1
|
Crowley AR, Ackerman ME. Mind the Gap: How Interspecies Variability in IgG and Its Receptors May Complicate Comparisons of Human and Non-human Primate Effector Function. Front Immunol 2019; 10:697. [PMID: 31024542 PMCID: PMC6463756 DOI: 10.3389/fimmu.2019.00697] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
The field of HIV research relies heavily on non-human primates, particularly the members of the macaque genus, as models for the evaluation of candidate vaccines and monoclonal antibodies. A growing body of research suggests that successful protection of humans will not solely rely on the neutralization activity of an antibody's antigen binding fragment. Rather, immunological effector functions prompted by the interaction of the immunoglobulin G constant region and its cognate Fc receptors help contribute to favorable outcomes. Inherent differences in the sequences, expression, and activities of human and non-human primate antibody receptors and immunoglobulins have the potential to produce disparate results in the observations made in studies conducted in differing species. Having a more complete understanding of these differences, however, should permit the more fluent translation of observations between model organisms and the clinic. Here we present a guide to such translations that encompasses not only what is presently known regarding the affinity of the receptor-ligand interactions but also the influence of expression patterns and allelic variation, with a focus on insights gained from use of this model in HIV vaccines and passive antibody therapy and treatment.
Collapse
Affiliation(s)
- Andrew R. Crowley
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
| | - Margaret E. Ackerman
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
2
|
Gillis C, Gouel-Chéron A, Jönsson F, Bruhns P. Contribution of Human FcγRs to Disease with Evidence from Human Polymorphisms and Transgenic Animal Studies. Front Immunol 2014; 5:254. [PMID: 24910634 PMCID: PMC4038777 DOI: 10.3389/fimmu.2014.00254] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/14/2014] [Indexed: 11/13/2022] Open
Abstract
The biological activities of human IgG antibodies predominantly rely on a family of receptors for the Fc portion of IgG, FcγRs: FcγRI, FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA, FcγRIIIB, FcRL5, FcRn, and TRIM21. All FcγRs bind IgG at the cell surface, except FcRn and TRIM21 that bind IgG once internalized. The affinity of FcγRs for IgG is determined by polymorphisms of human FcγRs and ranges from 2 × 104 to 8 × 107 M−1. The biological functions of FcγRs extend from cellular activation or inhibition, IgG-internalization/endocytosis/phagocytosis to IgG transport and recycling. This review focuses on human FcγRs and intends to present an overview of the current understanding of how these receptors may contribute to various pathologies. It will define FcγRs and their polymorphic variants, their affinity for human IgG subclasses, and review the associations found between FcγR polymorphisms and human pathologies. It will also describe the human FcγR-transgenic mice that have been used to study the role of these receptors in autoimmune, inflammatory, and allergic disease models.
Collapse
Affiliation(s)
- Caitlin Gillis
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| | - Aurélie Gouel-Chéron
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France ; Department of Anesthesia and Intensive Care, Hospital of Bichat-Claude Bernard, Public Assistance-Hospitals of Paris , Paris , France
| | - Friederike Jönsson
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| | - Pierre Bruhns
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| |
Collapse
|
3
|
Nilsson D, Andiappan AK, Halldén C, Tim CF, Säll T, Wang DY, Cardell LO. Poor reproducibility of allergic rhinitis SNP associations. PLoS One 2013; 8:e53975. [PMID: 23382861 PMCID: PMC3559641 DOI: 10.1371/journal.pone.0053975] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/04/2012] [Indexed: 01/07/2023] Open
Abstract
Replication of reported associations is crucial to the investigation of complex disease. More than 100 SNPs have previously been reported as associated with allergic rhinitis (AR), but few of these have been replicated successfully. To investigate the general reproducibility of reported AR-associations in candidate gene studies, one Swedish (352 AR-cases, 709 controls) and one Singapore Chinese population (948 AR-cases, 580 controls) were analyzed using 49 AR-associated SNPs. The overall pattern of P-values indicated that very few of the investigated SNPs were associated with AR. Given published odds ratios (ORs) most SNPs showed high power to detect an association, but no correlations were found between the ORs of the two study populations or with published ORs. None of the association signals were in common to the two genome-wide association studies published in AR, indicating that the associations represent false positives or have much lower effect-sizes than reported.
