1
|
Jiang J, Yang M, Yang B, Wu H, Lu Q. Elevated IL-15 levels in systemic lupus erythematosus: potential pathogenesis insight and therapeutic target. Int Immunopharmacol 2024; 142:112973. [PMID: 39217881 DOI: 10.1016/j.intimp.2024.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by persistent immune cell activation and the overproduction of autoantibodies, affecting various organs such as joints, kidneys, and skin. Interleukin-15 (IL-15) is a pleiotropic cytokine that modulates immune cells of the innate and adaptive immune systems, playing a crucial role in the development of inflammatory and protective immune responses. However, the role of IL-15 in SLE pathogenesis and the therapeutic effects of IL-15 blockade on SLE remain unknown. In this study, we conducted flow cytometry analysis and identified a significant increase in the frequencies of IL-15+ and IL-15R+ cells in peripheral blood CD4+ T cells, CD8+ T cells, dendritic cells (DCs), monocytes, and natural killer (NK) cells of patients with SLE compared to healthy controls (HCs). Besides, we found elevated levels of serum IL-15 in SLE patients compared to HCs. Furthermore, we evaluted the effectiveness of IL-15 mAb treatment in a chronic graft-versus-host disease (cGVHD) mouse model of SLE. We observed that the IL-15 mAb treatment effectively reduced the frequencies of CD4+CD44hiCD62LloPD-1+CD153+ senescent CD4+ T cells, B220+CD11c+T-bet+ age-associated B cells (ABCs), Tfh cells, and germinal center (GC) B cells, alleviated lupus-associated manifestations such as serum anti-double-stranded DNA antibody (anti-dsDNA) and kidney injury in the SLE mouse model of cGVHD. These findings provide compelling preclinical evidence suggesting the pathogenic role of IL-15 in SLE and the therapeutic potential of IL-15 blockade in the treatment of SLE.
Collapse
Affiliation(s)
- Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bingyi Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Zhou P, Liu W, Ma J. Roles of Menin in T cell differentiation and function: Current knowledge and perspectives. Immunology 2024; 173:258-273. [PMID: 39011567 DOI: 10.1111/imm.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
The commitment to specific T lymphocytes (T cell) lineages is governed by distinct transcription factors, whose expression is modulated through epigenetic mechanisms. Unravelling these epigenetic mechanisms that regulate T cell differentiation and function holds significant importance for understanding T cells. Menin, a multifunctional scaffolding protein, is implicated in various cellular processes, such as cell proliferation, cell cycle control, DNA repair and transcriptional regulation, primarily through epigenetic mechanisms. Existing research indicates Menin's impact on T cell differentiation and function, while a comprehensive and systematic review is currently lacking to consolidate these findings. In the current review, we have highlighted recent studies on the role of Menin in T cell differentiation and function, focusing mainly on its impact on the memory Th2 maintenance, Th17 differentiation and maintenance, CD4+ T cell senescence, and effector CD8+ T cell survival. Considering Menin's crucial function in maintaining effector T cell function, the potential of inhibiting Menin activity in mitigating inflammatory diseases associated with excessive T cell activation has also been emphasised.
