1
|
Hazukova R, Rezacova M, Pleskot M, Zadak Z, Cermakova E, Taborsky M. DNA damage and arterial hypertension. A systematic review and meta-analysis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024; 168:15-24. [PMID: 37916467 DOI: 10.5507/bp.2023.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
Oxidative DNA damage markers (8OHdG, comet assay, gammaH2AX) are becoming widely used in clinical cardiology research. To conduct this review of DNA damage in relation to hypertension in humans, we used databases (e.g. PubMed, Web of Science) to search for English-language publications up to June 30, 2022 and the terms: DNA damage, comet assay, gammaH2AX, 8OHdG, strand breaks, and arterial hypertension. Exclusion criteria were: children, absence of relevant controls, extra-arterial hypertensive issues, animal, cell lines. From a total of 79526, 15 human studies were selected. A total of 902 hypertensive patients (pts): (comet: N=418 pts; 8OHdG: N=484 pts) and 587 controls (comet: N=203; 8OHdG: N=384) were included. DNA damage was significantly higher in hypertensive pts than healthy controls (comet 26.6±11.0 vs 11.7±4.07 arbitrary units /A.U./; P<0.05 and="" 8ohdg="" 13="" 1="" 4="" 12="" vs="" 6="" 97="" 2="" 67="" ng="" mg="" creatinine="" i=""> P<0.05) confirmed with meta-analysis for both. Greater DNA damage was observed in more adverse cases (concentric cardiac hypertrophy 43.4±15.4 vs 15.6±5.5; sustained/untreated hypertension 31.4±12.1 vs 14.2±5/35.0±5.0 vs 25.0 ±5.0; non-dippers 39.2±15.5 vs 29.4±11.1 A.U.; elderly 14.9±4.5 vs 9.3±4.1 ng/mg creatinine; without carvedilol 9.1±4.2 vs 5.7±3.9; with coronary heart disease 0.5±0.1 vs 0.2±0.1 ng/mL) (P<0.05) confirmed with meta-analysis. DNA damage correlated strongly positively with serum glycosylated haemoglobin (r=0.670; P<0.05) and negatively with total antioxidant status (r=-0.670 to -0.933; P<0.05). This is the first systematic review with meta-analysis showing that oxidative DNA damage was increased in humans with arterial hypertension compared to controls.
Collapse
Affiliation(s)
- Radka Hazukova
- Department of Internal Medicine I - Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
- Department of Internal Medicine, Pardubice Regional Hospital, a.s., Pardubice, Czech Republic
- Department of Cardiology and Internal Medicine (Profi-Kardio, s.r.o.), Horice v Podkrkonosi, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Miloslav Pleskot
- Department of Cardiology and Internal Medicine (Profi-Kardio, s.r.o.), Horice v Podkrkonosi, Czech Republic
| | - Zdenek Zadak
- Departments of Research and Development, University Hospital, Hradec Kralove, Czech Republic
| | - Eva Cermakova
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Milos Taborsky
- Department of Internal Medicine I - Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
2
|
Bruic M, Grujic-Milanovic J, Miloradovic Z, Jovovic D, Zivkovic L, Mihailovic-Stanojevic N, Karanovic D, Spremo-Potparevic B. DNA, protein and lipid oxidative damage in tissues of spontaneously hypertensive versus normotensive rats. Int J Biochem Cell Biol 2021; 141:106088. [PMID: 34601089 DOI: 10.1016/j.biocel.2021.106088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Oxidative damage to protein and lipid macromolecules in target organs in hypertension has been recognized as a major factor contributing to cardiovascular, cerebrovascular, and renal diseases. Data on protein and lipid oxidative damage in spontaneously hypertensive rats are numerous, but there is no information on DNA damage in tissues measured by comet assay. The aim of this study was to determine the baseline damage to DNA, protein, and lipid macromolecules in different organs of spontaneously hypertensive rats. Markers of lipid peroxidation, protein oxidation, and DNA damage were measured in blood, heart, kidney, and liver of 24-week-old spontaneously hypertensive rats. Plasma prooxidant and antioxidant status were determined as well. Age-matched normotensive Wistar rats were used as control. A rise in markers of lipid peroxidation and protein oxidation, malondialdehyde, and advanced oxidation protein products, was detected in all tissues of spontaneously hypertensive rats, with particularly high values in the liver. DNA damage, measured by the comet assay, was significantly higher in all the studied tissues of spontaneously hypertensive rats compared to normotensive control, with more severe damage in the cardiac and renal cells. Significant depletion of the plasma antioxidant barrier in spontaneously hypertensive rats was also observed. This study showed increased damage to all macromolecules in all studied samples of spontaneously hypertensive rats in comparison with control Wistar rats.
