1
|
Kumar D, Sinha SN, Gouda B. Novel LC-MS/MS Method for Simultaneous Determination of Monoamine Neurotransmitters and Metabolites in Human Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:663-673. [PMID: 38447073 DOI: 10.1021/jasms.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
For the simultaneous determination of monoamine neurotransmitters (NTs) like dopamine, serotonin, noradrenaline, and epinephrine, and their metabolites (metanephrine, normetanephrine, 3-methoxytyramine, vanillylmandelic acid, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid), a robust liquid chromatography method coupled with tandem mass spectrometry (LC-MS/MS) was introduced as the analytical method. This analytical method proved to be accurate for the simultaneous measurement of the amounts of 11 NTs and their metabolites in biological samples. The method proved to be more efficient and better than the previously reported method in terms of precision, recovery, sample requirement, and extraction procedure. The reported method requires only 100 μL of blood and 200 μL of urine, and the extraction procedure requires acetonitrile precipitation, filtration, drying, and reconstitution in water. The separation of all analytes was performed on an C18 column (4.6 mm × 150 mm and 1.8 μm). A 10 min gradient elution program with a mobile phase consisting of phase A (0.2% formic acid in water) and phase B (methanol) was used. The positive ionization mode was used for the detection of all analytes in multiple reaction monitoring (MRM). The proposed method was validated with an internal standard and yielded lower limits of detection and quantification ranges of 0.0182-0.0797 ng/mL and 0.0553-0.2415 ng/mL, respectively, with a good linearity (R2) between 0.9959 and 0.9994. The recoveries ranged from 73.37% to 116.63% in blood and from 80.9% to 115.33% in urine. For the NTs and metabolites, the intra- and interday % CV were 0.24-9.36 and 0.85-9.67, respectively. The developed LC-MS/MS method was successfully used for the determination of trace amounts of endogenous compounds in human blood and urine samples.
Collapse
Affiliation(s)
- Dileshwar Kumar
- Division of Food Safety, Indian Council of Medical Research, National Institute of Nutrition, Jamai-Osmania, Hyderabad, Telangana 500007, India
- Department of Biochemistry Osmania University, Hyderabad, Telangana 500007, India
| | - Sukesh Narayan Sinha
- Division of Food Safety, Indian Council of Medical Research, National Institute of Nutrition, Jamai-Osmania, Hyderabad, Telangana 500007, India
| | - Balaji Gouda
- Division of Food Safety, Indian Council of Medical Research, National Institute of Nutrition, Jamai-Osmania, Hyderabad, Telangana 500007, India
| |
Collapse
|
2
|
Diviccaro S, Herian M, Cioffi L, Audano M, Mitro N, Caruso D, Giatti S, Melcangi RC. Exploring rat corpus cavernosum alterations induced by finasteride treatment and withdrawal. Andrology 2024; 12:674-681. [PMID: 37621185 DOI: 10.1111/andr.13515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Despite its efficacy for treating androgenetic alopecia, finasteride, an inhibitor of 5α-reductase (i.e., the enzyme converting testosterone, T, into dihydrotestosterone, DHT), is associated with several side effects including sexual dysfunction (e.g., erectile dysfunction). These side effects may persist after drug suspension, inducing the so-called post-finasteride syndrome (PFS). The effects of subchronic treatment with finasteride (i.e., 20 days) and its withdrawal (i.e., 1 month) in rat corpus cavernosum have been explored here. Data obtained show that the treatment was able to decrease the levels of the enzyme 5α-reductase type II in the rat corpus cavernosum with increased T and decreased DHT levels. This local change in T metabolism was linked to mechanisms associated with erectile dysfunction. Indeed, by targeted metabolomics, we reported a decrease in the nitric oxide synthase (NOS) activity, measured by the citrulline/arginine ratio and confirmed by the decrease in NO2 levels, and a decrease in ornithine transcarbamylase (OTC) activity, measured by citrulline/ornithine ratio. Interestingly, the T levels are negatively correlated with NOS activity, while those of DHT are positively correlated with OTC activity. Finasteride treatment also induced alterations in the levels of other molecules involved in the control of penile erection, such as norepinephrine and its metabolite, epinephrine. Indeed, plasma levels of norepinephrine and epinephrine were significantly increased and decreased, respectively, suggesting an impairment of these mediators. Interestingly, these modifications were restored by suspension of the drug. Altogether, the results reported here indicate that finasteride treatment, but not its withdrawal, affects T metabolism in the rat corpus cavernosum, and this alteration was linked to mechanisms associated with erectile dysfunction. Data here reported could also suggest that the PFS sexual side effects are more related to dysfunction in a sexual central control rather than peripheral compromised condition.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monika Herian
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
3
|
Jiang J, Zhang M, Xu Z, Yang Y, Wang Y, Zhang H, Yu K, Kan G, Jiang Y. Recent Advances in Catecholamines Analytical Detection Methods and Their Pretreatment Technologies. Crit Rev Anal Chem 2023:1-20. [PMID: 37733491 DOI: 10.1080/10408347.2023.2258982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Catecholamines (CAs), including adrenaline, noradrenaline, and dopamine, are neurotransmitters and hormones that play a critical role in regulating the cardiovascular system, metabolism, and stress response in the human body. As promising methods for real-time monitoring of catecholamine neurotransmitters, LC-MS detectors have gained widespread acceptance and shown significant progress over the past few years. Other detection methods such as fluorescence detection, colorimetric assays, surface-enhanced Raman spectroscopy, and surface plasmon resonance spectroscopy have also been developed to varying degrees. In addition, efficient pretreatment technology for CAs is flourishing due to the increasing development of many highly selective and recoverable materials. There are a few articles that provide an overview of electrochemical detection and efficient enrichment, but a comprehensive summary focusing on analytical detection technology is lacking. Thus, this review provides a comprehensive summary of recent analytical detection technology research on CAs published between 2017 and 2022. The advantages and limitations of relevant methods including efficient pretreatment technologies for biological matrices and analytical methods used in combination with pretreatment technology have been discussed. Overall, this review article provides a better understanding of the importance of accurate CAs measurement and offers perspectives on the development of novel methods for disease diagnosis and research in this field.
