1
|
Roberts BJ, Mattei AE, Howard KE, Weaver JL, Liu H, Lelias S, Martin WD, Verthelyi D, Pang E, Edwards KJ, De Groot AS. Assessing the immunogenicity risk of salmon calcitonin peptide impurities using in silico and in vitro methods. Front Pharmacol 2024; 15:1363139. [PMID: 39185315 PMCID: PMC11341359 DOI: 10.3389/fphar.2024.1363139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/10/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in synthetic peptide synthesis have enabled rapid and cost-effective peptide drug manufacturing. For this reason, peptide drugs that were first produced using recombinant DNA (rDNA) technology are now being produced using solid- and liquid-phase peptide synthesis. While peptide synthesis has some advantages over rDNA expression methods, new peptide-related impurities that differ from the active pharmaceutical ingredient (API) may be generated during synthesis. These impurity byproducts of the original peptide sequence feature amino acid insertions, deletions, and side-chain modifications that may alter the immunogenicity risk profile of the drug product. Impurities resulting from synthesis have become the special focus of regulatory review and approval for human use, as outlined in the FDA's Center for Drug Evaluation and Research guidance document, "ANDAs for Certain Highly Purified Synthetic Peptide Drug Products That Refer to Listed Drugs of rDNA Origin," published in 2021. This case study illustrates how in silico and in vitro methods can be applied to assess the immunogenicity risk of impurities that may be present in synthetic generic versions of the salmon calcitonin (SCT) drug product. Sponsors of generic drug abbreviated new drug applications (ANDAs) should consider careful control of these impurities (for example, keeping the concentration of the immunogenic impurities below the cut-off recommended by FDA regulators). Twenty example SCT impurities were analyzed using in silico tools and assessed as having slightly more or less immunogenic risk potential relative to the SCT API peptide. Class II human leukocyte antigen (HLA)-binding assays provided independent confirmation that a 9-mer sequence present in the C-terminus of SCT binds promiscuously to multiple HLA DR alleles, while T-cell assays confirmed the expected T-cell responses to SCT and selected impurities. In silico analysis combined with in vitro assays that directly compare the API to each individual impurity peptide may be a useful approach for assessing the potential immunogenic risk posed by peptide impurities that are present in generic drug products.
Collapse
Affiliation(s)
| | | | - Kristina E. Howard
- Division of Applied Regulatory Sciences, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - James L. Weaver
- Division of Applied Regulatory Sciences, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Hao Liu
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | | | | | - Daniela Verthelyi
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Eric Pang
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | | | | |
Collapse
|
2
|
Javidan M, Amiri AM, Koohi N, Joudaki N, Bashirrohelleh MA, Pirsadeghi A, Biregani AF, Rashno M, Dehcheshmeh MG, Sharifat M, Khodadadi A, Mafakher L. Restoring immune balance with Tregitopes: A new approach to treating immunological disorders. Biomed Pharmacother 2024; 177:116983. [PMID: 38908205 DOI: 10.1016/j.biopha.2024.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
The induction of immunological tolerance is a promising strategy for managing autoimmune diseases, allergies, and transplant rejection. Tregitopes, a class of peptides, have emerged as potential agents for this purpose. They activate regulatory T cells, which are pivotal in reducing inflammation and promoting tolerance, by binding to MHC II molecules and facilitating their processing and presentation to Treg cells, thereby encouraging their proliferation. Moreover, Tregitopes influence the phenotype of antigen-presenting cells by attenuating the expression of CD80, CD86, and MHC class II while enhancing ILT3, resulting in the inhibition of NF-kappa B signaling pathways. Various techniques, including in vitro and in silico methods, are applied to identify Tregitope candidates. Currently, Tregitopes play a vital role in balancing immune activation and tolerance in clinical applications such as Pompe disease, diabetes-related antigens, and the prevention of spontaneous abortions in autoimmune diseases. Similarly, Tregitopes can induce antigen-specific regulatory T cells. Their anti-inflammatory effects are significant in conditions such as autoimmune encephalomyelitis, inflammatory bowel disease, and Guillain-Barré syndrome. Additionally, Tregitopes have been leveraged to enhance vaccine design and efficacy. Recent advancements in understanding the potential benefits and drawbacks of IVIG and the discovery of the function and mechanism of Tregitopes have introduced Tregitopes as a popular option for immune system modulation. It is expected that they will bring about a significant revolution in the management and treatment of autoimmune and immunological diseases. This article is a comprehensive review of Tregitopes, concluding with the potential of these epitopes as a therapeutic avenue for immunological disorders.