Collapse
Affiliation(s)
- Marija Bruic
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Jelica Grujic-Milanovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Zoran Miloradovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Djurdjica Jovovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Lada Zivkovic
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Nevena Mihailovic-Stanojevic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Danijela Karanovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
3
|
Lee HJ, Han JH, Park YK, Kang MH. Effects of glutathione s-transferase ( GST) M1 and T1 polymorphisms on antioxidant vitamins and oxidative stress-related parameters in Korean subclinical hypertensive subjects after kale juice ( Brassica oleracea acephala) supplementation. Nutr Res Pract 2018; 12:118-128. [PMID: 29629028 PMCID: PMC5886963 DOI: 10.4162/nrp.2018.12.2.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/25/2017] [Accepted: 02/19/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/OBJECTIVES Glutathione s-transferase (GST) is involved in the formation of a multigene family comprising phase II detoxification enzymes, involved in the detoxification of reactive oxygen species. This study evaluated whether daily supplementation with kale juice could modulate levels of plasma antioxidant vitamins and oxidative stress-related parameters. We further examined whether this modulation was affected by combined GSTM1 and T1 polymorphisms. SUBJECTS/METHODS Totally, 84 subclinical hypertensive patients having systolic blood pressure (BP) over 130 mmHg or diastolic BP over 85 mmHg, received 300 mL of kale juice daily for 6 weeks. Blood samples were drawn before start of study and after completion of 6 weeks. RESULTS After supplementation, we observed significant decrease in DNA damage and increase in erythrocyte catalase activity in all genotypes. Plasma level of vitamin C was significantly increased in the wild/null and double null genotypes. The plasma levels of β-carotene, erythrocyte glutathione peroxidase activity, and nitric oxide were increased only in the wild/null genotype after kale juice supplementation. CONCLUSIONS The effect of kale juice was significantly greater in the GSTM1 null genotype and wild/null genotype groups, suggesting possibility of personalized nutritional prescriptions based on personal genetics.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon 34054, Korea
| | - Jeong-Hwa Han
- Nutrition Safety Policy Division, Ministry of Food and Drug Safety, Chungbuk 28159, Korea
| | - Yoo Kyoung Park
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi 17104, Korea
| | - Myung-Hee Kang
- Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon 34054, Korea
| |
Collapse
|
4
|
Toljic M, Egic A, Munjas J, Karadzov Orlic N, Milovanovic Z, Radenkovic A, Vuceljic J, Joksic I. Increased oxidative stress and cytokinesis-block micronucleus cytome assay parameters in pregnant women with gestational diabetes mellitus and gestational arterial hypertension. Reprod Toxicol 2017; 71:55-62. [DOI: 10.1016/j.reprotox.2017.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
|
5
|
Han JH, Lee HJ, Choi HJ, Yun KE, Kang MH. Lymphocyte DNA damage and plasma antioxidant status in Korean subclinical hypertensive patients by glutathione S-transferase polymorphism. Nutr Res Pract 2017; 11:214-222. [PMID: 28584578 PMCID: PMC5449378 DOI: 10.4162/nrp.2017.11.3.214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/31/2016] [Accepted: 02/01/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/OBJECTIVES Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of xenobiotics by conjugating substances with glutathione. The aim of this study is to assess the antioxidative status and the degree of DNA damage in the subclinical hypertensive patients in Korea using glutathione S-transferase polymorphisms. SUBJECTS/METHODS We examined whether DNA damage and antioxidative status show a difference between GSTM1 or GSTT1 genotype in 227 newly diagnosed, untreated (systolic blood pressure (BP) ≥ 130 mmHg or diastolic BP ≥ 85 mmHg) subclinical hypertensive patients and 130 normotensive subjects (systolic BP < 120 mmHg and diastolic BP < 80 mmHg). From the blood of the subjects, the degree of the DNA damage in lymphocyte, the activities of erythrocyte superoxide dismutase, the catalase, and the glutathione peroxidase, the level of glutathione, plasma total radical-trapping antioxidant potential (TRAP), anti-oxidative vitamins, as well as plasma lipid profiles and conjugated diene (CD) were analyzed. RESULTS Of the 227 subjects studied, 68.3% were GSTM1 null genotype and 66.5% were GSTT1 null genotype. GSTM1 null genotype had an increased risk of hypertension (OR: 2.104, CI: 1.38-3.35), but no significant association in GSTT1 null genotype (OR 0.982, CI: 0.62-1.55). No difference in erythrocyte activities of superoxide dismutase, catalase, or glutathione peroxidase, and plasma TRAP, CD, lipid profiles, and GSH levels were observed between GSTM1 or GSTT1 genotype. Plasma levels of α-tocopherol increased significantly in GSTT1 wild genotype (P < 0.05); however, plasma level of β-carotene increased significantly in GSTT1 null genotype (P < 0.01). DNA damage assessed by the Comet assay was significantly higher in GSTM1 null genotype than wild genotype (P < 0.05). CONCLUSIONS These results confirm the association between GSTM1 null genotype and risk of hypertension as they suggest that GSTM1 null genotype leads to an increased oxidative stress compared with wild genotype.
