1
|
Liu C, Li H, Hu X, Yan M, Fu Z, Zhang H, Wang Y, Du N. Spermine Synthase : A Potential Prognostic Marker for Lower-Grade Gliomas. J Korean Neurosurg Soc 2025; 68:75-96. [PMID: 39492653 PMCID: PMC11725456 DOI: 10.3340/jkns.2024.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE The objective of this study was to assess the relationship between spermine synthase (SMS) expression, tumor occurrence, and prognosis in lower-grade gliomas (LGGs). METHODS A total of 523 LGG patients and 1152 normal brain tissues were included as controls. Mann-Whitney U test was performed to evaluate SMS expression in the LGG group. Functional annotation analysis was conducted to explore the biological processes associated with high SMS expression. Immune cell infiltration analysis was performed to examine the correlation between SMS expression and immune cell types. The association between SMS expression and clinical and pathological features was assessed using Spearman correlation analysis. In vitro experiments were conducted to investigate the effects of overexpressing or downregulating SMS on cell proliferation, apoptosis, migration, invasion, and key proteins in the protein kinase B (AKT)/epithelialmesenchymal transition signaling pathway. RESULTS The study revealed a significant upregulation of SMS expression in LGGs compared to normal brain tissues. High SMS expression was associated with certain clinical and pathological features, including older age, astrocytoma, higher World Health Organization grade, poor disease-specific survival, disease progression, non-1p/19q codeletion, and wild-type isocitrate dehydrogenase. Cox regression analysis identified SMS as a risk factor for overall survival. Bioinformatics analysis showed enrichment of eosinophils, T cells, and macrophages in LGG samples, while proportions of dendritic (DC) cells, plasmacytoid DC (pDC) cells, and CD8+ T cells were decreased. CONCLUSION High SMS expression in LGGs may promote tumor occurrence through cellular proliferation and modulation of immune cell infiltration. These findings suggest the prognostic value of SMS in predicting clinical outcomes for LGG patients.
Collapse
Affiliation(s)
- Chen Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongqi Li
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Xiaolong Hu
- Department of Radiation Oncology, Beijing Geriatric Hospital, Beijing, China
| | - Maohui Yan
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Zhiguang Fu
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Hengheng Zhang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Yingjie Wang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, PLA, Beijing, China
| | - Nan Du
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Chen Y, Dai S, Cheng CS, Chen L. Lenvatinib and immune-checkpoint inhibitors in hepatocellular carcinoma: mechanistic insights, clinical efficacy, and future perspectives. J Hematol Oncol 2024; 17:130. [PMID: 39709431 DOI: 10.1186/s13045-024-01647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Lenvatinib is a multi-target tyrosine kinase inhibitor widely used in the treatment of hepatocellular carcinoma (HCC). Its primary mechanism of action involves inhibiting signal pathways such as vascular endothelial growth factor receptors (VEGFR) and fibroblast growth factor receptors (FGFR), thereby reducing tumor cell proliferation and angiogenesis and affecting the tumor's immune microenvironment. In the treatment of liver cancer, although lenvatinib monotherapy has shown good clinical effect, the problem of drug resistance is becoming more and more serious. This resistance may be caused by a variety of factors, including genetic mutations, signaling pathway remodeling, and changes in the tumor microenvironment. In order to overcome drug resistance, the combination of lenvatinib and other therapeutic strategies has gradually become a research hotspot, and it is worth noting that the combination of lenvatinib and immune checkpoint inhibitors (ICIs) has shown a good application prospect. This combination not only enhances the anti-tumor immune response but also helps improve therapeutic efficacy. However, combination therapy also faces challenges regarding safety and tolerability. Therefore, studying the mechanisms of resistance and identifying relevant biomarkers is particularly important, as it aids in early diagnosis and personalized treatment. This article reviews the mechanisms of lenvatinib in treating liver cancer, the mechanisms and efficacy of its combination with immune checkpoint inhibitors, the causes of resistance, the exploration of biomarkers, and other novel combination therapy strategies for lenvatinib. We hope to provide insights into the use and research of lenvatinib in clinical and scientific settings, offering new strategies for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yuhang Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, China
| | - Suoyi Dai
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, China.
| | - Lianyu Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, China.