Collapse
Affiliation(s)
- Moslem Javidan
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohamad Amiri
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Koohi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazanin Joudaki
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Bashirrohelleh
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Pirsadeghi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Farhadi Biregani
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Moosa Sharifat
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum, and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Richard G, Ruggiero N, Steinberg GD, Martin WD, De Groot AS. Neoadjuvant personalized cancer vaccines: the final frontier? Expert Rev Vaccines 2024; 23:205-212. [PMID: 38189107 DOI: 10.1080/14760584.2024.2303015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
INTRODUCTION Clinical trials of personalized cancer vaccines have shown that on-demand therapies that are manufactured for each patient, result in activated T cell responses against individual tumor neoantigens. However, their use has been traditionally restricted to adjuvant settings and late-stage cancer therapy. There is growing support for the implementation of PCV earlier in the cancer therapy timeline, for reasons that will be discussed in this review. AREAS COVERED The efficacy of cancer vaccines may be to some extent dependent on treatment(s) given prior to vaccine administration. Tumors can undergo radical immunoediting following treatment with immunotherapies, such as checkpoint inhibitors, which may affect the presence of the very mutations targeted by cancer vaccines. This review will cover the topics of neoantigen cancer vaccines, tumor immunoediting, and therapy timing. EXPERT OPINION Therapy timing remains a critical topic to address in optimizing the efficacy of personalized cancer vaccines. Most personalized cancer vaccines are being evaluated in late-stage cancer patients and after treatment with checkpoint inhibitors, but they may offer a greater benefit to the patient if administered in earlier clinical settings, such as the neoadjuvant setting, where patients are not facing T cell exhaustion and/or a further compromised immune system.
Collapse
Affiliation(s)
| | | | - Gary D Steinberg
- EpiVax Therapeutics, Inc., Providence, RI, USA
- RUSH University, Chicago, IL, USA
| | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Miah SMS, Lelias S, Gutierrez AH, McAllister M, Boyle CM, Moise L, De Groot AS. A SARS-CoV-2 NSP7 homolog of a Treg epitope suppresses CD4+ and CD8+ T cell memory responses. Front Immunol 2023; 14:1290688. [PMID: 38124752 PMCID: PMC10731459 DOI: 10.3389/fimmu.2023.1290688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Pathogens escape host defenses by T-cell epitope mutation or deletion (immune escape) and by simulating the appearance of human T cell epitopes (immune camouflage). We identified a highly conserved, human-like T cell epitope in non-structural protein 7 (NSP7) of SARS-CoV-2, RNA-dependent RNA polymerase (RdRp) hetero-tetramer complex. Remarkably, this T cell epitope has significant homology to a T regulatory cell epitope (Tregitope) previously identified in the Fc region of human immunoglobulin G (IgG) (Tregitope 289). We hypothesized that the SARS-CoV-2 NSP7 epitope (NSP7-289) may induce suppressive responses by engaging and activating pre-existing regulatory T cells. We therefore compared NSP7-289 and IgG Tregitopes (289 and 289z, a shorter version of 289 that isolates the shared NSP7 epitope) in vitro. Tregitope peptides 289, 289z and NSP7-289 bound to multiple HLA-DRB1 alleles in vitro and suppressed CD4+ and CD8+ T cell memory responses. Identification and in vitro validation of SARS-CoV-2 NSP7-289 provides further evidence of immune camouflage and suggests that pathogens can use human-like epitopes to evade immune response and potentially enhance host tolerance. Further exploration of the role of cross-conserved Tregs in human immune responses to pathogens such as SARS-CoV-2 is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anne S. De Groot
