiligo, psoriasis, alopecia, pemphigo). Finally, we discussed about future perspectives and potential therapeutic implications of alarmins in autoimmune diseases. In fact, identification of receptors and downstream signal transducers of alarmins may lead to the identification of antagonistic inhibitors and agonists, with the capacity to modulate alarmins-related pathways and potential therapeutic applicability.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Eleonora Antonelli
- PostGraduate School of Internal Medicine, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Mario Andrea Piga
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Ilaria Claudi
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Davide Palmeri
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
11
|
Zeng H, Zhou K, Ye Z. Biology of interleukin‑37 and its role in autoimmune diseases (Review). Exp Ther Med 2022; 24:495. [PMID: 35837057 PMCID: PMC9257848 DOI: 10.3892/etm.2022.11422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/10/2022] [Indexed: 11/06/2022] Open
Abstract
Autoimmune diseases (AIDs) are characterized by dysfunction and tissue destruction, and recent studies have shown that interleukin (IL)-37 expression is dysregulated in AIDs. Among cytokines of the IL-1 family, most are pro-inflammatory agents, and as an anti-inflammatory cytokine, IL-37 may have the potential to alleviate excessive inflammation and can be used as a ligand or transcription factor that is involved in regulating innate and adaptive immunity. IL-37 plays important roles in the development of AIDs. This review summarizes the biological characteristics and functions of IL-37 and discusses the potential of IL-37 as a therapeutic target for effective cytokine therapy and as a biomarker in AIDs.
Collapse
Affiliation(s)
- Huiqiong Zeng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| | - Kaixia Zhou
- School of Biomedical Sciences, CUHK‑GIBH CAS Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Zhizhong Ye
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| |
Collapse
|
12
|
Su Z, Tao X. Current Understanding of IL-37 in Human Health and Disease. Front Immunol 2021; 12:696605. [PMID: 34248996 PMCID: PMC8267878 DOI: 10.3389/fimmu.2021.696605] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
IL-37 is a recently discovered cytokine in the IL-1 family exerting broad protective effects on inflammatory diseases, autoimmune diseases, and cancer. Immune and non-immune cells produce the IL-37 precursor upon pro-inflammatory stimuli. Intracellularly, caspase-1 cleaves and activates IL-37, and its mature form binds to Smad3; this complex translocates into the nucleus where it suppresses cytokine production, consequently reducing inflammation. Extracellularly, IL-37 forms a complex with IL-18Rα and IL-1R8 (formerly TIR8 or SIGIRR) that transduces anti-inflammatory signals by the suppression of NF-κB and MAPK and the activation of Mer-PTEN-DOK pathways. During inflammation, IL-37 suppresses the expression of several pro-inflammatory cytokine in favor to the expression of the anti-inflammatory ones by the regulation of macrophage polarization, lipid metabolism, inflammasome function, TSLP synthesis and miRNAs function. Moreover, IL-37 not only regulates the innate and acquired immunity, but also improves aging-associated immunosenescence. Furthermore, IL-37 exerts an inhibitory effect on tumor angiogenesis and metastasis, and progression. Finally, IL-37 may have a potential ability to reduce excessive inflammation since it is aberrantly expressed in patients with inflammatory diseases, autoimmune diseases, and cancer, thus, it may be used as a marker for different types of diseases. Therefore, this review provides an updated view of the role of IL-37 in human health and disease, and discusses the potential of IL-37 as a therapeutic target and biomarker in inflammatory diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Zhangci Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
13
|
Wang SH, Zuo YG. Thymic Stromal Lymphopoietin in Cutaneous Immune-Mediated Diseases. Front Immunol 2021; 12:698522. [PMID: 34249003 PMCID: PMC8264505 DOI: 10.3389/fimmu.2021.698522] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) was initially demonstrated to be critical in regulating inflammatory responses among various allergic disorders (such as atopic dermatitis, food allergy, and asthma). Although two isoforms (short form and long form) of TSLP have been demonstrated in human tissues, the long form of TSLP (lfTSLP) is strongly implicated in the pathogenesis of allergies and cutaneous immune-mediated diseases. The immunomodulatory activity of lfTSLP varies widely, driving T helper (Th) cells polarizing Th2 and Th17 immune responses and inducing itch. Moreover, lfTSLP is closely associated with skin fibrosis, epidermal hyperplasia, angiogenesis, and homeostatic tolerogenic regulations. This review highlights significant progress from experimental and clinical studies on lfTSLP in cutaneous immune-mediated diseases (atopic dermatitis, psoriasis, bullous pemphigoid, systemic sclerosis, chronic spontaneous urticaria, Behçet's disease, vitiligo, rosacea, systemic lupus erythematosus, and alopecia areata). We also offer original insights into the pleiotropic properties of the cytokine TSLP in various pathophysiological conditions, with significant clinical implications of TSLP-targeted therapies for immune-mediated skin diseases in the future.