| |
Collapse
|
3
|
Ye G, Ye M, Jin X. Roles of clinical application of lenvatinib and its resistance mechanism in advanced hepatocellular carcinoma (Review). Am J Cancer Res 2024; 14:4113-4171. [PMID: 39417171 PMCID: PMC11477829 DOI: 10.62347/ujvp4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Lenvatinib (LEN) is a multi-target TKI, which plays a pivotal role in the treatment of advanced hepatocellular carcinoma (HCC). The inevitable occurrence of drug resistance still prevents curative potential and is deleterious for the prognosis, and a growing body of studies is accumulating, which have devoted themselves to unveiling its underlying resistance mechanism and made some progress. The dysregulation of crucial signaling pathways, non-coding RNA and RNA modifications were proven to be associated with LEN resistance. A range of drugs were found to influence LEN therapeutic efficacy. In addition, the superiority of LEN combination therapy has been shown to potentially overcome the limitations of LEN monotherapy in a series of research, and a range of promising indicators for predicting treatment response and prognosis have been discovered in recent years. In this review, we summarize the latest developments in LEN resistance, the efficacy and safety of LEN combination therapy as well as associated indicators, which may provide new insight into its resistance as well as ideas in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
- Department of Radiation Oncology, Taizhou Central Hospital (Taizhou University Hospital)Taizhou 318000, Zhejiang, P. R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| |
Collapse
|
4
|
Chen J, Wu T, Yang Y. Sialylation-associated long non-coding RNA signature predicts the prognosis, tumor microenvironment, and immunotherapy and chemotherapy options in uterine corpus endometrial carcinoma. Cancer Cell Int 2024; 24:314. [PMID: 39261877 PMCID: PMC11391619 DOI: 10.1186/s12935-024-03486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Sialylation in uterine corpus endometrial carcinoma (UCEC) differs significantly from apoptotic and ferroptosis pathways. It plays a crucial role in cancer progression and immune response modulation. Exploring how sialylation affects tumor behavior and its link with long non-coding RNAs (lncRNAs) may provide new insights into UCEC prognosis and treatment. METHODS We obtained RNA transcriptome, clinical, and mutation data of UCEC samples from the TCGA database. Our approach involved developing a risk model based on the co-expression patterns of sialylation genes and lncRNAs. Prognostic lncRNAs were identified through Cox regression and further refined using LASSO analysis. To understand the biological functions and pathways of model-associated differentially expressed genes (MADEGs), we conducted enrichment analyses. We also assessed the immune infiltration status of MADEGs using eight different algorithms, which helped in evaluating the potential for immunotherapy. Additionally, we validated the expression of these lncRNAs in UCEC using cell lines and clinical samples. RESULTS We developed a UCEC risk model using five sialylation-related lncRNAs (AC004884.2, AC026202.2, LINC01579, LINC00942, SLC16A1-AS1). This model, confirmed through Cox analysis and clinical evaluation, effectively predicted patient outcomes. Survival data analysis across entire cohort, as well as within training and test groups, indicated better survival in low-risk UCEC patients. Enrichment analyses linked MADEGs to sialylation functions and cancer pathways. High-risk patients showed increased responsiveness to immune checkpoint inhibitors (ICIs), as indicated by immunological assessments. Subgroup C2 patients showed superior outcomes and a robust response to immunotherapy and chemotherapy. Notably, LINC01579, LINC00942, and SLC16A1-AS1 were significantly overexpressed in UCEC clinical tumor samples as well as in Ishikawa and HEC-1-B cell lines, compared to the normal groups. CONCLUSIONS This lncRNA signature associated with sialylation could guide prognosis, enhance the understanding of molecular mechanisms, and inform treatment strategies in UCEC. It highlights the potential for the use of ICIs and chemotherapy.
Collapse
Affiliation(s)
- Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Wu
- Department of Cardiovasology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongwen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, P. R. China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Li L, Ye R, Li Y, Pan H, Han S, Lu Y. Targeting TNFR2 for cancer immunotherapy: recent advances and future directions. J Transl Med 2024; 22:812. [PMID: 39223671 PMCID: PMC11367783 DOI: 10.1186/s12967-024-05620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is the leading cause of death worldwide, accounting for nearly 10 million deaths every year. Immune checkpoint blockade approaches have changed the therapeutic landscape for many tumor types. However, current immune checkpoint inhibitors PD-1 or CTLA-4 are far from satisfactory, due to high immune-related adverse event incident (up to 60%) and the inefficiency in cases of "cold" tumor microenvironment. TNFR2, a novel hopeful tumor immune target, was initially proposed in 2017. It not only promotes tumor cell proliferation, but also correlates with the suppressive function of Treg cells, implicating in the development of an immunosuppressive tumor microenvironment. In preclinical studies, TNFR2 antibody therapy has demonstrated efficacy alone or a potential synergistic effect when combined with classical PD-1/ CTLA-4 antibodies. The focus of this review is on the characteristics, functions, and recent advancements in TNFR2 therapy, providing a new direction for the next generation of anti-tumor alternative therapy.