- EpiVax, Inc., Providence, RI, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
De Groot AS, Khan S, Mattei AE, Lelias S, Martin WD. Does human homology reduce the potential immunogenicity of non-antibody scaffolds? Front Immunol 2023; 14:1215939. [PMID: 38022550 PMCID: PMC10664710 DOI: 10.3389/fimmu.2023.1215939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Biologics developers are moving beyond antibodies for delivery of a wide range of therapeutic interventions. These non-antibody modalities are often based on 'natural' protein scaffolds that are modified to deliver bioactive sequences. Both human-derived and non-human-sourced scaffold proteins have been developed. New types of "non-antibody" scaffolds are still being discovered, as they offer attractive alternatives to monoclonals due to their smaller size, improved stability, and ease of synthesis. They are believed to have low immunogenic potential. However, while several human-sourced protein scaffolds have not been immunogenic in clinical studies, this may not predict their overall performance in other therapeutic applications. A preliminary evaluation of their potential for immunogenicity is warranted. Immunogenicity risk potential has been clearly linked to the presence of T "helper" epitopes in the sequence of biologic therapeutics. In addition, tolerogenic epitopes are present in some human proteins and may decrease their immunogenic potential. While the detailed sequences of many non-antibody scaffold therapeutic candidates remain unpublished, their backbone sequences are available for review and analysis. We assessed 12 example non-antibody scaffold backbone sequences using our epitope-mapping tools (EpiMatrix) for this perspective. Based on EpiMatrix scoring, their HLA DRB1-restricted T cell epitope content appears to be lower than the average protein, and sequences that may act as tolerogenic epitopes are present in selected human-derived scaffolds. Assessing the potential immunogenicity of scaffold proteins regarding self and non-self T cell epitopes may be of use for drug developers and clinicians, as these exciting new non-antibody molecules begin to emerge from the preclinical pipeline into clinical use.
Collapse
Affiliation(s)
- Anne S. De Groot
- EpiVax, Providence, RI, United States
- University of Georgia, Center for Vaccines and Immunology, Athens, GA, United States
| | | | | | | | | |
Collapse
|
6
|
De Groot AS, Roberts BJ, Mattei A, Lelias S, Boyle C, Martin WD. Immunogenicity risk assessment of synthetic peptide drugs and their impurities. Drug Discov Today 2023; 28:103714. [PMID: 37467878 DOI: 10.1016/j.drudis.2023.103714] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Peptide drugs play an important part in medicine owing to their many therapeutic applications. Of the 80 peptide drugs approved for use in humans, at least five are now off-patent and are consequently being developed as generic alternatives to the originator products. To accelerate access to generic products, the FDA has proposed new regulatory pathways that do not require direct comparisons of generics to originators in clinical trials. The 'Abbreviated New Drug Application' (ANDA) pathway recommends that sponsors provide information on any new impurities in the generic drug, compared with the originator product, because the impurities can have potential to elicit unwanted immune responses owing to the introduction of T-cell epitopes. This review describes how peptide drug impurities can elicit unexpected immunogenicity and describes a framework for performing immunogenicity risk assessment of all types of bioactive peptide products. Although this report primarily focuses on generic peptides and their impurities, the approach might also be of interest for developers of novel peptide drugs who are preparing their products for an initial regulatory review.
