1
|
Tagawa M, Hiroi H, Nakano Y, Morishita R, Kobayashi K, Sakai O. Clinical Utility of Circulating Cell-Free DNA as a Liquid Biopsy in Cats With Various Tumours. Vet Comp Oncol 2024; 22:592-601. [PMID: 39385318 DOI: 10.1111/vco.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Only a limited number of tumour biomarkers are currently available in veterinary medicine, particularly in cats. Cell-free DNA (cfDNA) is an extracellular DNA fragment released upon cell death and is considered a minimally invasive biomarker for the diagnosis and monitoring of various human malignancies. This study aimed to clarify the utility of circulating cfDNA as a liquid biopsy for various feline tumours. Plasma samples were collected from 44 cats with various tumours, 24 cats with other diseases and 10 healthy controls. A follow-up study was conducted in three tumour-bearing patients. All cfDNA concentrations were quantified via real-time polymerase chain reaction (PCR), which provided short and long fragments of a newly identified feline LINE-1 gene. We found that cfDNA levels were significantly higher in cats with various tumours than in those with other diseases or healthy controls. The cfDNA concentration was not correlated with serum amyloid A (SAA) levels. Cats with tumours exhibited elevated cfDNA levels that predicted tumour-bearing with a sensitivity and specificity of 50.5% and 91.2%, respectively (AUC 0.736; p < 0.001). In lymphoma cases, cats with high cfDNA levels had significantly shorter survival times than those with low cfDNA levels (median: 33 days vs. 178 days; p = 0.003). In addition, the cfDNA levels of the three patients correlated with clinical status during follow-up. Collectively, these findings indicate the potential of cfDNA as a useful biomarker for the diagnosis, therapeutic monitoring and prognostic assessment of tumours in cats.
Collapse
Affiliation(s)
- Michihito Tagawa
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hotaka Hiroi
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yuzuki Nakano
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Riyo Morishita
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Kosuke Kobayashi
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Osamu Sakai
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| |
Collapse
|
2
|
Taghizadeh-Teymorloei M, Alizadeh L, Matin S, Jafari-Koshki T, Karimi A. Diagnostic and prognostic significance of ALU-based cell-free DNA in colorectal cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1398062. [PMID: 39169935 PMCID: PMC11335620 DOI: 10.3389/fonc.2024.1398062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Colorectal cancer (CRC) is a major global health concern. This study aimed to investigate the role of ALU-based cell-free DNA (cfDNA) in the diagnosis and prognosis of CRC. Methods We selected relevant literature from PubMed, Scopus, Web of Science, EMBASE, and Science Direct databases based on strict inclusion and exclusion criteria. 17 eligible studies were included in the final analysis (13 studies for diagnostic and 4 studies for prognostic meta-analysis). The search covered relevant publications up to July 1, 2024. Results The pooled sensitivity, specificity, and diagnostic odds ratios (DOR) of ALU-based cfDNA in CRC diagnosis were 0.81 (95% CI= [0.70, 0.89]), 0.90 (95% CI= [0.70, 0.96]), and 40.58 (95% CI= [17.87, 92.19]), respectively. The area under the ROC curve was 0.92 (95% CI= [0.89, 0.94]). Patients with higher concentrations of plasma/serum ALU-based cfDNA had poorer overall survival (OS) (pooled hazard ratio = 2.33 ([95% CI= [1.80, 3.03]). Conclusion The current evidence supports the utility of circulating ALU as a promising non-invasive diagnostic and prognostic tool for CRC. Furthermore, as a potential biomarker, ALU-based cfDNA could play a significant role in clinical application. Clinical implications The evidence suggests that circulating ALU-based cell-free DNA (cfDNA) holds promise as a non-invasive diagnostic and prognostic tool for colorectal cancer, potentially enhancing clinical decision-making. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier PROSPERO (CRD42023486369).
