1
|
Dhandapani N, Bejaxhin ABH, Periyaswamy G, Ramanan N, Arunprasad J, Rajkumar S, Sharma S, Singh G, Awwad FA, Khan MI, Ismail EA. Physicomechanical, morphological and tribo-deformation characteristics of lightweight WC/AZ31B Mg-matrix biocomposites for hip joint applications. J Appl Biomater Funct Mater 2024; 22:22808000231214359. [PMID: 38702952 DOI: 10.1177/22808000231214359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024] Open
Abstract
Exploring high strength materials with a higher concentration of reinforcements in the alloy proves to be a challenging task. This research has explored magnesium-based composites (AZ31B alloy) with tungsten carbide reinforcements, enhancing strength for medical joint replacements via league championship optimisation. The primary objective is to enhance medical joint replacement biomaterials employing magnesium-based composites, emphasising the AZ31B alloy with tungsten carbide reinforcements. The stir casting method is utilised in the manufacture of magnesium matrix composites (MMCs), including varied percentages of tungsten carbide (WC). The mechanical characteristics, such as micro-hardness, tensile strength, and yield strength, have been assessed and compared with computational simulations. The wear studies have been carried out to analyse the tribological behaviour of the composites. Additionally, this study investigates the prediction of stress and the distribution of forces inside bone and joint structures, therefore offering significant contributions to the field of biomedical research. This research contemplates the use of magnesium-based MMCs for the discovery of biomaterials suitable for medical joint replacement. The study focuses on the magnesium alloy AZ31B, with particles ranging in size from 40 to 60 microns used as the matrix material. Moreover, the outcomes have revealed that when combined with MMCs based on AZ31B-magnesium matrix, the WC particle emerges as highly effective reinforcements for the fabrication of lightweight, high-strength biomedical composites. This study uses the league championship optimisation (LCO) approach to identify critical variables impacting the synthesis of Mg MMCs from an AZ31B-based magnesium alloy. The scanning electron microscopy (SEM) images are meticulously analysed to depict the dispersion of WC particulates and the interface among the magnesium (Mg) matrix and WC reinforcement. The SEM analysis has explored the mechanisms underlying particle pull-out, the characteristics of inter-particle zones, and the influence of the AZ31B matrix on the enhancement of the mechanical characteristics of the composites. The application of finite element analysis (FEA) is being used in order to make predictions regarding the distribution of stress and the interactions of forces within the model of the hip joint. This study has compared the physico-mechanical and tribological characteristics of WC to distinct combinations of 0%, 5%, 10% and 15%, and its impact on the performance improvements. SEM analysis has confirmed the findings' improved strength and hardness, particularly when 10%-15% of WC was incorporated. Following the incorporation of 10% of WC particles within Mg-alloy matrix, the outcomes of the study has exhibited enhanced strength and hardness, which furthermore has been evident by utilising SEM analysis. Using ANSYS, structural deformation and stress levels are predicted, along with strength characteristics such as additional hardness of 71 HRC, tensile strength of 140-150 MPa, and yield strength closer to 100-110 MPa. The simulations yield significant insights into the behaviour of the joint under various loading conditions, thus enhancing the study's significance in biomedical environments.