Collapse
Affiliation(s)
- Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zhilong Xu
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yali Yang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yimeng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Elite Engineer School, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong, China
| |
Collapse
|
4
|
Peng MZ, Wang MY, Cai YN, Liu L. A sensitive liquid chromatography-tandem mass spectrometry method for determination biomarkers of monoamine neurotransmitter disorders in cerebrospinal fluid. Clin Chim Acta 2023; 548:117453. [PMID: 37433402 DOI: 10.1016/j.cca.2023.117453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) monoamine neurotransmitters, their precursors and metabolites are essential biomarkers in the diagnosis and follow-up of monoamine neurotransmitter disorders (MNDs). However, their extra low concentrations and potential instability challenge the detection method. Here, we present a method that enables simultaneous quantification of these biomarkers. METHOD With propyl chloroformate /n-propanol, 16 biomarkers in 50 μL of CSF were derivatized in situ within seconds under an ambient temperature. The derivatives were extracted by ethyl acetate and separated by a reverse phase column followed by mass spectrometric detection. The method was fully validated. Optimal conditions for standard solution preparation and storage, as well as CSF sample handling, were investigated. CSF samples from 200 controls and 16 patients were analyzed. RESULTS The derivatization reaction stabilized biomarkers and increased sensitivity. Most biomarkers were quantifiable in concentrations between 0.02 and 0.50 nmol/L that were sufficient to measure their endogenous concentrations. The intra- and inter-day imprecision were < 15% for most analytes, and accuracy ranged from 90.3% to 111.6%. The stability study showed that standard stock solutions were stable at -80 °C for six years when prepared in the protection solutions; Analytes in CSF samples were stable for 24 h on wet ice and at least two years at -80 °C; But repeated freeze-thaw should be avoided. With this method, age-dependent reference intervals for each biomarker in the pediatric population were established. Patients with MNDs were successfully identified. CONCLUSION The developed method is valuable for MNDs diagnosis and research, benefiting from its advantages of sensitivity, comprehensiveness, and high throughput.
Collapse
Affiliation(s)
- Min-Zhi Peng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Mei-Yi Wang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Yan-Na Cai
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China.
| |
Collapse
|
5
|
Overcoming the chromatographic challenges when performing LC-MS/MS measurements of pyridoxal-5'-phosphate. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123605. [PMID: 36731354 DOI: 10.1016/j.jchromb.2023.123605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
Pyridoxal-5'-phosphate (PLP), the active form of vitamin B6, is required for numerous enzymatic reactions. Vitamin B6 deficiency or exceptionally high levels of PLP have negative implications, making measurements of PLP imperative for diagnoses and monitoring in many clinical scenarios. Traditional assays are enzymatic, ELISA based, or employ HPLC with various detection modalities; all of these are prone to interferences and crossreactivity with other compounds. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been increasingly used to overcome these issues, but the high polarity of PLP raises chromatographic challenges. Using ion pairing reagents in the mobile phases is a possible solution, but these reagents often have deleterious effects on instrumentation. An alternative strategy is the addition of an ion pairing reagent after extraction, but prior to injection. To prove this, we used 1-octanesulfonic acid (OSA) without changing the LC method or column. With this technique, we observed a 2-4 fold increase in signal-to-noise ratio. Intraday and interday precision of replicate measurements also improved drastically compared to analyses without OSA, while also yielding a dramatic improvement in column life compared to our previous approach and to this point no deleterious effects on instrument hardware commonly associated with traditional ion pairing reagent techniques have been observed.