Collapse
Affiliation(s)
- Mohammad Taghizadeh-Teymorloei
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Alizadeh
- Gastroenterology and Liver Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Matin
- Department of Internal Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Tohid Jafari-Koshki
- Molecular Medicine Research Center (MMRC), Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Epidemiology and Biostatistics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Rodríguez-Ces AM, Rapado-González Ó, Salgado-Barreira Á, Santos MA, Aroso C, Vinhas AS, López-López R, Suárez-Cunqueiro MM. Liquid Biopsies Based on Cell-Free DNA Integrity as a Biomarker for Cancer Diagnosis: A Meta-Analysis. Diagnostics (Basel) 2024; 14:1465. [PMID: 39061602 PMCID: PMC11276058 DOI: 10.3390/diagnostics14141465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Liquid biopsies have been identified as a viable source of cancer biomarkers. We aim to evaluate the diagnostic accuracy of cell-free DNA integrity (cfDI) in liquid biopsies for cancer. A comprehensive literature search was conducted through PubMed, Embase, Web of Science, and Cochrane Library up to June 2024. Seventy-two study units from forty-six studies, comprising 4286 cancer patients, were identified and evaluated. The Quality Assessment for Studies of Diagnostic Accuracy-2 (QUADAS-2) was used to assess study quality. Meta-regression analysis was employed to investigate the underlying factors contributing to heterogeneity, alongside an evaluation of publication bias. The bivariate random-effect model was utilized to compute the primary diagnostic outcomes and their corresponding 95% confidence intervals (CIs). The pooled sensitivity, specificity, and positive and negative likelihood ratios of cfDI in cancer diagnosis were 0.70 and 0.77, 3.26 and 0.34, respectively. The overall area under the curve was 0.84, with a diagnostic odds ratio of 10.63. This meta-analysis suggested that the cfDI index has a promising potential as a non-invasive and accurate diagnostic tool for cancer. Study registration: The study was registered at PROSPERO (reference No. CRD42021276290).
Collapse
Affiliation(s)
- Ana María Rodríguez-Ces
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (A.M.R.-C.); (Ó.R.-G.)
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Óscar Rapado-González
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (A.M.R.-C.); (Ó.R.-G.)
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ángel Salgado-Barreira
- Department of Public Health, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiology and Public Health—CIBERESP), 28029 Madrid, Spain
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Arminda Santos
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal; (M.A.S.); (C.A.); (A.S.V.)
| | - Carlos Aroso
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal; (M.A.S.); (C.A.); (A.S.V.)
| | - Ana Sofia Vinhas
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal; (M.A.S.); (C.A.); (A.S.V.)
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706 Santiago de Compostela, Spain
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (A.M.R.-C.); (Ó.R.-G.)
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Borg M, Wen SWC, Andersen RF, Timm S, Hansen TF, Hilberg O. Methylated Circulating Tumor DNA in Blood as a Tool for Diagnosing Lung Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3959. [PMID: 37568774 PMCID: PMC10417522 DOI: 10.3390/cancers15153959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths, and early detection is crucial for improving patient outcomes. Current screening methods using computed tomography have limitations, prompting interest in non-invasive diagnostic tools such as methylated circulating tumor DNA (ctDNA). The PRISMA guidelines for systematic reviews were followed. The electronic databases MEDLINE, Embase, Web of Science, and Cochrane Library were systematically searched for articles. The search string contained three main topics: Lung cancer, blood, and methylated ctDNA. The extraction of data and quality assessment were carried out independently by the reviewers. In total, 33 studies were eligible for inclusion in this systematic review and meta-analysis. The most frequently studied genes were SHOX2, RASSF1A, and APC. The sensitivity and specificity of methylated ctDNA varied across studies, with a summary sensitivity estimate of 46.9% and a summary specificity estimate of 92.9%. The area under the hierarchical summary receiver operating characteristics curve was 0.81. The included studies were generally of acceptable quality, although they lacked information in certain areas. The risk of publication bias was not significant. Based on the findings, methylated ctDNA in blood shows potential as a rule-in tool for lung cancer diagnosis but requires further research, possibly in combination with other biomarkers.
Collapse
Affiliation(s)
- Morten Borg
- Department of Medicine, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (M.B.)
| | - Sara Witting Christensen Wen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Rikke Fredslund Andersen
- Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Signe Timm
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Torben Frøstrup Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Ole Hilberg
- Department of Medicine, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (M.B.)