Collapse
Affiliation(s)
| | | | - Gajendran Periyaswamy
- Department of Mechanical Engineering, St Peter's Institute of Higher Education and Research, Avadi, Chennai, Tamil Nadu, India
| | | | - Jayaraman Arunprasad
- Department of Mechanical Engineering, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamil Nadu, India
| | - Sivanraju Rajkumar
- Department of Mechanical Engineering, Faculty of Manufacturing, Institute of Technology, Hawassa University, Ethiopia
| | - Shubham Sharma
- Department of Mechanical Engineering, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, China
- Department of Mechanical Engineering, Lebanese American University, Kraytem, Beirut, Lebanon
| | - Gurminder Singh
- Department of Mechanical Engineering, Indian Institute of Technology, Bombay, India
| | - Fuad A Awwad
- Department of Quantitative analysis, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - M Ijaz Khan
- Department of Mechanical Engineering, Lebanese American University, Kraytem, Beirut, Lebanon
- Department of Mechanics and Engineering Science, Peking University, Beijing, China
| | - Emad Aa Ismail
- Department of Quantitative analysis, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Solórzano-Requejo W, Ojeda C, Díaz Lantada A. Innovative Design Methodology for Patient-Specific Short Femoral Stems. MATERIALS 2022; 15:ma15020442. [PMID: 35057160 PMCID: PMC8778668 DOI: 10.3390/ma15020442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The biomechanical performance of hip prostheses is often suboptimal, which leads to problems such as strain shielding, bone resorption and implant loosening, affecting the long-term viability of these implants for articular repair. Different studies have highlighted the interest of short stems for preserving bone stock and minimizing shielding, hence providing an alternative to conventional hip prostheses with long stems. Such short stems are especially valuable for younger patients, as they may require additional surgical interventions and replacements in the future, for which the preservation of bone stock is fundamental. Arguably, enhanced results may be achieved by combining the benefits of short stems with the possibilities of personalization, which are now empowered by a wise combination of medical images, computer-aided design and engineering resources and automated manufacturing tools. In this study, an innovative design methodology for custom-made short femoral stems is presented. The design process is enhanced through a novel app employing elliptical adjustment for the quasi-automated CAD modeling of personalized short femoral stems. The proposed methodology is validated by completely developing two personalized short femoral stems, which are evaluated by combining in silico studies (finite element method (FEM) simulations), for quantifying their biomechanical performance, and rapid prototyping, for evaluating implantability.
Collapse
Affiliation(s)
- William Solórzano-Requejo
- Product Development Laboratory, Department of Mechanical Engineering, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Mechanical Technology Laboratory, Department of Mechanical and Electrical Engineering, Universidad de Piura, Piura 20009, Peru; or
- Correspondence: or (W.S.-R.); (A.D.L.)
| | - Carlos Ojeda
- Mechanical Technology Laboratory, Department of Mechanical and Electrical Engineering, Universidad de Piura, Piura 20009, Peru; or
| | - Andrés Díaz Lantada
- Product Development Laboratory, Department of Mechanical Engineering, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Correspondence: or (W.S.-R.); (A.D.L.)
| |
Collapse
|
3
|
Influence of different anteversion alignments of a cementless hip stem on primary stability and strain distribution. Clin Biomech (Bristol, Avon) 2020; 80:105167. [PMID: 32977213 DOI: 10.1016/j.clinbiomech.2020.105167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Stem anteversion in total hip arthroplasty is well known to have a high impact on dislocation, but empirical data regarding the clinical and biomechanical influence is lacking. Therefore, we evaluated the impact of different anteversion alignments on the primary stability and strain distribution of a cementless stem. METHODS The cementless CLS Spotorno stem was implanted in 3 different groups (each group n = 6, total n = 21) with different anteversion alignments: reference anteversion (8°), +15° torsion in anteversion (+23°), -15° torsion in retroversion (-7°) using composite femurs (Sawbones). Primary stability was determined by 3-dimensional micromotions using a dynamic loading procedure simulating walking on level ground. Additionally, surface strains were registered before and after stem insertion in the 3 different groups, using one composite femur for each group (total n = 3). FINDINGS The micromotion measurements did not show a significant difference between the 3 evaluated alignments. Moreover, determination of the strain distribution did also not reveal an obvious difference. INTERPRETATION This biomechanical study simulating walking on level ground indicates that there is no considerable influence of stem ante-/retroversion variation (±15°) on the initial stability and strain distribution when evaluating the cementless CLS Spotorno in composite femora.
