1
|
Gao R, Yang H, Wang Y. SETD3 functions beyond histidine methylation. Life Sci 2024; 357:123064. [PMID: 39299385 DOI: 10.1016/j.lfs.2024.123064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
SETD3 is a member of SET domain-containing proteins. It has been discovered as the first metazoan protein (actin) histidine methyltransferase. In addition to this well-characterized molecular function of SETD3, it has been clearly shown to be involved in multiple biological processes, such as cell differentiation, tumorigenesis and viral infection. Here, we summarize the current knowledge on the roles of SETD3 beyond its histidine methyltransferase activity, and outline its cellular and molecular modes of action, as well as the upstream regulation on SETD3, therefore providing insights for the molecular basis of how SETD3 fine regulates multiple physiological and pathological processes.
Collapse
Affiliation(s)
- Rui Gao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen 361000, China.
| | - Hao Yang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen 361000, China
| | - Yan Wang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of medicine, Xiamen University, Xiamen 361000, China
| |
Collapse
|
2
|
Cheng M, Yang Q, Liu Y, Zhao MJ, Du X, Sun J, Shu WJ, Huang Z, Bi J, Xu X, Du HN. SETD3 Methyltransferase Regulates PLK1 Expression to Promote In Situ Hepatic Carcinogenesis. Front Oncol 2022; 12:882202. [PMID: 35912180 PMCID: PMC9329778 DOI: 10.3389/fonc.2022.882202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe development of a new strategy to overcome chemoresistance to hepatocellular carcinoma (HCC) treatment is a long-standing issue. We have previously found that upregulated SETD3 levels are closely correlated with HCC. This study aims to explore the mechanism underlying how upregulation of SETD3 promotes liver carcinogenesis.MethodsRNA-Sequencing analysis was used to explore the correlation of SETD3 with regulatory targets. In vitro assays including cell proliferation and migration were performed to study the oncogenic roles of SETD3 and PLK1. Western blotting, immunohistochemical staining, and blood biochemical assays were performed to examine protein expression or pathological index in tumor tissues and mice liver tissues. Luciferase reporter system and chromatin immunoprecipitation assays were used to explore the mechanism.ResultsWe revealed that SETD3 regulates gene expression in subgroups, including cell division, cell proliferation, and cell cycle, in hepatocellular tumor cells. We found that SETD3 upregulation is associated with elevated PLK1 level in both hepatic tumor cells and clinical liver tissues. We further showed that overexpression of SETD3 promoted tumor cell proliferation and migration, whereas inhibition of PLK1 activity attenuated these phenotypes caused by SETD3. By taking advantage of the Sleep Beauty transposase system, we confirmed that upregulated mouse Setd3 promoted hepatic carcinogenesis in situ, but knockdown of mouse Plk1 mitigated Setd3-promoted tumorigenesis in mice. Mechanistically, we showed that SETD3 could be recruited to the promoter of PLK1 gene to facilitate PLK1 transcription.ConclusionsOur data demonstrate that elevated SETD3 may promote HCC by enhancing PLK1 expression, which suggests that SETD3 may act as a potential drug target combined with PLK1 inhibition to treat HCC.
Collapse
Affiliation(s)
- Meng Cheng
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qingmiao Yang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yafei Liu
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Meng-Jie Zhao
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xinyuan Du
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jiaqi Sun
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wen-Jie Shu
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zan Huang
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jianping Bi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hai-Ning Du, ; Jianping Bi, ; Ximing Xu,
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Hai-Ning Du, ; Jianping Bi, ; Ximing Xu,
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Hai-Ning Du, ; Jianping Bi, ; Ximing Xu,
| |
Collapse
|
3
|
Cheng H, Han Y, Zhang J, Zhang S, Zhai Y, An X, Li Q, Duan J, Zhang X, Li Z, Tang B, Shen H. Effects of dimethyl sulfoxide (DMSO) on DNA methylation and histone modification in parthenogenetically activated porcine embryos. Reprod Fertil Dev 2022; 34:598-607. [PMID: 35397781 DOI: 10.1071/rd21083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic mechanisms play an important role in oogenesis and early embryo development in mammals. Dimethyl sulfoxide (DMSO) is frequently used as a solvent in biological studies and as a vehicle for drug therapy. Recent studies suggest that DMSO detrimentally affects porcine embryonic development, yet the mechanism of the process in parthenogenetically activated porcine embryos has not been reported. In this study, we found that treatment of embryos with 1.5% DMSO significantly decreased the cleavage and blastocyst rates, total cell number of blastocysts and the anti-apoptotic gene BCL-2 transcription level; however, the percentage of apoptotic cells and the expression levels of the pro-apoptotic gene BAX were not changed. Treatment with DMSO significantly decreased the expression levels of DNMT1 , DNMT3a , DNMT3b , TET1 , TET2 , TET3 , KMT2C , MLL2 and SETD3 in most of the stages of embryonic development and increased 5-mC signals, while the staining intensity for 5-hmC had no change in porcine preimplantation embryos from 2-cell to the blastocyst stages. Meanwhile, DMSO decreased the level of H3K4me3 during the development of parthenogenetically activated porcine embryos. After treatment with DMSO, expression levels of the pluripotency-related genes POU5F1 and NANOG decreased significantly (P <0.01), whereas the imprinted gene H19 did not change (P >0.05). In conclusion, these results suggest that DMSO can affect genome-wide DNA methylation and histone modification by regulating the expression of epigenetic modification enzymes, and DMSO also influences the expression level of pluripotent genes. These dysregulations lead to defects in embryonic development.