Collapse
Affiliation(s)
- Anne S De Groot
- EpiVax, 188 Valley Street, Suite 424, Providence, RI, USA; University of Georgia, Center for Vaccines and Immunology, Athens, GA USA.
| | | | - Aimee Mattei
- EpiVax, 188 Valley Street, Suite 424, Providence, RI, USA
| | - Sandra Lelias
- EpiVax, 188 Valley Street, Suite 424, Providence, RI, USA
| | | | | |
Collapse
|
7
|
Haltaufderhyde K, Roberts BJ, Khan S, Terry F, Boyle CM, McAllister M, Martin W, Rosenberg A, De Groot AS. Immunoinformatic Risk Assessment of Host Cell Proteins During Process Development for Biologic Therapeutics. AAPS J 2023; 25:87. [PMID: 37697150 DOI: 10.1208/s12248-023-00852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023] Open
Abstract
The identification and removal of host cell proteins (HCPs) from biologic products is a critical step in drug development. Despite recent improvements to purification processes, biologics such as monoclonal antibodies, enzyme replacement therapies, and vaccines that are manufactured in a range of cell lines and purified using diverse processes may contain HCP impurities, making it necessary for developers to identify and quantify impurities during process development for each drug product. HCPs that contain sequences that are less conserved with human homologs may be more immunogenic than those that are more conserved. We have developed a computational tool, ISPRI-HCP, that estimates the immunogenic potential of HCP sequences by evaluating and quantifying T cell epitope density and relative conservation with similar T cell epitopes in the human proteome. Here we describe several case studies that support the use of this method for classifying candidate HCP impurities according to their immunogenicity risk.
Collapse
Affiliation(s)
| | - Brian J Roberts
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | - Sundos Khan
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | - Frances Terry
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | | | | | - William Martin
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | - Amy Rosenberg
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | - Anne S De Groot
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA.
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
8
|
Novel Strategy for Alzheimer’s Disease Treatment through Oral Vaccine Therapy with Amyloid Beta. Biologics 2023. [DOI: 10.3390/biologics3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer’s disease (AD) is a neuropathology characterized by progressive cognitive impairment and dementia. The disease is attributed to senile plaques, which are aggregates of amyloid beta (Aβ) outside nerve cells; neurofibrillary tangles, which are filamentous accumulations of phosphorylated tau in nerve cells; and loss of neurons in the brain tissue. Immunization of an AD mouse model with Aβ-eliminated pre-existing senile plaque amyloids and prevented new accumulation. Furthermore, its effect showed that cognitive function can be improved by passive immunity without side effects, such as lymphocyte infiltration in AD model mice treated with vaccine therapy, indicating the possibility of vaccine therapy for AD. Further, considering the possibility of side effects due to direct administration of Aβ, the practical use of the safe oral vaccine, which expressed Aβ in plants, is expected. Indeed, administration of this oral vaccine to Alzheimer’s model mice reduced Aβ accumulation in the brain. Moreover, almost no expression of inflammatory IgG was observed. Therefore, vaccination prior to Aβ accumulation or at an early stage of accumulation may prevent Aβ from causing AD.
Collapse
|
9
|
Antunes A, Alvarez-Vallina L, Bertoglio F, Bouquin N, Cornen S, Duffieux F, Ferré P, Gillet R, Jorgensen C, Leick MB, Maillère B, Negre H, Pelegrin M, Poirier N, Reusch D, Robert B, Serre G, Vicari A, Villalba M, Volpers C, Vuddamalay G, Watier H, Wurch T, Zabeau L, Zielonka S, Zhang B, Beck A, Martineau P. 10th antibody industrial symposium: new developments in antibody and adoptive cell therapies. MAbs 2023; 15:2211692. [PMID: 37184206 DOI: 10.1080/19420862.2023.2211692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The annual "Antibody Industrial Symposium", co-organized by LabEx MAbImprove and MabDesign, held its 10th anniversary edition in Montpellier, France, on June 28-29, 2022. The meeting focused on new results and concepts in antibody engineering (naked, mono- or multi-specific, conjugated to drugs or radioelements) and also on new cell-based therapies, such as chimeric antigenic receptor (CAR)-T cells. The symposium, which brought together scientists from academia and industry, also addressed issues concerning the production of these molecules and cells, and the necessary steps to ensure a strong intellectual property protection of these new molecules and approaches. These two days of exchanges allowed a rich discussion among the various actors in the field of therapeutic antibodies.