Collapse
Affiliation(s)
- Linxue Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Ruiwei Ye
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Yingying Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Hanyu Pan
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Sheng Han
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| | - Yiming Lu
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| |
Collapse
|
6
|
Fan FM, Fleishman JS, Chen J, Chen ZS, Dong HH. New insights into the mechanism of resistance to lenvatinib and strategies for lenvatinib sensitization in hepatocellular carcinoma. Drug Discov Today 2024; 29:104069. [PMID: 38936692 DOI: 10.1016/j.drudis.2024.104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/04/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Lenvatinib is a multikinase inhibitor that suppresses vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor α (PDGFRα), as well as the proto-oncogenes RET and KIT. Lenvatinib has been approved by the US Food and Drug Administration (FDA) for the first-line treatment of hepatocellular carcinoma (HCC) due to its superior efficacy when compared to sorafenib. Unfortunately, the development of drug resistance to lenvatinib is becoming increasingly common. Thus, there is an urgent need to identify the factors that lead to drug resistance and ways to mitigate it. We summarize the molecular mechanisms that lead to lenvatinib resistance (LR) in HCC, which involve programmed cell death (PCD), translocation processes, and changes in the tumor microenvironment (TME), and provide strategies to reverse resistance.
Collapse
Affiliation(s)
- Fei-Mu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| | - Han-Hua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| |
Collapse
|
7
|
Qin Y, Han S, Yu Y, Qi D, Ran M, Yang M, Liu Y, Li Y, Lu L, Liu Y, Li Y. Lenvatinib in hepatocellular carcinoma: Resistance mechanisms and strategies for improved efficacy. Liver Int 2024; 44:1808-1831. [PMID: 38700443 DOI: 10.1111/liv.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent and destructive causes of cancer-related deaths worldwide, approximately 70% of patients with HCC exhibit advanced disease at diagnosis, limiting the potential for radical treatment. For such patients, lenvatinib, a long-awaited alternative to sorafenib for first-line targeted therapy, has become a key treatment. Unfortunately, despite some progress, the prognosis for advanced HCC remains poor because of drug resistance development. However, the molecular mechanisms underlying lenvatinib resistance and ways to relief drug resistance in HCC are largely unknown and lack of systematic summary; thus, this review not only aims to explore factors contributing to lenvatinib resistance in HCC, but more importantly, summary potential methods to conquer or mitigate the resistance. The results suggest that abnormal activation of pathways, drug transport, epigenetics, tumour microenvironment, cancer stem cells, regulated cell death, epithelial-mesenchymal transition, and other mechanisms are involved in the development of lenvatinib resistance in HCC and subsequent HCC progression. To improve the therapeutic outcomes of lenvatinib, inhibiting acquired resistance, combined therapies, and nano-delivery carriers may be possible approaches.