Collapse
|
4
|
Wang B, Li Q, Dong J, Zhou D, Liu F. Comparisons of the surface micromotions of cementless femoral prosthesis in the horizontal and vertical levels: a network analysis of biomechanical studies. J Orthop Surg Res 2020; 15:293. [PMID: 32736633 PMCID: PMC7393913 DOI: 10.1186/s13018-020-01794-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Numerous quantitatively biomechanical studies measuring the fixation stability of femoral stem using micromotions at the bone-implant interfaces in different directions and levels remain inconclusive. This network meta-analysis performed systematically aims to explore the rank probability of micromotions at the bone-implant interfaces based on biomechanical data from studies published. METHODS Two electronic databases, PubMed/MEDLINE and Embase, were utilized to retrieve biomechanical studies providing the data of micromotions at the bone-stem interfaces. After screening and diluting out, the studies that met inclusion criteria will be utilized for statistical analysis. In order to contrast the stability of commonness and differences of the different parts of the femoral stem, the horizontal and vertical comparison of micromotions at the bone-implant interfaces were conducted using the pooled evaluation indexes including the mean difference (MD) and the surface under the cumulative ranking (SUCRA) curve, while inconsistency analysis, sensitivity analysis, subgroup analyses, and publication bias were performed for the stability evaluation of outcomes. RESULTS Screening determined that 20 studies involving a total of 249 samples were deemed viable for inclusion in the network meta-analysis. Tip point registered the highest micromotions of 13 measurement points. In the horizontal level, the arrangements of 4 measurement points at the proximal (P1-P4), middle (P5-P8) and distal part of the stem (P9-P12) were P1 = P2 = P3 = P4, P7 > P8 > P6 = P5 and P10 ≥ P12 = P9 = P11, respectively. In the vertical level, the arrangements of 3 measurement points at the anterior, posterior, medial, and lateral directions was P9 > P5 = P1, P10 > P6 > P2, P11 > P7 > P3, and P12 > P8 > P4, respectively. CONCLUSION The network meta-analysis seems to reveal that the distal part of the femoral stem is easier to register higher micromotion, and tip point of femoral stem registers the highest micromotions.
Collapse
Affiliation(s)
- Bomin Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong Province, China
| | - Qinghu Li
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong Province, China
| | - Jinlei Dong
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong Province, China
| | - Dongsheng Zhou
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong Province, China
| | - Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong Province, China.
| |
Collapse
|
5
|
Wyatt MC, Kieser DC, Kemp MA, McHugh G, Frampton CMA, Hooper GJ. Does the femoral offset affect replacements? The results from a National Joint Registry. Hip Int 2019; 29:289-298. [PMID: 29873253 DOI: 10.1177/1120700018780318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Femoral component offset influences the torque forces exerted on a femoral stem and may therefore adversely affect femoral component survival. This study investigated the influence of femoral component offset on revision rates for primary total hip replacements (THR) registered on the New Zealand Joint Registry (NZJR). METHODS There were 106,139 primary THRs registered, resulting in 4960 revisions for any cause. There were 46,242 THRs performed using the five commonest femoral components listed on the NZJR. A total of 41,100 were done for primary osteoarthritis of which 40,548 had all the offset information available for analysis. We defined low offset as < 42 mm, standard as 42-48 mm and high offset as > 48 mm offset and examined revision rates according to the reasons for revision. We performed survival analyses for both cemented and uncemented femoral components grouped by the different offsets. RESULTS The all-cause revision rate was 0.54/100 component years (cys). Stems with < 42 mm offset had a revision rate of 0.58/100 cys (mean 0.58; 95% confidence interval (CI) 0.53-0.63), 42-48 mm offset 0.47 (95% CI 0.43-0.52) and > 48 mm offset 0.67 (95% CI 0.57-0.79). There was no significant difference in all-cause revision rates between varying stem offsets in uncemented stems adjusting for age and gender. In cemented stems both high and low offset stems were more likely to be revised. Uncemented stems of all offsets were more likely to undergo revision for femoral fracture. CONCLUSIONS Femoral component offset affects the overall all-cause revision rate of the most commonly used cemented stem, but not uncemented stem designs. In cemented stems offset influences the rate of revision for loosening and periprosthetic fractures.