Collapse
Affiliation(s)
| | - Ya-Gang Zuo
- Department of Dermatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Adamu RM, Singh RM, Ibrahim MA, Uba AI. Virtual discovery of a hetero-cyclic compound from the Universal Natural Product Database (UNPD36) as a potential inhibitor of interleukin-33: molecular docking and dynamic simulations. J Biomol Struct Dyn 2021; 40:8696-8705. [PMID: 33896389 DOI: 10.1080/07391102.2021.1915180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-33 is a cytokine implicated in several inflammatory and autoimmune diseases. Upon binding to its receptor ST2, IL-33 activates allergic inflammatory responses. To block this protein-protein interaction with a potential anti-allergic agent, we screened Universal Natural Product Database (UNPD) using a combined approach of molecular docking and dynamic simulations. Six hundred compounds with high gastrointestinal absorption properties from the UNPD were retrieved and subjected to molecular docking using Autodock Vina, out of which four hetero-cyclic compounds (UNPD36, UNPD2045, UNPD8905, UNPD122514) were found to have binding energy score of < -7.0 Kcal/mol. Further analysis from 100 ns MD simulation of the best hit (UNPD36) revealed that IL-33_UNPD36 complex reached average stability at RMSD of 2.7 Å, and residues involved in the interaction showed lower fluctuations compared to the residues at the β4-β5 and β11-β12 loop region. Further molecular docking using Autodock 4.2 was carried out to determine the binding orientation of UNPD36. Using GROMACS, additional 50 ns MD simulations and MM-PBSA calculation were performed on this complex. Finally, chemoinformatic studies revealed that the UNPD36 had drug-like and pharmacokinetic profiles as well as potentials for oral and topical applications, in addition to good safety profile. Thus, it was concluded that a hetero-cyclic compound with chromone moiety (UNPD36) had a good and stable binding mode to serve as potential inhibitor of IL-33 and/or may provide a scaffold for further optimization toward the design of more potent inhibitors for application in the treatment of respiratory allergies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahma Muhammad Adamu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Rita Majumdhar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | | | - Abdullahi Ibrahim Uba
- Complex Systems Division, Beijing Computational Science Research Center, Beijing, China
| |
Collapse
|
15
|
Martin P, Goldstein JD, Mermoud L, Diaz-Barreiro A, Palmer G. IL-1 Family Antagonists in Mouse and Human Skin Inflammation. Front Immunol 2021; 12:652846. [PMID: 33796114 PMCID: PMC8009184 DOI: 10.3389/fimmu.2021.652846] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin (IL)-1 family cytokines initiate inflammatory responses, and shape innate and adaptive immunity. They play important roles in host defense, but excessive immune activation can also lead to the development of chronic inflammatory diseases. Dysregulated IL-1 family signaling is observed in a variety of skin disorders. In particular, IL-1 family cytokines have been linked to the pathogenesis of psoriasis and atopic dermatitis. The biological activity of pro-inflammatory IL-1 family agonists is controlled by the natural receptor antagonists IL-1Ra and IL-36Ra, as well as by the regulatory cytokines IL-37 and IL-38. These four anti-inflammatory IL-1 family members are constitutively and highly expressed at steady state in the epidermis, where keratinocytes are a major producing cell type. In this review, we provide an overview of the current knowledge concerning their regulatory roles in skin biology and inflammation and their therapeutic potential in human inflammatory skin diseases. We further highlight some common misunderstandings and less well-known observations, which persist in the field despite recent extensive interest for these cytokines.