Collapse
|
6
|
Luo W, van Beek TA, Chen B, Zuilhof H, Salentijn GIJ. Boronate affinity paper spray mass spectrometry for determination of elevated levels of catecholamines in urine. Anal Chim Acta 2022; 1235:340508. [DOI: 10.1016/j.aca.2022.340508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/01/2022]
|
7
|
Abstract
L-dopa is a precursor of dopamine used as the most effective symptomatic drug treatment for Parkinson's disease. Most of the L-dopa isolated is either synthesized chemically or from natural sources, but only some plants belonging to the Fabaceae family contain significant amounts of L-dopa. Due to its low stability, the unambiguous determination of L-dopa in plant matrices requires appropriate technologies. Several analytical methods have been developed for the determination of L-dopa in different plants. The most used for quantification of L-dopa are mainly based on capillary electrophoresis or chromatographic methods, i.e., high-performance liquid chromatography (HPLC), coupled to ultraviolet-visible or mass spectrometric detection. HPLC is most often used. This paper aims to give information on the latest developments in the chemical study of L-dopa, emphasizing the extraction, separation and characterization of this compound by chromatographic, electrochemical and spectral techniques. This study can help select the best possible strategy for determining L-dopa in plant matrices using advanced analytical methods.
Collapse
|
8
|
A Pilot Study on Plasma and Urine Neurotransmitter Levels in Children with Tic Disorders. Brain Sci 2022; 12:brainsci12070880. [PMID: 35884687 PMCID: PMC9313232 DOI: 10.3390/brainsci12070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Tic disorders (TDs), including Tourette syndrome, are childhood-onset neuropsychiatric disorders characterized by motor and/or vocal tics that commonly affect children’s physical and mental health. The pathogenesis of TDs may be related to abnormal neurotransmitters in the cortico-striatal-thalamo-cortical circuitry, especially dopaminergic, glutamatergic, and serotonergic neurotransmitters. The purpose of this study was to preliminarily investigate the differences in the three types of neurotransmitters in plasma and urine between children with TD and healthy children. Methods: We collected 94 samples of plasma and 69 samples of urine from 3–12-year-old Chinese Han children with TD before treatment. The plasma and urine of the same number of healthy Chinese Han children, matched for age and sex, participating in a physical examination, were collected. Ultra-performance liquid chromatography-tandem mass spectrometry was used to detect the three types of neurotransmitters in the above samples. Results: The plasma levels of norepinephrine, glutamic acid, and γ-aminobutyric acid, and the urine levels of normetanephrine and 5-hydroxyindoleacetic acid were higher in the TD children than in healthy children. The area under the curve (AUC) values of the above neurotransmitters in plasma and urine analyzed by receiver operating characteristic curve analysis were all higher than 0.6, with significant differences. Among them, the combined AUC of dopamine, norepinephrine, normetanephrine, glutamic acid, and γ-aminobutyric acid in the 8–12-year-old subgroup was 0.930, and the sensitivity and specificity for TD were 0.821 and 0.974, respectively (p = 0.000). Conclusions: There are differences in plasma and urine neurotransmitters between TD children and healthy children, which lays a foundation for further research on the pathogenesis of TD.
Collapse
|
9
|
Shi N, Bu X, Zhang M, Wang B, Xu X, Shi X, Hussain D, Xu X, Chen D. Current Sample Preparation Methodologies for Determination of Catecholamines and Their Metabolites. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092702. [PMID: 35566052 PMCID: PMC9099465 DOI: 10.3390/molecules27092702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022]
Abstract
Catecholamines (CAs) and their metabolites play significant roles in many physiological processes. Changes in CAs concentration in vivo can serve as potential indicators for the diagnosis of several diseases such as pheochromocytoma and paraganglioma. Thus, the accurate quantification of CAs and their metabolites in biological samples is quite important and has attracted great research interest. However, due to their extremely low concentrations and numerous co-existing biological interferences, direct analysis of these endogenous compounds often suffers from severe difficulties. Employing suitable sample preparation techniques before instrument detection to enrich the target analytes and remove the interferences is a practicable and straightforward approach. To date, many sample preparation techniques such as solid-phase extraction (SPE), and liquid-liquid extraction (LLE) have been utilized to extract CAs and their metabolites from various biological samples. More recently, several modern techniques such as solid-phase microextraction (SPME), liquid-liquid microextraction (LLME), dispersive solid-phase extraction (DSPE), and chemical derivatizations have also been used with certain advanced features of automation and miniaturization. There are no review articles with the emphasis on sample preparations for the determination of catecholamine neurotransmitters in biological samples. Thus, this review aims to summarize recent progress and advances from 2015 to 2021, with emphasis on the sample preparation techniques combined with separation-based detection methods such capillary electrophoresis (CE) or liquid chromatography (LC) with various detectors. The current review manuscript would be helpful for the researchers with their research interests in diagnostic analysis and biological systems to choose suitable sample pretreatment and detection methods.