Collapse
Affiliation(s)
- Jeong-Hwa Han
- Nutrition Safety Policy Division, Food Nutrition and Dietary Safety Bureau, Ministry of Food and Drug Safety, Heungdeok-gu, Cheongju-si, Chungbuk 28159, Korea
| | - Hye-Jin Lee
- Department of Food Science and Nutrition, Daedeok Valley Campus, Hannam University, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon 34054, Korea
| | - Hee Jeong Choi
- Department of Family Medicine, Eulji University School of Medicine, Daejeon 35233, Korea
| | - Kyung Eun Yun
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - Myung-Hee Kang
- Department of Food Science and Nutrition, Daedeok Valley Campus, Hannam University, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon 34054, Korea
| |
Collapse
|
6
|
Guiducci L, Burchielli S, Chubuchny V, Sicari R, Liistro T, Corciu AI, Pardini S, Di Cecco P, Manfredi S, Bucci M, Salvadori PA, Andreassi MG, Iozzo P. Maternal and Sex Dependency of Insulin Resistance: Longitudinal PET and Echocardiography Study from the Healthy Fetus to the Adult Minipig. J Nucl Med 2011; 52:1993-2000. [DOI: 10.2967/jnumed.111.087882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Schupp N, Kolkhof P, Queisser N, Gärtner S, Schmid U, Kretschmer A, Hartmann E, Oli RG, Schäfer S, Stopper H. Mineralocorticoid receptor‐mediated DNA damage in kidneys of DOCA‐salt hypertensive rats. FASEB J 2010; 25:968-78. [DOI: 10.1096/fj.10-173286] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nicole Schupp
- Institute of Pharmacology and Toxicology University of Würzburg Würzburg Germany
| | - Peter Kolkhof
- Cardiology Research Bayer Schering Pharma AG Wuppertal Germany
| | - Nina Queisser
- Institute of Pharmacology and Toxicology University of Würzburg Würzburg Germany
- Cardiology Research Bayer Schering Pharma AG Wuppertal Germany
| | - Sabine Gärtner
- Institute of Pharmacology and Toxicology University of Würzburg Würzburg Germany
| | - Ursula Schmid
- Institute of Pharmacology and Toxicology University of Würzburg Würzburg Germany
| | | | - Elke Hartmann
- Institute of Toxicology Global Drug Discovery Bayer Schering Pharma AG Wuppertal Germany
| | - Rajaraman G. Oli
- Institute of Pharmacology and Toxicology University of Würzburg Würzburg Germany
| | - Stefan Schäfer
- Cardiology Research Bayer Schering Pharma AG Wuppertal Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology University of Würzburg Würzburg Germany
| |
Collapse
|
8
|
Queisser N, Fazeli G, Schupp N. Superoxide anion and hydrogen peroxide-induced signaling and damage in angiotensin II and aldosterone action. Biol Chem 2010; 391:1265-79. [DOI: 10.1515/bc.2010.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractThe formation of reactive oxygen species (ROS) can be induced by xenobiotic substances, such as redox cycling molecules, but also by endogenous substances such as hormones and cytokines. Recent research shows the importance of ROS in cellular signaling. Here, the signaling pathways of the two blood pressure-regulating hormones angiotensin II and aldosterone are presented, focusing on both their physiological effects and the change of signaling owing to the action of increased concentrations or prolonged exposure. When present in high concentrations, both angiotensin II and aldosterone, as various other endogenous substances, activate NADPH oxidase, which produces superoxide. In this review the generation of superoxide anions and hydrogen peroxide in cells stimulated with angiotensin II or aldosterone, as well as the subsequently induced signaling processes and DNA damage is discussed.