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
5
|
Fu J, Qin T, Li C, Zhu J, Ding Y, Zhou M, Yang Q, Liu X, Zhou J, Chen F. Research progress of LINE-1 in the diagnosis, prognosis, and treatment of gynecologic tumors. Front Oncol 2023; 13:1201568. [PMID: 37546391 PMCID: PMC10399582 DOI: 10.3389/fonc.2023.1201568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
The retrotransposon known as long interspersed nuclear element-1 (LINE-1), which is currently the sole autonomously mobile transposon in the human genome, can result in insertional mutations, chromosomal rearrangements, and genomic instability. In recent years, numerous studies have shown that LINE-1 is involved in the development of various diseases and also plays an important role in the immune regulation of the organism. The expression of LINE-1 in gynecologic tumors suggests that it is expected to be an independent indicator for early diagnosis and prognosis, and also, as a therapeutic target, LINE-1 is closely associated with gynecologic tumor prognosis. This article discusses the function of LINE-1 in the diagnosis, treatment, and prognosis of ovarian, cervical, and endometrial malignancies, as well as other gynecologic malignancies. It offers fresh perspectives on the early detection of tumors and the creation of novel anti-tumor medications.
Collapse
Affiliation(s)
- Jiaojiao Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Tiansheng Qin
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Chaoming Li
- The First People’s Hospital of Longnan, Longnan City Hospital, Longnan, Gansu, China
| | - Jiaojiao Zhu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yaoyao Ding
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Meiying Zhou
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Qing Yang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaofeng Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Juanhong Zhou
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Fan Chen
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Papadimitriou MA, Levis P, Kotronopoulos G, Stravodimos K, Avgeris M, Scorilas A. Preoperative Cell-Free DNA (cfDNA) in Muscle-Invasive Bladder Cancer Treatment Outcome. Clin Chem 2023; 69:399-410. [PMID: 36738246 DOI: 10.1093/clinchem/hvac218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/22/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Tumor heterogeneity and lack of personalized prognosis leads to bladder cancer (BlCa) patients' lifelong surveillance with invasive interventions, highlighting the need for modern minimally invasive tools for disease management. Herein, we have evaluated the clinical utility of preoperative serum cell-free DNA (cfDNA) in ameliorating patients' risk-stratification and prognosis. METHODS cfDNA was purified from 190 preoperative BlCa patients and 26 healthy individuals' serum samples and quantified by 2 assays: an in-house quantitative real-time PCR (qPCR) assay using LEP as reference control and a direct fluorometric assay using Qubit HS dsDNA. Capillary electrophoresis was performed in 31 samples for cfDNA fragment profiling. Tumor relapse/progression and metastasis/death were used as clinical endpoints for non-muscle-invasive bladder cancer and muscle-invasive bladder cancer (MIBC), respectively. RESULTS cfDNA profiling by capillary electrophoresis highlighted that total and fragment-related cfDNA levels were significantly increased in BlCa and associated with advance disease stages. Evaluation of cfDNA levels by both Qubit/qPCR displayed highly consistent results (rs = 0.960; P < 0.001). Higher cfDNA was correlated with MIBC and stronger risk for early metastasis (Qubit:hazard ratio [HR] = 3.016, P = 0.009; qPCR:HR = 2.918, P = 0.004) and poor survival (Qubit:HR = 1.898, P = 0.042; qPCR:HR = 1.888, P = 0.026) of MIBC patients. Multivariate cfDNA-fitted models led to superior risk stratification and net benefit for MIBC prognosis compared to disease established markers. CONCLUSIONS Elevated preoperative cfDNA levels are strongly associated with higher risk for short-term metastasis and poor outcome of MIBC, supporting modern noninvasive disease prognosis and management.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Levis
- First Department of Urology, "Laiko" General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Kotronopoulos
- First Department of Urology, "Laiko" General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, "Laiko" General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Zhang X, Li B. Updates of liquid biopsy in oral cancer and multiomics analysis. Oral Dis 2023; 29:51-61. [PMID: 34716963 DOI: 10.1111/odi.14064] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