Collapse
Affiliation(s)
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- H120-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Federico Bertoglio
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Braunschweig, Germany, Current address
| | | | | | | | | | | | - Christian Jorgensen
- IRMB, université de Montpellier, Inserm U1183, Montpellier, France
- Unité d'immunologie clinique et de thérapeutique des maladies ostéoarticulaires, département de rhumatologie, hôpital Lapeyronie, Montpellier, France
| | - Mark B Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bernard Maillère
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Hélène Negre
- Institut de Recherches Internationales Servier, Suresnes, France
| | | | | | - Dietmar Reusch
- Pharma Technical Development Analytics Biologics, Roche Diagnostics GmbH, Penzberg, Germany
| | - Bruno Robert
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, Montpellier, France
| | - Guy Serre
- Institut Toulousain des maladies infectieuses et inflammatoires - INFINITY- Inserm, CNRS, Université Toulouse III, Toulouse, France
| | - Alain Vicari
- Calypso Biotech SA, Plan-les-Ouates, Switzerland
| | | | | | | | - Hervé Watier
- CEPR, INSERM U1100 Université de Tours, et CHU de Tours, Tours cedex, France
| | | | | | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Alain Beck
- Biologics CMC & Developability, Institut de Recherche Pierre Fabre, St Julien-en-Genevois Cedex, France
| | - Pierre Martineau
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, Montpellier, France
| |
Collapse
|
10
|
Richard G, Princiotta MF, Bridon D, Martin WD, Steinberg GD, De Groot AS. Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy. Expert Rev Vaccines 2021; 21:173-184. [PMID: 34882038 DOI: 10.1080/14760584.2022.2012456] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The field of cancer therapy has undergone a major transformation in less than a decade due to the introduction of checkpoint inhibitors, the advent of next generation sequencing and the discovery of neoantigens. The key observation that the breadth of each patient's immune response to the unique mutations or neoantigens present in their tumor is directly related to their survival has led oncologists to focus on driving immune responses to neoantigens through vaccination. Oncology has entered the era of precision immunotherapy, and cancer vaccine development is undergoing a paradigm shift. AREAS COVERED Neoantigens are short peptide sequences found in tumors, but not noncancerous tissues, the vast majority of which are unique to each patient. In addition to providing a description of the distinguishing features of neoantigen discovery platforms, this review will address cross-cutting personalized cancer vaccine design themes and developmental stumbling blocks. EXPERT OPINION Immunoinformatic pipelines that can rapidly scan cancer genomes and identify 'the best' neoantigens are in high demand. Despite the need for such tools, immunoinformatic methods for identifying neoepitopes in cancer genomes are diverse and have not been well-validated. Validation of 'personalized vaccine design pipelines' will bring about a revolution in neoantigen-based vaccine design and delivery.