Collapse
Affiliation(s)
- Nian Shi
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China;
| | - Xinmiao Bu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Manyu Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Xinli Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Xuezhong Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (D.H.); (X.X.); (D.C.)
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
- Correspondence: (D.H.); (X.X.); (D.C.)
| | - Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
- Correspondence: (D.H.); (X.X.); (D.C.)
| |
Collapse
|
10
|
Lindberg L, Brinth LS, Bergmann ML, Kristensen B, Hansen TW, Hasbak P, Thomsen JF, Eldrup E, Jensen LT. Autonomic nervous system activity in primary Raynaud's phenomenon: Heart rate variability, plasma catecholamines and [ 123 I]MIBG heart scintigraphy. Clin Physiol Funct Imaging 2021; 42:104-113. [PMID: 34972251 PMCID: PMC9303416 DOI: 10.1111/cpf.12737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023]
Abstract
Background and Aim Primary Raynaud's phenomenon (pRP) is characterized by an exaggerated response to cold, resulting in the whitening typically of the fingers and toes. The patients are generally perceived as healthy individuals with a benign condition. However, the condition has been associated with increased cardiovascular mortality and changes in autonomic nervous system activity. This study aimed to investigate whether pRP is associated with pervasive changes in autonomic nervous activity. The hypothesis was that patients with pRP have increased sympathetic nervous activity. Methods The autonomic nervous activity of 22 patients with pRP was investigated by means of heart rate variability (HRV) and the plasma catecholamine response to head‐up tilt and compared with 22 age‐ and gender‐matched controls. In addition, the patients were examined with a [123I]metaiodobenzylguanidine heart scintigraphy and compared with an external control group. Results The plasma norepinephrine response to head‐up tilt was significantly lower in the patient group than in the control group. Similarly, the heart scintigraphy revealed a lower heart‐to‐mediastinum ratio in the patient group than in the control group. HRV analysis did not reveal significant differences between the groups. Conclusion The findings of the study showed that the autonomic nervous activity of patients with pRP was altered compared with the activity of healthy individuals. This was observed both during rest and after positional stress, but the findings did not uniformly concur with our initial hypothesis.
Collapse
Affiliation(s)
- Lotte Lindberg
- Department of Nuclear Medicine, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Louise S Brinth
- Department of Nuclear Medicine, North Zealand Hospital, Copenhagen University Hospital, Hillerød, Denmark
| | - Marianne L Bergmann
- Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Bent Kristensen
- Department of Nuclear Medicine, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jane F Thomsen
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ebbe Eldrup
- Department of Endocrinology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Lars T Jensen
- Department of Nuclear Medicine, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
11
|
Counterregulatory responses to postprandial hypoglycemia after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2020; 17:55-63. [PMID: 33039341 DOI: 10.1016/j.soard.2020.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Postbariatric hypoglycemia (PBH) is a potentially serious complication after Roux-en-Y gastric bypass (RYGB), and impaired counterregulatory hormone responses have been suggested to contribute to the condition. OBJECTIVES We evaluated counterregulatory responses during postprandial hypoglycemia in individuals with PBH who underwent RYGB. SETTING University hospital. METHODS Eleven women with documented PBH who had RYGB underwent a baseline liquid mixed meal test (MMT) followed by 5 MMTs preceded by treatment with (1) acarbose 50 mg, (2) sitagliptin 100 mg, (3) verapamil 120 mg, (4) liraglutide 1.2 mg, and (5) pasireotide 300 μg. Blood was collected at fixed time intervals. Plasma and serum were analyzed for glucose, insulin, glucagon, epinephrine, norepinephrine, pancreatic polypeptide (PP), and cortisol. RESULTS During the baseline MMT, participants had nadir blood glucose concentrations of 3.3 ± .2 mmol/L. At the time of nadir glucose, there was a small but significant increase in plasma glucagon. Plasma epinephrine concentrations were not increased at nadir glucose but were significantly elevated by the end of the MMT. There were no changes in norepinephrine, PP, and cortisol concentrations in response to hypoglycemia. After treatment with sitagliptin, 8 individuals had glucose nadirs <3.2 mmol/L (versus 4 individuals at baseline), and significant increases in glucagon, PP, and cortisol responses were observed. CONCLUSIONS In response to postprandial hypoglycemia, individuals with PBH who underwent RYGB only had minor increases in counterregulatory hormones, while larger hormone responses occurred when glucose levels were lowered during treatment with sitagliptin. The glycemic threshold for counterregulatory activation could be altered in individuals with PBH, possibly explained by recurrent hypoglycemia.
Collapse
|