Collapse
Affiliation(s)
- Yongqing Qin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Shisong Han
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Ding Qi
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Mengnan Ran
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yunyi Li
- Department of Nephrology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| | - Yong Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong, China
| |
Collapse
|
8
|
Xiang Y, Wu J, Qin H. Advances in hepatocellular carcinoma drug resistance models. Front Med (Lausanne) 2024; 11:1437226. [PMID: 39144662 PMCID: PMC11322137 DOI: 10.3389/fmed.2024.1437226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Surgery has been the major treatment method for HCC owing to HCC's poor sensitivity to radiotherapy and chemotherapy. However, its effectiveness is limited by postoperative tumour recurrence and metastasis. Systemic therapy is applied to eliminate postoperative residual tumour cells and improve the survival of patients with advanced HCC. Recently, the emergence of various novel targeted and immunotherapeutic drugs has significantly improved the prognosis of advanced HCC. However, targeted and immunological therapies may not always produce complete and long-lasting anti-tumour responses because of tumour heterogeneity and drug resistance. Traditional and patient-derived cell lines or animal models are used to investigate the drug resistance mechanisms of HCC and identify drugs that could reverse the resistance. This study comprehensively reviewed the established methods and applications of in-vivo and in-vitro HCC drug resistance models to further understand the resistance mechanisms in HCC treatment and provide a model basis for possible individualised therapy.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Jun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Peeters F, Cappuyns S, Piqué-Gili M, Phillips G, Verslype C, Lambrechts D, Dekervel J. Applications of single-cell multi-omics in liver cancer. JHEP Rep 2024; 6:101094. [PMID: 39022385 PMCID: PMC11252522 DOI: 10.1016/j.jhepr.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 07/20/2024] Open
Abstract
Primary liver cancer, more specifically hepatocellular carcinoma (HCC), remains a significant global health problem associated with increasing incidence and mortality. Clinical, biological, and molecular heterogeneity are well-known hallmarks of cancer and HCC is considered one of the most heterogeneous tumour types, displaying substantial inter-patient, intertumoural and intratumoural variability. This heterogeneity plays a pivotal role in hepatocarcinogenesis, metastasis, relapse and drug response or resistance. Unimodal single-cell sequencing techniques have already revolutionised our understanding of the different layers of molecular hierarchy in the tumour microenvironment of HCC. By highlighting the cellular heterogeneity and the intricate interactions among cancer, immune and stromal cells before and during treatment, these techniques have contributed to a deeper comprehension of tumour clonality, hematogenous spreading and the mechanisms of action of immune checkpoint inhibitors. However, major questions remain to be elucidated, with the identification of biomarkers predicting response or resistance to immunotherapy-based regimens representing an important unmet clinical need. Although the application of single-cell multi-omics in liver cancer research has been limited thus far, a revolution of individualised care for patients with HCC will only be possible by integrating various unimodal methods into multi-omics methodologies at the single-cell resolution. In this review, we will highlight the different established single-cell sequencing techniques and explore their biological and clinical impact on liver cancer research, while casting a glance at the future role of multi-omics in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Frederik Peeters
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Sarah Cappuyns
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Marta Piqué-Gili
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gino Phillips
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Chris Verslype
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Jeroen Dekervel
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
You Q, Li R, Yao J, Zhang YC, Sui X, Xiao CC, Zhang JB, Xiao JQ, Chen HT, Li H, Zhang J, Zheng J, Yang Y. Insights into lenvatinib resistance: mechanisms, potential biomarkers, and strategies to enhance sensitivity. Med Oncol 2024; 41:75. [PMID: 38381181 DOI: 10.1007/s12032-023-02295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/28/2023] [Indexed: 02/22/2024]
Abstract
Lenvatinib is a multitargeted tyrosine kinase inhibitor capable of promoting apoptosis, suppressing angiogenesis, inhibiting tumor cell proliferation, and modulating the immune response. In multiple cancer types, lenvatinib has presented manageable safety and is currently approved as an effective first-line therapy. However, with the gradual increase in lenvatinib application, the inevitable progression of resistance to lenvatinib is becoming more prevalent. A series of recent researches have reported the mechanisms underlying the development of lenvatinib resistance in tumor therapy, which are related to the regulation of cell death or proliferation, histological transformation, metabolism, transport processes, and epigenetics. In this review, we aim to outline recent discoveries achieved in terms of the mechanisms and potential predictive biomarkers of lenvatinib resistance as well as to summarize untapped approaches available for improving the therapeutic efficacy of lenvatinib in patients with various types of cancers.
Collapse
Affiliation(s)
- Qiang You
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Rong Li
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ying-Cai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xin Sui
- Surgical ICU of the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cui-Cui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jie-Bin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia-Qi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hai-Tian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
11
|
Zhou C, Lu Z, Sun B, Yi Y, Zhang B, Wang Z, Qiu SJ. Peripheral Lymphocytes in Primary Liver Cancers: Elevated NK and CD8+ T Cells and Dysregulated Selenium Metabolism. Biomolecules 2024; 14:222. [PMID: 38397459 PMCID: PMC10886987 DOI: 10.3390/biom14020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Peripheral blood lymphocytes (PBLs), which play a pivotal role in orchestrating the immune system, garner minimal attention in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). The impact of primary liver cancers on PBLs remains unexplored. In this study, flow cytometry facilitated the quantification of cell populations, while transcriptome of PBLs was executed utilizing 10× single-cell sequencing technology. Additionally, pertinent cases were curated from the GEO database. Subsequent bioinformatics and statistical analyses were conducted utilizing R (4.2.1) software. Elevated counts of NK cells and CD8+ T cells were observed in both ICC and HCC when compared to benign liver disease (BLD). In the multivariate Cox model, NK cells and CD8+ T cells emerged as independent risk factors for recurrence-free survival. Single-cell sequencing of PBLs uncovered the downregulation of TGFβ signaling in tumor-derived CD8+ T cells. Pathway enrichment analysis, based on differential expression profiling, highlighted aberrations in selenium metabolism. Proteomic analysis of preoperative and postoperative peripheral blood samples from patients undergoing tumor resection revealed a significant upregulation of SELENBP1 and a significant downregulation of SEPP1. Primary liver cancer has a definite impact on PBLs, manifested by alterations in cellular quantities and selenoprotein metabolism.