Collapse
Affiliation(s)
- Praxedis Martin
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérémie D. Goldstein
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Loïc Mermoud
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Ramezani F, Babaie F, Aslani S, Hemmatzadeh M, Mohammadi FS, Gowhari-Shabgah A, Jadidi-Niaragh F, Ezzatifar F, Mohammadi H. The Role of the IL-33/ST2 Immune Pathway in Autoimmunity: New Insights and Perspectives. Immunol Invest 2021; 51:1060-1086. [PMID: 33522348 DOI: 10.1080/08820139.2021.1878212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-33, a member of IL-1 cytokine family, is produced by various immune cells and acts as an alarm to alert the immune system after epithelial or endothelial cell damage during cell necrosis, infection, stress, and trauma. The biological functions of IL-33 largely depend on its ligation to the corresponding receptor, suppression of tumorigenicity 2 (ST2). The pathogenic roles of this cytokine have been implicated in several disorders, including allergic disease, cardiovascular disease, autoimmune disease, infectious disease, and cancers. However, alerted levels of IL-33 may result in either disease amelioration or progression. Genetic variations of IL33 gene may confer protective or susceptibility risk in the onset of autoimmune diseases. The purpose of this review is to discuss the involvement of IL-33 and ST2 in the pathogenesis of a variety of autoimmune disorders, such as autoimmune rheumatic, neurodegenerative, and endocrine diseases.
Collapse
Affiliation(s)
- Faezeh Ramezani
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadat Mohammadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
17
|
Gholijani N, Daryabor G, Yazdani MR, Vazani N, Shabbooei B, Zahed M, Ranjbar MA, Sadeghi MB, Amirghofran Z. Serum interleukin-37 (IL-37) and its gene polymorphism in Iranian Behcet's disease patients: Association with disease manifestations and activity. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
18
|
Cingu AK, Turkcu FM, Aktas S, Sahin A, Ayyildiz O. Serum IL-4, IL-12, IL-13, IL-27, and IL-33 levels in active and inactive ocular Behcet's disease. Int Ophthalmol 2020; 40:3441-3451. [PMID: 32729061 DOI: 10.1007/s10792-020-01530-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate serum levels of interleukin (IL)-12 (Th1 cytokine), IL-27 (an immunomodulatory cytokine), IL-4 (suppressor of Th1-cell growth), IL-13 (a stimulatory signal for Th2 cytokines), and IL-33 (an epithelial cell-derived cytokine) and their relations with the disease activity in Behcet's Disease (BD). METHODS Four groups, each composed of 20 participants were enrolled in the study; active ocular BD (Group-A), ocular BD in remission (Group-B), nonocular BD in remission (Group-C) and healthy controls (Group-D). IL levels were compared between the study groups and their correlation with the disease activity parameters were analyzed. RESULTS IL-13 and IL-33 were higher in Group-A. IL-27 was lower in all BD groups. Additionally, IL-13 and IL-33 levels were positively correlated with disease activity parameters. CONCLUSION These findings show Th2 dominance in the active phase of BD. Besides, decreased levels of IL-27, and presumably, its protective anti-inflammatory effect in all study groups may exert a new pathologic finding in BD.
Collapse
Affiliation(s)
- Abdullah Kursat Cingu
- Department of Ophthalmology, Veni Vidi Bakirkoy Eye Center, Zeytinlik Mahallesi Milliyetci Sok. No: 4/1, Bakirkoy, Istanbul, Turkey.
| | | | - Serdar Aktas
- Department of Immunology, Doruk Bursa Hospital, Bursa, Turkey
| | - Alparslan Sahin
- Department of Ophthalmology, Memorial Dicle Hospital, Diyarbakir, Turkey
| | - Orhan Ayyildiz
- Department of Internal Medicine, Dicle University School of Medicine, Diyarbakir, Turkey
| |
Collapse
|
19
|
Pan Y, Wen X, Hao D, Wang Y, Wang L, He G, Jiang X. The role of IL-37 in skin and connective tissue diseases. Biomed Pharmacother 2019; 122:109705. [PMID: 31918276 DOI: 10.1016/j.biopha.2019.109705] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 02/05/2023] Open
Abstract
IL-37 was discovered as an anti-inflammatory and immunosuppressive cytokine of the IL-1 family. Significant advancements in the understanding of signaling pathways associated with IL-37 have been made in recent years. IL-37 binds to IL-18R and recruits IL-1R8 to form the IL-37/IL-1R8/IL-18Rα complex. Capase-1 plays a key role in the nuclear transduction of IL-37 signal, processing precursor IL-37 into the mature isoform, and interacting with Smad3. IL-37 exerts its role by activating anti-inflammation pathways including AMPK, PTEN, Mer, STAT3 and p62, and promoting tolerogenic dendritic cells and Tregs. In addition, IL-37 inhibits pro-inflammatory cytokines such as IL-1, IL-6, IL-8, IL-17, IL-23, TNF-α, and IFN-γ, and suppresses Fyn, MAPK, TAK1, NFκB, and mTOR signaling. The final effects of IL-37 depend on the interaction among IL-18R, IL-1R8, IL-37 and IL-18BP. Previous studies have deciphered the role of IL-37 in the development and pathogenesis of autoimmune diseases, chronic infections and cancer. In this review, we discuss the role of IL-37 in psoriasis, atopic dermatitis, Behcet's diseases, systemic lupus erythematosus, and other skin and connective tissue diseases.