Collapse
Affiliation(s)
- Pingping Zhou
- Department of Immunology, Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Weiru Liu
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Ma
- Department of Immunology, Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Yu L, Liu P. cGAS/STING signalling pathway in senescence and oncogenesis. Semin Cancer Biol 2024; 106-107:87-102. [PMID: 39222763 DOI: 10.1016/j.semcancer.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The cGAS/STING signaling pathway is a crucial component of the innate immune system, playing significant roles in sensing cytosolic DNA, regulating cellular senescence, and contributing to oncogenesis. Recent advances have shed new lights into the molecular mechanisms governing pathway activation in multiple pathophysiological settings, the indispensable roles of cGAS/STING signaling in cellular senescence, and its context-dependent roles in cancer development and suppression. This review summarizes current knowledge related to the biology of cGAS/STING signaling pathway and its participations into senescence and oncogenesis. We further explore the clinical implications and therapeutic potential for cGAS/STING targeted therapies, and faced challenges in the field. With a focus on molecular mechanisms and emerging pharmacological targets, this review underscores the importance of future studies to harness the therapeutic potential of the cGAS/STING pathway in treating senescence-related disorders and cancer. Advanced understanding of the regulatory mechanisms of cGAS/STING signaling, along with the associated deregulations in diseases, combined with the development of new classes of cGAS/STING modulators, hold great promises for creating novel and effective therapeutic strategies. These advancements could address current treatment challenges and unlock the full potential of cGAS/STING in treating senescence-related disorders and oncogenesis.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Huang M, Wang Y, Fang L, Liu C, Feng F, Liu L, Sun C. T cell senescence: a new perspective on immunotherapy in lung cancer. Front Immunol 2024; 15:1338680. [PMID: 38415245 PMCID: PMC10896971 DOI: 10.3389/fimmu.2024.1338680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
T cell senescence is an indication of T cell dysfunction. The ability of senescent T cells to respond to cognate antigens is reduced and they are in the late stage of differentiation and proliferation; therefore, they cannot recognize and eliminate tumor cells in a timely and effective manner, leading to the formation of the suppressive tumor microenvironment. Establishing methods to reverse T cell senescence is particularly important for immunotherapy. Aging exacerbates profound changes in the immune system, leading to increased susceptibility to chronic, infectious, and autoimmune diseases. Patients with malignant lung tumors have impaired immune function with a high risk of recurrence, metastasis, and mortality. Immunotherapy based on PD-1, PD-L1, CTLA-4, and other immune checkpoints is promising for treating lung malignancies. However, T cell senescence can lead to low efficacy or unsuccessful treatment results in some immunotherapies. Efficiently blocking and reversing T cell senescence is a key goal of the enhancement of tumor immunotherapy. This study discusses the characteristics, mechanism, and expression of T cell senescence in malignant lung tumors and the treatment strategies.
Collapse
Affiliation(s)
- Mengge Huang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuetong Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liguang Fang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
5
|
Rithvik A, Samarpita S, Rasool M. Unleashing the pathological imprinting of cancer in autoimmunity: Is ZEB1 the answer? Life Sci 2023; 332:122115. [PMID: 37739160 DOI: 10.1016/j.lfs.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India
| | - Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India.
| |
Collapse
|
6
|
Martyshkina YS, Tereshchenko VP, Bogdanova DA, Rybtsov SA. Reliable Hallmarks and Biomarkers of Senescent Lymphocytes. Int J Mol Sci 2023; 24:15653. [PMID: 37958640 PMCID: PMC10647376 DOI: 10.3390/ijms242115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The phenomenon of accumulation of senescent adaptive immunity cells in the elderly is attracting attention due to the increasing risk of global epidemics and aging of the global population. Elderly people are predisposed to various infectious and age-related diseases and are at higher risk of vaccination failure. The accumulation of senescent cells increases age-related background inflammation, "Inflammaging", causing lymphocyte exhaustion and cardiovascular, neurodegenerative, autoimmune and cancer diseases. Here, we present a comprehensive contemporary review of the mechanisms and phenotype of senescence in the adaptive immune system. Although modern research has not yet identified specific markers of aging lymphocytes, several sets of markers facilitate the separation of the aging population based on normal memory and exhausted cells for further genetic and functional analysis. The reasons for the higher predisposition of CD8+ T-lymphocytes to senescence compared to the CD4+ population are also discussed. We point out approaches for senescent-lymphocyte-targeting markers using small molecules (senolytics), antibodies and immunization against senescent cells. The suppression of immune senescence is the most relevant area of research aimed at developing anti-aging and anti-cancer therapy for prolonging the lifespan of the global population.