Liquid biopsy is a method sampled from body fluids, such as blood, saliva, urine, pleural effusion, cerebrospinal fluid, and so on. It is minimally invasive and reproducible and therefore can build a dynamic, real-time monitoring of oral squamous cell carcinoma patient's conditions and treatment responses. Circulating tumor cells, circulating tumor DNA and exosomes are three main detection objects of liquid biopsy, having different detection methods and features involving cost, sensitivity, specificity and output. Blood and saliva are the options of liquid biopsy in oral cancer. Then we reviewed the studies of liquid biopsy in oral cancer, integrating multiomics analysis of these results. The multiomics analysis of genomics, transcriptomics, proteomics, metabolomics, and DNA methylation have shown potential for the early screening, diagnosis, staging, prognosis, personalized medicine therapy, and monitoring of recurrence (minimal residual disease). Besides, we concluded some problems to be solved, such as the lack of the standard of the measurement methods and procedures of samples, the insufficient connection among different omics, and how to improve the sensitivity and specificity. And we also put up rough assumptions to these problems. However, the analysis of multiomics of liquid biopsy in oral cancer still shows great clinical value in the diagnosis and treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Xinning Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Binbin Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| |
Collapse
|
8
|
The Utility of Repetitive Cell-Free DNA in Cancer Liquid Biopsies. Diagnostics (Basel) 2022; 12:diagnostics12061363. [PMID: 35741173 PMCID: PMC9221655 DOI: 10.3390/diagnostics12061363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Liquid biopsy is a broad term that refers to the testing of body fluids for biomarkers that correlate with a pathological condition. While a variety of body-fluid components (e.g., circulating tumor cells, extracellular vesicles, RNA, proteins, and metabolites) are studied as potential liquid biopsy biomarkers, cell-free DNA (cfDNA) has attracted the most attention in recent years. The total cfDNA population in a typical biospecimen represents an immensely rich source of biological and pathological information and has demonstrated significant potential as a versatile biomarker in oncology, non-invasive prenatal testing, and transplant monitoring. As a significant portion of cfDNA is composed of repeat DNA sequences and some families (e.g., pericentric satellites) were recently shown to be overrepresented in cfDNA populations vs their genomic abundance, it holds great potential for developing liquid biopsy-based biomarkers for the early detection and management of patients with cancer. By outlining research that employed cell-free repeat DNA sequences, in particular the ALU and LINE-1 elements, we highlight the clinical potential of the repeat-element content of cfDNA as an underappreciated marker in the cancer liquid biopsy repertoire.
Collapse
|
9
|
Transposable Elements and Human Diseases: Mechanisms and Implication in the Response to Environmental Pollutants. Int J Mol Sci 2022; 23:ijms23052551. [PMID: 35269693 PMCID: PMC8910135 DOI: 10.3390/ijms23052551] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) are recognized as major players in genome plasticity and evolution. The high abundance of TEs in the human genome, especially the Alu and Long Interspersed Nuclear Element-1 (LINE-1) repeats, makes them responsible for the molecular origin of several diseases. This involves several molecular mechanisms that are presented in this review: insertional mutation, DNA recombination and chromosomal rearrangements, modification of gene expression, as well as alteration of epigenetic regulations. This literature review also presents some of the more recent and/or more classical examples of human diseases in which TEs are involved. Whether through insertion of LINE-1 or Alu elements that cause chromosomal rearrangements, or through epigenetic modifications, TEs are widely implicated in the origin of human cancers. Many other human diseases can have a molecular origin in TE-mediated chromosomal recombination or alteration of gene structure and/or expression. These diseases are very diverse and include hemoglobinopathies, metabolic and neurological diseases, and common diseases. Moreover, TEs can also have an impact on aging. Finally, the exposure of individuals to stresses and environmental contaminants seems to have a non-negligible impact on the epigenetic derepression and mobility of TEs, which can lead to the development of diseases. Thus, improving our knowledge of TEs may lead to new potential diagnostic markers of diseases.
Collapse
|
10
|
Shaban S, Al‑Rahim A, Suleiman A. ALU repeat as potential molecular marker in the detection and prognosis of different cancer types: A systematic review. Mol Clin Oncol 2022; 16:86. [PMID: 35251637 PMCID: PMC8892463 DOI: 10.3892/mco.2022.2519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer is a major health issue worldwide. cfDNA integrity has been reported as a potential diagnostic molecular marker for different types of cancer, identifying the importance of liquid biopsy. The aim of this review was to evaluate the prognostic and diagnostic performance of Arthrobacter luteus (ALU) repeat in tumor. Following a thorough review of the literature published from January, 2000 to September 2021, 36 studies were included. All of the study descriptions were analyzed. According to several studies, there were increased concentrations of ALU repetitive elements in cancer patients, while these concentrations were decreased in control, benign, different cancer stage, and other diseases. The total ALU (115 and 247) sequence levels are potential biomarkers for the purpose of investigations and cancer prognosis.