Collapse
Affiliation(s)
- Yu Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Dan Hao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yujia Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China.
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
20
|
Murdaca G, Greco M, Tonacci A, Negrini S, Borro M, Puppo F, Gangemi S. IL-33/IL-31 Axis in Immune-Mediated and Allergic Diseases. Int J Mol Sci 2019; 20:E5856. [PMID: 31766607 PMCID: PMC6929191 DOI: 10.3390/ijms20235856] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 01/16/2023] Open
Abstract
Several allergic and immunologic diseases including asthma, food allergy (FA), chronic spontaneous urticaria (CSU), atopic dermatitis (AD), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), rheumatoid arthritis (RA), and Behçet's disease (BD) are characterized by the involvement of Th2 immunity. Several mediators lead to immunoglobulin (Ig)E production, thus including key cytokines such as interleukin (IL)-4, IL-5, and IL-13. Among them, IL-31 and IL-33 have been recently studied as novel biomarkers and future therapeutic targets for allergic and immunological disorders. IL-31 is a proinflammatory cytokine-it regulates cell proliferation and is involved in tissue remodeling. IL-33, acting through its receptor suppression of tumorigenity (ST2L), is an alarmin cytokine from the IL-1 family, whose expression is mediated by tissue damage. The latter has a pleiotropic effect, as it may modulate specific and innate immune cells functions. To date, several researchers have investigated the involvement of IL-31 and IL-33 in several allergic and immune-mediated diseases. Further studies are needed to understand the future applications of these molecules as novel therapeutic agents. This paper aims to give the readers a complete and updated review of IL-31 and IL-33 involvement among the most common autoimmune and allergic disorders.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy (S.N.); (M.B.); (F.P.)
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy (S.N.); (M.B.); (F.P.)
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy (S.N.); (M.B.); (F.P.)
| | - Matteo Borro
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy (S.N.); (M.B.); (F.P.)
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy (S.N.); (M.B.); (F.P.)
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
21
|
Kaabachi W, Khaouthar M, Hamdi B, Khalfallah I, Ammar J, Hamzaoui K, Hamzaoui A. Th 9 cells in Behçet disease: Possible involvement of IL-9 in pulmonary manifestations. Immunol Lett 2019; 211:3-12. [PMID: 31075294 DOI: 10.1016/j.imlet.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
Behçet disease (BD) is a multisystemic disease some of whose manifestations are characterized by pulmonary involvements. The purpose of the study was to evaluate the level of T-helper type 9 (Th9) cells and the cytokine interleukin (IL)-9 in peripheral blood and in bronchoalveolar lavage (BAL) of patients with Behçet's disease (BD) affected by pulmonary manifestations. Nevertheless, until recently there have been no studies on its role in BD. The Th9 (CD4+IL-9+T) cell, transcription factor PU.1 and IL-9 mRNA levels, as well as serum and BAL IL-9 concentration, were measured in BD patients and healthy controls. The Th9 cell percentage and absolute number, PU.1 and IL-9 expression levels of BD patients were all increased significantly compared with the control group. Absolute number of Th9 cells was particularly increased in patients with active BD compared to inactive BD patients. The levels of IL-9 associated to Th9 expression depended on BD severity. These parameters were markedly expressed in the BAL of BD patients with pulmonary manifestations. IL-17 and the epithelial inflammatory cytokine TSLP were significantly correlated to IL-9 levels. This cytokine trio decreased in inactive BD patients after corticosteroïd treatment. In addition, IL-9 levels were correlated to CD4+ IL-9+ cells in BAL and in PBMCs. LPS stimulated PBMCs and macrophages induced increased secretion of IL-9 and the encoding transcription factors PU.1 and IRF4. In conclusion, the expansion of the Th9 cell subset, up-regulation of the PU.1 transcription factor and increased secretion of the IL-9 cytokine may contribute to the pathogenesis of BD, which may be supported by the increased release of IL-17 and TSLP. We provide evidence that Th9 T cells are increased in BD patients with pulmonary manifestations. This suggests an important role of IL-9 in the pathogenesis of BD particularly in patients suffering from lung involvement.