Collapse
Affiliation(s)
- Yuliya S. Martyshkina
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Valeriy P. Tereshchenko
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| | - Daria A. Bogdanova
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Stanislav A. Rybtsov
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| |
Collapse
|
7
|
Fragoulis GE, Vetsika EK, Kyriakidi M, Verrou KM, Kollias G, Tektonidou MG, Mcinnes IB, Sfikakis PP. Distinct innate and adaptive immunity phenotypic profile at the circulating single-cell level in Psoriatic Arthritis. Clin Immunol 2023:109679. [PMID: 37336253 DOI: 10.1016/j.clim.2023.109679] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Mass cytometry was employed to investigate 47 circulating leukocyte subsets in patients with active psoriatic arthritis (PsA, n = 16) compared to healthy controls (n = 13), seropositive (RF and/or anti-CCP, n = 12) and seronegative (n = 9) RA patients. Comparing PsA to controls, different cell frequencies were found in both innate and adaptive immunity cell subsets, as well as in cells bridging innate and adaptive immunity. In some T-cell subsets increased costimulatory molecules' expression in PsA, was also noted..No changes were observed in patients who remained disease-active after 3 months of treatment, in contrast to those who achieved remission/low-disease activity. Comparing PsA to seropositive RA, elevated frequencies of naïve and activated CD8+ T-cells, B-cells, MAIT/iNKT and ILCs were found, while the opposite was the case for terminal effector, senescent, and Th2-like-cells. Strikingly, the composition of the leukocyte pool in PsA was comparable to seronegative RA, providing evidence for the pathogenetic similarities between these two entities.
Collapse
Affiliation(s)
- George E Fragoulis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece; School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| | - Eleni-Kyriaki Vetsika
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Kyriakidi
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Kleio-Maria Verrou
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Kollias
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Iain B Mcinnes
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece; Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
8
|
Lee H, Wilson D, Bunting KV, Kotecha D, Jackson T. Repurposing digoxin for geroprotection in patients with frailty and multimorbidity. Ageing Res Rev 2023; 86:101860. [PMID: 36682465 DOI: 10.1016/j.arr.2023.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/22/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
The geroscience hypothesis proposes biological hallmarks of ageing are modifiable. Increasing evidence supports targeting these hallmarks with therapeutics could prevent and ameliorate age-related conditions - collectively termed "geroprotector drugs". Cellular senescence is a hallmark with considerable potential to be modified with geroprotector drugs. Senotherapeutics are drugs that target cellular senescence for therapeutic benefit. Repurposing commonly used medications with secondary geroprotector properties is a strategy of interest to promote incorporation of geroprotector drugs into clinical practice. One candidate is the cardiac glycoside digoxin. Evidence in mouse models of pulmonary fibrosis, Alzheimer's disease, arthritis and atherosclerosis support digoxin as a senotherapeutic agent. Proposed senolytic mechanisms are upregulation of intrinsic apoptotic pathways and promoting intracellular acidification. Digoxin also appears to have a senomorphic mechanism - altering the T cell pool to ameliorate pro-inflammatory SASP. Despite being widely prescribed to treat atrial fibrillation and heart failure, often in multimorbid older adults, it is not known whether digoxin exerts senotherapeutic effects in humans. Further cellular and animal studies, and ultimately clinical trials with participation of pre-frail older adults, are required to identify whether digoxin has senotherapeutic effect at low dose. This paper reviews the biological mechanisms identified in preliminary cellular and animal studies that support repurposing digoxin as a geroprotector in patients with frailty and multimorbidity.
Collapse
Affiliation(s)
- Helena Lee
- Institute of Inflammation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WD, UK.
| | - Daisy Wilson
- Institute of Inflammation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WD, UK
| | - Karina V Bunting
- Institute of Cardiovascular Sciences, University of Birmingham, Medical School, Vincent Drive, Birmingham B15 2TT, UK; University Hospitals Birmingham NHS Foundation Trust, Institute of Translational Medicine, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2GW, UK
| | - Dipak Kotecha
- Institute of Cardiovascular Sciences, University of Birmingham, Medical School, Vincent Drive, Birmingham B15 2TT, UK; University Hospitals Birmingham NHS Foundation Trust, Institute of Translational Medicine, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2GW, UK
| | - Thomas Jackson
- Institute of Inflammation and Ageing, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WD, UK
| |
Collapse
|