Collapse
Affiliation(s)
- Michael C Wyatt
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - David C Kieser
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Mark A Kemp
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Gavin McHugh
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Chris M A Frampton
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Gary J Hooper
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
6
|
Varus malalignment of cementless hip stems provides sufficient primary stability but highly increases distal strain distribution. Clin Biomech (Bristol, Avon) 2018; 58:14-20. [PMID: 30005422 DOI: 10.1016/j.clinbiomech.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/24/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Varus position of cementless stems is a common malalignment in total hip arthroplasty. Clinical studies have reported a low rate of aseptic loosening but an increased risk for thigh pain. This in vitro study aimed to evaluate these clinical observations from a biomechanical perspective. METHODS A conventional cementless stem (CLS Spotorno) was implanted in a regular, straight (size 13.75) as well as in a varus position (size 11.25) in 6 composite femora (Sawbones), respectively. Primary stability was assessed by recording 3-dimensional micromotions under dynamic load bearing conditions and stress shielding was evaluated by registering the surface strain before and after stem insertion. FINDINGS Primary stability for stems in varus malposition revealed significantly lower micromotions (p < 0.05) for most regions compared to stems in neutral position. The greatest difference was observed at the tip of the stem where the straight aligned implants exceeded the critical upper limit for osseous integration of 150 μm. The surface strains for the varus aligned stems revealed a higher load transmission to the femur, resulting in a clearly altered strain distribution. INTERPRETATION This biomechanical study confirms the clinical findings of a good primary stability of cementless stems in a varus malposition, but impressively demonstrates the altered load transmission with the risk for postoperative thigh pain.
Collapse
|
7
|
Tijou A, Rosi G, Vayron R, Lomami HA, Hernigou P, Flouzat-Lachaniette CH, Haïat G. Monitoring cementless femoral stem insertion by impact analyses: An in vitro study. J Mech Behav Biomed Mater 2018; 88:102-108. [PMID: 30144721 DOI: 10.1016/j.jmbbm.2018.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 11/24/2022]
Abstract
The primary stability of the femoral stem (FS) implant determines the surgical success of cementless hip arthroplasty. During the insertion, a compromise must be found for the number and energy of impacts that should be sufficiently large to obtain an adapted primary stability of the FS and not too high to decrease fracture risk. The aim of this study is to determine whether a hammer instrumented with a force sensor can be used to monitor the insertion of FS. Cementless FS of different sizes were impacted in four artificial femurs with an instrumented hammer, leading to 72 configurations. The impact number when the surgeon empirically felt that the FS was fully inserted was noted Nsurg. The insertion depth E was assessed using video motion tracking and the impact number Nvid corresponding to the end of the insertion was estimated. For each impact, two indicators noted I and D were determined based on the analysis of the variation of the force as a function of time. The pull-out force F was significantly correlated with the indicator I (R2 = 0.67). The variation of D was analyzed using a threshold to determine an impact number Nd, which is shown to be closely related to Nsurg and Nvid, with an average difference of around 0.2. This approach allows to determine i) the moment when the surgeon should stop the impaction procedure in order to obtain an optimal insertion of the FS and ii) the FS implant primary stability. This study paves the way towards the development of a decision support system to assist the surgeon in hip arthroplasty.
Collapse
Affiliation(s)
- Antoine Tijou
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| | - Giuseppe Rosi
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| | - Romain Vayron
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| | - Hugues Albini Lomami
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| | - Philippe Hernigou
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Charles-Henri Flouzat-Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Guillaume Haïat
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France.
| |
Collapse
|
8
|
Fottner A, Woiczinski M, Kistler M, Schröder C, Schmidutz TF, Jansson V, Schmidutz F. Influence of undersized cementless hip stems on primary stability and strain distribution. Arch Orthop Trauma Surg 2017; 137:1435-1441. [PMID: 28865042 DOI: 10.1007/s00402-017-2784-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Undersizing of cementless hip stems is a risk factor for aseptic loosening and early subsidence. The purpose of this study was to evaluate the effects of undersized stems and determine whether a biomechanical study can predict the clinical results. MATERIALS AND METHODS Three consecutive sizes of a clinically proven stem (CLS Spotorno) were implanted into six composite femora (size large, Sawbones®), respectively. According to the Canal Fill Index (CFI), two stems (size 11.25 and 12.5) were undersized (CFI < 80%) and one stem (size 13.75) had an appropriate size (CFI > 80%). The primary stability was evaluated by measurement of 3-dimensional (3D)-micromotions under physiological adapted load and surface strains were recorded before and after implantation to detect stress-shielding processes. RESULTS Both undersized stems revealed significantly higher micromotions in all regions compared to the appropriate stem. The highest micromotions were registered at the distal tip of the three stem sizes. The changes in surface strain did not show a significant difference between the three stem sizes, but the highest strain reduction was observed proximally indicating a tendency for stress shielding. CONCLUSIONS This study confirms the clinical assumption that undersized stem result in a significantly reduced primary stability. Furthermore, in vitro studies allow to determine the effects of undersizing and stress shielding processes.