Collapse
Affiliation(s)
- Wajih Kaabachi
- Unit Research 12SP15 "Expression moléculaire des interactions cellulaires et leur mode de communication dans le poumon profond", A. Mami Hospital, 2080 Ariana, Tunisia; Université de Tunis El Manar, Faculty of Medicine of Tunis, Department of Basic Sciences, Tunis, Tunisia.
| | - Mnasria Khaouthar
- Immuno-microbiologie environnementale et cancérogenèse, faculté des sciences de Bizerte, Tunisia.
| | - Besma Hamdi
- Unit Research 12SP15 "Expression moléculaire des interactions cellulaires et leur mode de communication dans le poumon profond", A. Mami Hospital, 2080 Ariana, Tunisia; Université de Tunis El Manar, Faculty of Medicine of Tunis, Department of Basic Sciences, Tunis, Tunisia; Division of Pulmonology, Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia.
| | - Ikbel Khalfallah
- Unit Research 12SP15 "Expression moléculaire des interactions cellulaires et leur mode de communication dans le poumon profond", A. Mami Hospital, 2080 Ariana, Tunisia; Université de Tunis El Manar, Faculty of Medicine of Tunis, Department of Basic Sciences, Tunis, Tunisia; Division of Pulmonology, Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia.
| | - Jamel Ammar
- Unit Research 12SP15 "Expression moléculaire des interactions cellulaires et leur mode de communication dans le poumon profond", A. Mami Hospital, 2080 Ariana, Tunisia; Université de Tunis El Manar, Faculty of Medicine of Tunis, Department of Basic Sciences, Tunis, Tunisia; Division of Pulmonology, Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia.
| | - Kamel Hamzaoui
- Unit Research 12SP15 "Expression moléculaire des interactions cellulaires et leur mode de communication dans le poumon profond", A. Mami Hospital, 2080 Ariana, Tunisia; Université de Tunis El Manar, Faculty of Medicine of Tunis, Department of Basic Sciences, Tunis, Tunisia.
| | - Agnès Hamzaoui
- Unit Research 12SP15 "Expression moléculaire des interactions cellulaires et leur mode de communication dans le poumon profond", A. Mami Hospital, 2080 Ariana, Tunisia; Université de Tunis El Manar, Faculty of Medicine of Tunis, Department of Basic Sciences, Tunis, Tunisia; Division of Pulmonology, Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia.
| |
Collapse
|
22
|
Meng P, Chen ZG, Zhang TT, Liang ZZ, Zou XL, Yang HL, Li HT. IL-37 alleviates house dust mite-induced chronic allergic asthma by targeting TSLP through the NF-κB and ERK1/2 signaling pathways. Immunol Cell Biol 2019; 97:403-415. [PMID: 30537285 DOI: 10.1111/imcb.12223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/02/2018] [Accepted: 12/08/2018] [Indexed: 12/25/2022]
Abstract
Interleukin (IL)-37 has been described as a negative regulator of immune responses and is critical for asthma pathogenesis, but the mechanisms behind the protective role of IL-37 against allergic asthma are less well understood. We show here that IL-37 administered intranasally inhibited house dust mite (HDM)-induced chronic airway eosinophilic inflammation, goblet cell hyperplasia, peribronchial collagen deposition and airway hyperresponsiveness (AHR) to methacholine. In contrast to a weakened Th2 response in the lung that was characterized by the downregulation of Th2-associated cytokines and chemokines in IL-37-treated mice, IL-37 has no effect on relevant markers of systemic Th2 immune including serum immunoglobulins expression and in vitro production of Th2-associated cytokines by splenocytes on HDM recall. We demonstrated that the production of thymic stromal lymphopoietin (TSLP) in the lung tissue was associated with IL-37. Importantly, compared with IL-37 alone, TSLP coadministration with IL-37 restored HDM-induced airway inflammation and structural alterations, increased AHR to methacholine and promoted Th2-associated cytokine production. We further found that IL-37 inhibited the induction of TSLP expression by the main antigen of house dust mite, Der p1, by suppressing NF-κB and extracellular signal regulated kinase 1/2 (ERK1/2) activation in human bronchial epithelial (16-HBE) cells in vitro. These data highlight the importance of TSLP in IL-37-mediated protective role in asthma. IL-37 might represent a useful innovative and alternative therapy to control TSLP production in the airway.
Collapse
Affiliation(s)
- Ping Meng
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Zhuang-Gui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tian-Tuo Zhang
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Zhuo-Zheng Liang
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Ling Zou
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Hai-Ling Yang
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Hong-Tao Li
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Serum interleukin-37 level and interleukin-37 gene polymorphism in patients with Behçet disease. Clin Rheumatol 2018; 38:495-502. [DOI: 10.1007/s10067-018-4288-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
|