Collapse
Affiliation(s)
- Hui Cheng
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Yu Han
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Jian Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Sheng Zhang
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yanhui Zhai
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xinglan An
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Qi Li
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Jiahui Duan
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Ziyi Li
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Haiqing Shen
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
4
|
Witecka A, Kwiatkowski S, Ishikawa T, Drozak J. The Structure, Activity, and Function of the SETD3 Protein Histidine Methyltransferase. Life (Basel) 2021; 11:1040. [PMID: 34685411 PMCID: PMC8537074 DOI: 10.3390/life11101040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/03/2022] Open
Abstract
SETD3 has been recently identified as a long sought, actin specific histidine methyltransferase that catalyzes the Nτ-methylation reaction of histidine 73 (H73) residue in human actin or its equivalent in other metazoans. Its homologs are widespread among multicellular eukaryotes and expressed in most mammalian tissues. SETD3 consists of a catalytic SET domain responsible for transferring the methyl group from S-adenosyl-L-methionine (AdoMet) to a protein substrate and a RuBisCO LSMT domain that recognizes and binds the methyl-accepting protein(s). The enzyme was initially identified as a methyltransferase that catalyzes the modification of histone H3 at K4 and K36 residues, but later studies revealed that the only bona fide substrate of SETD3 is H73, in the actin protein. The methylation of actin at H73 contributes to maintaining cytoskeleton integrity, which remains the only well characterized biological effect of SETD3. However, the discovery of numerous novel methyltransferase interactors suggests that SETD3 may regulate various biological processes, including cell cycle and apoptosis, carcinogenesis, response to hypoxic conditions, and enterovirus pathogenesis. This review summarizes the current advances in research on the SETD3 protein, its biological importance, and role in various diseases.
Collapse
Affiliation(s)
- Apolonia Witecka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| | - Sebastian Kwiatkowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jakub Drozak
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| |
Collapse
|
5
|
Xu X, Cui Y, Li C, Wang Y, Cheng J, Chen S, Sun J, Ren J, Yao X, Gao J, Huang X, Wan Q, Wang Q. SETD3 Downregulation Mediates PTEN Upregulation-Induced Ischemic Neuronal Death Through Suppression of Actin Polymerization and Mitochondrial Function. Mol Neurobiol 2021; 58:4906-4920. [PMID: 34218417 DOI: 10.1007/s12035-021-02459-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022]
Abstract
SET domain protein 3 (SETD3) is an actin-specific methyltransferase, a rare post-translational modification with limited known biological functions. Till now, the function of SETD3 in cerebral ischemia-reperfusion (I/R)-induced injury remains unknown. Here, we show that the protein level of SETD3 is decreased in rat neurons after cerebral I/R injury. SETD3 promotes neuronal survival after both glucose and oxygen deprivation/reoxygenation (OGD/R) and cerebral I/R injury, and knockdown of SETD3 increases OGD/R-induced neuronal death. We further show that OGD/R-induced downregulation of SETD3 leads to the decrease of cellular ATP level, the reduction of mitochondrial electric potential and the increase of ROS production, thereby promoting mitochondrial dysfunction. We found that SETD3 reduction-induced mitochondrial dysfunction is mediated by the suppression of actin polymerization after OGD/R. Furthermore, we demonstrate that I/R-induced upregulation of PTEN leads to the downregulation of SETD3, and suppressing PTEN protects against ischemic neuronal death through downregulation of SETD3 and enhancement of actin polymerization. Together, this study provides the first evidence suggesting that I/R-induced downregulation of SETD3 mediates PTEN upregulation-induced ischemic neuronal death through downregulation of SETD3 and subsequent suppression of actin polymerization. Thus, upregulating SETD3 is a potential approach for the development of ischemic stroke therapy.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yu Cui
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Congqin Li
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yuyang Wang
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jing Cheng
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, 430071, China
| | - Songfeng Chen
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, 430071, China
| | - Jiangdong Sun
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Jinyang Ren
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Xujin Yao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Xiaohong Huang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, 266071, China
| | - Qiang Wang
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
6
|
Hintzen JCJ, Moesgaard L, Kwiatkowski S, Drozak J, Kongsted J, Mecinović J. β-Actin Peptide-Based Inhibitors of Histidine Methyltransferase SETD3. ChemMedChem 2021; 16:2695-2702. [PMID: 34032009 DOI: 10.1002/cmdc.202100296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Indexed: 12/14/2022]
Abstract
SETD3 was recently identified as the histidine methyltransferase responsible for N3 -methylation of His73 of β-actin in humans. Overexpression of SETD3 is associated with several diseases, including breast cancer. Here, we report a development of actin-based peptidomimetics as inhibitors of recombinantly expressed human SETD3. Substitution of His73 by simple natural and unnatural amino acids led to selected β-actin peptides with high potency against SETD3 in MALDI-TOF MS assays. The selenomethionine-containing β-actin peptide was found to be the most potent SETD3 inhibitor (IC50 =161 nM). Supporting our inhibition assays, a combination of computational docking and molecular dynamics simulations revealed that the His73 binding pocket for β-actin in SETD3 is rigid and accommodates the inhibitor peptides with similar binding modes. Collectively, our work demonstrates that actin-based peptidomimetics can act as potent SETD3 inhibitors and provide a basis for further development of highly potent and selective inhibitors of SETD3.
Collapse
Affiliation(s)
- Jordi C J Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Laust Moesgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Sebastian Kwiatkowski
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jakub Drozak
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|