Collapse
Affiliation(s)
- Daniel Nilsson
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Biomedicine, Kristianstad University, Kristianstad, Sweden
| | - Anand Kumar Andiappan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Singapore Immunology Network (SIgN), Singapore, Singapore
| | | | - Chew Fook Tim
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Torbjörn Säll
- Department of Cell and Organism Biology, Lund University, Lund, Sweden
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore
| | - Lars-Olaf Cardell
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
4
|
Pamela S, Anna Maria L, Elena D, Giovanni M, Emanuele A, Silvia V, Carmen B, Andreas G, Fabrizio F. Heparin-induced thrombocytopenia: The role of platelets genetic polymorphisms. Platelets 2012; 24:362-8. [DOI: 10.3109/09537104.2012.701026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
|
6
|
Abstract
IgE and IgE receptors (FcεRI) are well-known inducers of allergy. We recently found in mice that active systemic anaphylaxis depends on IgG and IgG receptors (FcγRIIIA and FcγRIV) expressed by neutrophils, rather than on IgE and FcεRI expressed by mast cells and basophils. In humans, neutrophils, mast cells, basophils, and eosinophils do not express FcγRIIIA or FcγRIV, but FcγRIIA. We therefore investigated the possible role of FcγRIIA in allergy by generating novel FcγRIIA-transgenic mice, in which various models of allergic reactions induced by IgG could be studied. In mice, FcγRIIA was sufficient to trigger active and passive anaphylaxis, and airway inflammation in vivo. Blocking FcγRIIA in vivo abolished these reactions. We identified mast cells to be responsible for FcγRIIA-dependent passive cutaneous anaphylaxis, and monocytes/macrophages and neutrophils to be responsible for FcγRIIA-dependent passive systemic anaphylaxis. Supporting these findings, human mast cells, monocytes and neutrophils produced anaphylactogenic mediators after FcγRIIA engagement. IgG and FcγRIIA may therefore contribute to allergic and anaphylactic reactions in humans.
Collapse
|
7
|
Bunyavanich S, Shargorodsky J, Celedón JC. A meta-analysis of Th2 pathway genetic variants and risk for allergic rhinitis. Pediatr Allergy Immunol 2011; 22:378-87. [PMID: 21309855 PMCID: PMC3345814 DOI: 10.1111/j.1399-3038.2010.01124.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is a significant genetic contribution to allergic rhinitis (AR). Genetic association studies for AR have been performed, but varying results make it challenging to decipher the overall potential effect of specific variants. The Th2 pathway plays an important role in the immunological development of AR. We performed meta-analyses of genetic association studies of variants in Th2 pathway genes and AR. PubMed and Phenopedia were searched by double extraction for original studies on Th2 pathway-related genetic polymorphisms and their associations with AR. A meta-analysis was conducted on each genetic polymorphism with data meeting our predetermined selection criteria. Analyses were performed using both fixed and random effects models, with stratification by age group, ethnicity, and AR definition where appropriate. Heterogeneity and publication bias were assessed. Six independent studies analyzing three candidate polymorphisms and involving a total of 1596 cases and 2892 controls met our inclusion criteria. Overall, the A allele of IL13 single nucleotide polymorphism (SNP) rs20541 was associated with increased odds of AR (estimated OR=1.2; 95% CI 1.1-1.3, p-value 0.004 in fixed effects model, 95% CI 1.0-1.5, p-value 0.056 in random effects model). The A allele of rs20541 was associated with increased odds of AR in mixed age groups using both fixed effects and random effects modeling. IL13 SNP rs1800925 and IL4R SNP 1801275 did not demonstrate overall associations with AR. We conclude that there is evidence for an overall association between IL13 SNP rs20541 and increased risk of AR, especially in mixed-age populations.
Collapse
Affiliation(s)
- Supinda Bunyavanich
- Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
8
|
Bibliography. Current world literature. Model systems. Curr Opin Allergy Clin Immunol 2008; 8:276-85. [PMID: 18560306 DOI: 10.1097/aci.0b013e328303e104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|