Collapse
Affiliation(s)
| | | | | | | | - Gary D Steinberg
- EpiVax Therapeutics, Inc., Providence, RI, USA.,Perlmutter Cancer Center, Department of Urology at NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
CD91 Derived Treg Epitope Modulates Regulatory T Lymphocyte Response, Regulates Expression of Costimulatory Molecules on Antigen-Presenting Cells, and Rescues Pregnancy in Mouse Pregnancy Loss Model. Int J Mol Sci 2021; 22:ijms22147296. [PMID: 34298914 PMCID: PMC8304956 DOI: 10.3390/ijms22147296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
The loss of immune tolerance to fetal antigens may result in reproductive failure. The downregulated number and activity of T regulatory lymphocytes, which are critical for the establishment of immune tolerance to fetal antigens, during pregnancy may lead to miscarriage. The adoptive transfer of Tregs prevents fetal loss in abortion-prone mice. Recently, we demonstrated that the administration of tregitopes, which are short peptides found in human and mouse immunoglobulins (IgGs), decreased the incidence of abortions in female CBA/J mice mated with DBA/2J mice. Here, two non-IgG source peptides (SGS and LKD) that can potentially bind to the major histocompatibility complex II (MHC II) with high affinity and induce Treg expansion were designed in silico. The immune dysregulation-induced pregnancy failure mouse model was used to evaluate the effect of SGS and LKD on immune response and pregnancy outcome. The fetal death rate in the SGS-treated group was lower than that in the phosphate-buffered saline-treated group. SGS and LKD upregulated the splenic pool of Tregs and modulated the T-helper cell (Th1)/Th2-related cytokine response at the preimplantation stage. Additionally, SGS and LKD downregulated the expression of CD80 and MHC class II molecules in splenic CD11c+ antigen-presenting cells. Thus, SGS treatment can result in beneficial pregnancy outcomes. Additionally, SGS peptide-mediated immunomodulation can be a potential therapeutic strategy for immune dysregulation-induced pregnancy failure.
Collapse
|
12
|
De Groot AS, Desai AK, Lelias S, Miah SMS, Terry FE, Khan S, Li C, Yi JS, Ardito M, Martin WD, Kishnani PS. Immune Tolerance-Adjusted Personalized Immunogenicity Prediction for Pompe Disease. Front Immunol 2021; 12:636731. [PMID: 34220802 PMCID: PMC8242953 DOI: 10.3389/fimmu.2021.636731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Infantile-onset Pompe disease (IOPD) is a glycogen storage disease caused by a deficiency of acid alpha-glucosidase (GAA). Treatment with recombinant human GAA (rhGAA, alglucosidase alfa) enzyme replacement therapy (ERT) significantly improves clinical outcomes; however, many IOPD children treated with rhGAA develop anti-drug antibodies (ADA) that render the therapy ineffective. Antibodies to rhGAA are driven by T cell responses to sequences in rhGAA that differ from the individuals' native GAA (nGAA). The goal of this study was to develop a tool for personalized immunogenicity risk assessment (PIMA) that quantifies T cell epitopes that differ between nGAA and rhGAA using information about an individual's native GAA gene and their HLA DR haplotype, and to use this information to predict the risk of developing ADA. Four versions of PIMA have been developed. They use EpiMatrix, a computational tool for T cell epitope identification, combined with an HLA-restricted epitope-specific scoring feature (iTEM), to assess ADA risk. One version of PIMA also integrates JanusMatrix, a Treg epitope prediction tool to identify putative immunomodulatory (regulatory) T cell epitopes in self-proteins. Using the JanusMatrix-adjusted version of PIMA in a logistic regression model with data from 48 cross-reactive immunological material (CRIM)-positive IOPD subjects, those with scores greater than 10 were 4-fold more likely to develop ADA (p<0.03) than those that had scores less than 10. We also confirmed the hypothesis that some GAA epitopes are immunomodulatory. Twenty-one epitopes were tested, of which four were determined to have an immunomodulatory effect on T effector response in vitro. The implementation of PIMA V3J on a secure-access website would allow clinicians to input the individual HLA DR haplotype of their IOPD patient and the GAA pathogenic variants associated with each GAA allele to calculate the patient's relative risk of developing ADA, enhancing clinical decision-making prior to initiating treatment with ERT. A better understanding of immunogenicity risk will allow the implementation of targeted immunomodulatory approaches in ERT-naïve settings, especially in CRIM-positive patients, which may in turn improve the overall clinical outcomes by minimizing the development of ADA. The PIMA approach may also be useful for other types of enzyme or factor replacement therapies.
Collapse
Affiliation(s)
- Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ankit K Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | | | | | | | | | - Cindy Li
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - John S Yi
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | | | | | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|