Collapse
Affiliation(s)
- Andreas Fottner
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Campus Grosshadern, Marchioninistraße 15, 81377, Munich, Germany.
| | - Matthias Woiczinski
- Laboratory for Biomechanics and Experimental Orthopedics, Grosshadern Medical Center, University of Munich (LMU), Munich, Germany
| | - Manuel Kistler
- Laboratory for Biomechanics and Experimental Orthopedics, Grosshadern Medical Center, University of Munich (LMU), Munich, Germany
| | - Christian Schröder
- Laboratory for Biomechanics and Experimental Orthopedics, Grosshadern Medical Center, University of Munich (LMU), Munich, Germany
| | - Tobias F Schmidutz
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Volkmar Jansson
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Campus Grosshadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Florian Schmidutz
- Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Campus Grosshadern, Marchioninistraße 15, 81377, Munich, Germany.,BG Trauma Center, Eberhard Karls University Tübingen, Schnarrenbergstrasse 95, 72076, Tuebingen, Germany
| |
Collapse
|
9
|
Malfroy Camine V, Rüdiger HA, Pioletti DP, Terrier A. Effect of a collar on subsidence and local micromotion of cementless femoral stems: in vitro comparative study based on micro-computerised tomography. INTERNATIONAL ORTHOPAEDICS 2017; 42:49-57. [DOI: 10.1007/s00264-017-3524-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022]
|
10
|
Can the metaphyseal anchored Metha short stem safely be revised with a standard CLS stem? A biomechanical analysis. INTERNATIONAL ORTHOPAEDICS 2017; 41:2471-2477. [DOI: 10.1007/s00264-017-3497-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
|
11
|
Leuridan S, Goossens Q, Roosen J, Pastrav L, Denis K, Mulier M, Desmet W, Vander Sloten J. A biomechanical testing system to determine micromotion between hip implant and femur accounting for deformation of the hip implant: Assessment of the influence of rigid body assumptions on micromotions measurements. Clin Biomech (Bristol, Avon) 2017; 42:70-78. [PMID: 28110243 DOI: 10.1016/j.clinbiomech.2017.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Accurate pre-clinical evaluation of the initial stability of new cementless hip stems using in vitro micromotion measurements is an important step in the design process to assess the new stem's potential. Several measuring systems, linear variable displacement transducer-based and other, require assuming bone or implant to be rigid to obtain micromotion values or to calculate derived quantities such as relative implant tilting. METHODS An alternative linear variable displacement transducer-based measuring system not requiring a rigid body assumption was developed in this study. The system combined advantages of local unidirectional and frame-and-bracket micromotion measuring concepts. The influence and possible errors that would be made by adopting a rigid body assumption were quantified. Furthermore, as the system allowed emulating local unidirectional and frame-and-bracket systems, the influence of adopting rigid body assumptions were also analyzed for both concepts. Synthetic and embalmed bone models were tested in combination with primary and revision implants. Single-legged stance phase loading was applied to the implant - bone constructs. FINDINGS Adopting a rigid body assumption resulted in an overestimation of mediolateral micromotion of up to 49.7μm at more distal measuring locations. Maximal average relative rotational motion was overestimated by 0.12° around the anteroposterior axis. Frontal and sagittal tilting calculations based on a unidirectional measuring concept underestimated the true tilting by an order of magnitude. INTERPRETATION Non-rigid behavior is a factor that should not be dismissed in micromotion stability evaluations of primary and revision femoral implants.