Collapse
Affiliation(s)
- Semaa Shaban
- Department of Biology, College of Sciences, Tikrit University, Tikrit, Saladin 34001, Iraq
| | - Aya Al‑Rahim
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al‑Nahrain University, Baghdad 64074, Iraq
| | - Ahmed Suleiman
- Department of Biotechnology, Science College, University of Anbar, Ramadi, Anbar 46006, Iraq
| |
Collapse
|
11
|
Mettler E, Fottner C, Bakhshandeh N, Trenkler A, Kuchen R, Weber MM. Quantitative Analysis of Plasma Cell-Free DNA and Its DNA Integrity and Hypomethylation Status as Biomarkers for Tumor Burden and Disease Progression in Patients with Metastatic Neuroendocrine Neoplasias. Cancers (Basel) 2022; 14:cancers14041025. [PMID: 35205773 PMCID: PMC8870292 DOI: 10.3390/cancers14041025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Neuroendocrine neoplasias (NEN) are a heterogeneous group of frequent slow-progressing malignant tumors for which a reliable marker for tumor relapse and progression is still lacking. Previously, circulating cell-free DNA and its global methylation status and fragmentation rate have been proposed to be valuable prognostic tumor markers in a variety of malignancies. In the current study, we compared plasma cell-free DNA (cfDNA) properties of NEN patients with a healthy control group and a group of surgically cured patients. Our results revealed significantly higher plasma cfDNA concentrations with increased fragmentation and hypomethylation in patients with advanced metastatic NEN, which was strongly associated with tumor load and could help to differentiate between metastasized disease and presumably cured patients. This suggests that the combined analysis of plasma cfDNA characteristics is a potent and sensitive prognostic and therapeutic biomarker for tumor burden and disease progression in patients with neuroendocrine neoplasias. Abstract Background: Neuroendocrine neoplasia (NEN) encompasses a diverse group of malignancies marked by histological heterogeneity and highly variable clinical outcomes. Apart from Chromogranin A, specific biomarkers predicting residual tumor disease, tumor burden, and disease progression in NEN are scant. Thus, there is a strong clinical need for new and minimally invasive biomarkers that allow for an evaluation of the prognosis, clinical course, and response to treatment of NEN patients, thereby helping implement individualized treatment decisions in this heterogeneous group of patients. In the current prospective study, we evaluated the role of plasma cell-free DNA concentration and its global hypomethylation and fragmentation as possible diagnostic and prognostic biomarkers in patients with neuroendocrine neoplasias. Methods: The plasma cfDNA concentration, cfDNA Alu hypomethylation, and LINE-1 cfDNA integrity were evaluated prospectively in 63 NEN patients with presumably cured or advanced metastatic disease. The cfDNA characteristics in NEN patients were compared to the results of a group of 29 healthy controls and correlated with clinical and histopathological data of the patients. Results: Patients with advanced NEN showed a significantly higher cfDNA concentration and percentage of Alu hypomethylation and a reduced LINE-1 cfDNA integrity as compared to the surgically cured NET patients and the healthy control group. The increased hypomethylation and concentration of cfDNA and the reduced cfDNA integrity in NEN patients were strongly associated with tumor burden and poor prognosis, while no correlation with tumor grading, differentiation, localization, or hormonal activity could be found. Multiparametric ROC analysis of plasma cfDNA characteristics was able to distinguish NEN patients with metastatic disease from the control group and the cured NEN patients with AUC values of 0.694 and 0.908, respectively. This was significant even for the group with only a low tumor burden. Conclusions: The present study, for the first time, demonstrates that the combination of plasma cfDNA concentration, global hypomethylation, and fragment length pattern has the potential to serve as a potent and sensitive prognostic and therapeutic “liquid biopsy” biomarker for tumor burden and disease progression in patients with neuroendocrine neoplasias.
Collapse
Affiliation(s)
- Esther Mettler
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
- Correspondence:
| | - Christian Fottner
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
| | - Neda Bakhshandeh
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
| | - Anja Trenkler
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
| | - Robert Kuchen
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany;
| | - Matthias M. Weber
- Department of Endocrinology and Metabolism, I Medical Clinic, University Hospital, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany; (C.F.); (N.B.); (A.T.); (M.M.W.)
| |
Collapse
|