Collapse
Affiliation(s)
- Cheng Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (C.Z.); (B.S.)
| | - Zhufeng Lu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
| | - Baoye Sun
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (C.Z.); (B.S.)
| | - Yong Yi
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (C.Z.); (B.S.)
| | - Boheng Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (C.Z.); (B.S.)
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen 361015, China
- Center for Evidence-Based Medicine, Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Zheng Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (C.Z.); (B.S.)
| | - Shuang-Jian Qiu
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (C.Z.); (B.S.)
| |
Collapse
|
12
|
Papadakos SP, Arvanitakis K, Stergiou IE, Koutsompina ML, Germanidis G, Theocharis S. γδ T Cells: A Game Changer in the Future of Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci 2024; 25:1381. [PMID: 38338658 PMCID: PMC10855397 DOI: 10.3390/ijms25031381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge with limited treatment options and a poor prognosis for advanced-stage patients. Recent advancements in cancer immunotherapy have generated significant interest in exploring novel approaches to combat HCC. One such approach involves the unique and versatile subset of T cells known as γδ T cells. γδ T cells represent a distinct subset of T lymphocytes that differ from conventional αβ T cells in terms of antigen recognition and effector functions. They play a crucial role in immunosurveillance against various malignancies, including HCC. Recent studies have demonstrated that γδ T cells can directly recognize and target HCC cells, making them an attractive candidate for immunotherapy. In this article, we aimed to explore the role exerted by γδ T cells in the context of HCC. We investigate strategies designed to maximize the therapeutic effectiveness of these cells and examine the challenges and opportunities inherent in applying these research findings to clinical practice. The potential to bring about a revolutionary shift in HCC immunotherapy by capitalizing on the unique attributes of γδ T cells offers considerable promise for enhancing patient outcomes, warranting further investigation.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.)
| | - Maria-Loukia Koutsompina
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
13
|
Li Z, Zhang Z, Fang L, Zhao J, Niu Z, Chen H, Cao G. Tumor Microenvironment Composition and Related Therapy in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:2083-2099. [PMID: 38022729 PMCID: PMC10676104 DOI: 10.2147/jhc.s436962] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Globally, primary liver cancer is the third leading cause of cancer death, and hepatocellular carcinoma (HCC) accounts for 75%-95%. The tumor microenvironment (TME), composed of the extracellular matrix, helper cells, immune cells, cytokines, chemokines, and growth factors, promotes the immune escape, invasion, and metastasis of HCC. Tumor metastasis and postoperative recurrence are the main threats to the long-term prognosis of HCC. TME-related therapies are increasingly recognized as effective treatments. Molecular-targeted therapy, immunotherapy, and their combined therapy are the main approaches. Immunotherapy, represented by immune checkpoint inhibitors (ICIs), and targeted therapy, highlighted by tyrosine kinase inhibitors (TKIs), have greatly improved the prognosis of HCC. This review focuses on the TME compositions and emerging therapeutic approaches to TME in HCC.
Collapse
Affiliation(s)
- Zishuai Li
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Zihan Zhang
- Department of Epidemiology, Tongji University School of Medicine Tongji University, Shanghai, 200120, People’s Republic of China
| | - Letian Fang
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Jiayi Zhao
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Zheyun Niu
- Department of Epidemiology, Tongji University School of Medicine Tongji University, Shanghai, 200120, People’s Republic of China
| | - Hongsen Chen
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, People’s Republic of China
| | - Guangwen Cao
- Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Shanghai Key Laboratory of Medical Bioprotection, Second Military Medical University, Shanghai, 200433, People’s Republic of China
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|