Collapse
|
9
|
Fenech MF. Dietary reference values of individual micronutrients and nutriomes for genome damage prevention: current status and a road map to the future. Am J Clin Nutr 2010; 91:1438S-1454S. [PMID: 20219957 DOI: 10.3945/ajcn.2010.28674d] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Damage to the genome is recognized as a fundamental cause of developmental and degenerative diseases. Several micronutrients play an important role in protecting against DNA damage events generated through endogenous and exogenous factors by acting as cofactors or substrates for enzymes that detoxify genotoxins as well as enzymes involved in DNA repair, methylation, and synthesis. In addition, it is evident that either micronutrient deficiency or micronutrient excess can modify genome stability and that these effects may also depend on nutrient-nutrient and nutrient-gene interaction, which is affected by genotype. These observations have led to the emerging science of genome health nutrigenomics, which is based on the principle that DNA damage is a fundamental cause of disease that can be diagnosed and nutritionally prevented on an individual, genetic subgroup, or population basis. In this article, the following topics are discussed: 1) biomarkers used to study genome damage in humans and their validation, 2) evidence for the association of genome damage with developmental and degenerative disease, 3) current knowledge of micronutrients required for the maintenance of genome stability in humans, 4) the effect of nutrient-nutrient and nutrient-genotype interaction on DNA damage, and 5) strategies to determine dietary reference values of single micronutrients and micronutrient combinations (nutriomes) on the basis of DNA damage prevention. This article also identifies important knowledge gaps and future research directions required to shed light on these issues. The ultimate goal is to match the nutriome to the genome to optimize genome maintenance and to prevent pathologic amounts of DNA damage.
Collapse
Affiliation(s)
- Michael F Fenech
- Commonwealth Scientific and Industrial Research Organisation Food and Nutritional Sciences, Adelaide BC SA 5000, Australia.
| |
Collapse
|
10
|
Nishi EE, Campos RR, Bergamaschi CT, de Almeida VR, Ribeiro DA. Vitamin C prevents DNA damage induced by renovascular hypertension in multiple organs of Wistar rats. Hum Exp Toxicol 2010; 29:593-9. [PMID: 20053703 DOI: 10.1177/0960327109358267] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate, through the single-cell gel (comet) assay, whether vitamin C is able to protect against renovascular hypertension-induced genotoxicity in multiple organs. A total of 32 male Wistar rats were divided into four groups: negative control (n = 6); animals treated with vitamin C (n = 6); hypertensive rats (n = 10) and hypertensive rats and treated with vitamin C (n = 10). Hypertension was induced as a result of partial obstruction of the left renal artery by means of a silver clip during 6 weeks. Vitamin C was administered at 150 mg/kg during 7 consecutive days before the end of the experimental period. The results showed that vitamin C was able to protect blood cells against hypertension-induced genotoxicity. Brain, liver and heart cells were also protected by vitamin C following hypertension-induced genotoxic damage. Regarding blood pressure, vitamin C reduced the hypertensive state. In conclusion, our results suggest that vitamin C can prevent hypertension-induced DNA damage in blood, liver, brain and heart cells as well as to normalize the blood pressure of rats.
Collapse
Affiliation(s)
- Erika Emy Nishi
- Department of Physiology, Cardiovascular Division, Paulista Medical School, Federal University of Sao Paulo, UNIFESP, SP, Brazil
| | | | | | | | | |
Collapse
|
11
|
Gandhi G, Jyoti J. Assessment of DNA Damage in Peripheral Blood Leukocytes of Patients with Essential Hypertension by the Alkaline Comet Assay. CYTOLOGIA 2010. [DOI: 10.1508/cytologia.75.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Jeevan Jyoti
- Department of Human Genetics, Guru Nanak Dev University
| |
Collapse
|