Collapse
Affiliation(s)
- Steven Leuridan
- Department of Mechanical Engineering, Biomechanics Division. KU Leuven, Celestijnenlaan 300c, Box 2419, 3001 Leuven, Belgium.
| | - Quentin Goossens
- Department of Mechanical Engineering, Smart Instrumentation, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Jorg Roosen
- Department of Orthopedic Surgery, Leuven University Hospitals, Weligerveld 1, 3212 Pellenberg, Belgium
| | - Leonard Pastrav
- Department of Mechanical Engineering, Smart Instrumentation, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Kathleen Denis
- Department of Mechanical Engineering, Smart Instrumentation, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Michiel Mulier
- Department of Orthopedic Surgery, Leuven University Hospitals, Weligerveld 1, 3212 Pellenberg, Belgium
| | - Wim Desmet
- Department of Mechanical Engineering, PMA, KU Leuven, Celestijnenlaan 300c, 3001 Leuven, Belgium
| | - Jos Vander Sloten
- Department of Mechanical Engineering, Biomechanics Division. KU Leuven, Celestijnenlaan 300c, Box 2419, 3001 Leuven, Belgium
| |
Collapse
|
12
|
Small SR, Hensley SE, Cook PL, Stevens RA, Rogge RD, Meding JB, Berend ME. Characterization of Femoral Component Initial Stability and Cortical Strain in a Reduced Stem-Length Design. J Arthroplasty 2017; 32:601-609. [PMID: 27597431 DOI: 10.1016/j.arth.2016.07.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/17/2016] [Accepted: 07/24/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Short-stemmed femoral components facilitate reduced exposure surgical techniques while preserving native bone. A clinically successful stem should ideally reduce risk for stress shielding while maintaining adequate primary stability for biological fixation. We asked (1) how stem-length changes cortical strain distribution in the proximal femur in a fit-and-fill geometry and (2) if short-stemmed components exhibit primary stability on par with clinically successful designs. METHODS Cortical strain was assessed via digital image correlation in composite femurs implanted with long, medium, and short metaphyseal fit-and-fill stem designs in a single-leg stance loading model. Strain was compared to a loaded, unimplanted femur. Bone-implant micromotion was then compared with reduced lateral shoulder short stem and short tapered-wedge designs in cyclic axial and torsional testing. RESULTS Femurs implanted with short-stemmed components exhibited cortical strain response most closely matching that of the intact femur model, theoretically reducing the potential for proximal stress shielding. In micromotion testing, no difference in primary stability was observed as a function of reduced stem length within the same component design. CONCLUSION Our findings demonstrate that within this fit-and-fill stem design, reduction in stem length improved proximal cortical strain distribution and maintained axial and torsional stability on par with other stem designs in a composite femur model. Short-stemmed implants may accommodate less invasive surgical techniques while facilitating more physiological femoral loading without sacrificing primary implant stability.
Collapse
Affiliation(s)
- Scott R Small
- Orthopaedic Biomedical Engineering Laboratory, Joint Replacement Surgeons of Indiana Research Foundation, Inc, Mooresville, Indiana
| | - Sarah E Hensley
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, Terre Haute, Indiana
| | - Paige L Cook
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, Terre Haute, Indiana
| | - Rebecca A Stevens
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, Terre Haute, Indiana
| | - Renee D Rogge
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, Terre Haute, Indiana
| | - John B Meding
- Orthopaedic Biomedical Engineering Laboratory, Joint Replacement Surgeons of Indiana Research Foundation, Inc, Mooresville, Indiana
| | - Michael E Berend
- Orthopaedic Biomedical Engineering Laboratory, Joint Replacement Surgeons of Indiana Research Foundation, Inc, Mooresville, Indiana
| |
Collapse
|
13
|
Influence of different sizes of composite femora on the biomechanical behavior of cementless hip prosthesis. Clin Biomech (Bristol, Avon) 2017; 41:60-65. [PMID: 27960138 DOI: 10.1016/j.clinbiomech.2016.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 11/12/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND For the biomechanical evaluation of cementless stems different sizes of composite femurs have been used in the literature. However, the impact of different specimen sizes on test results is unknown. METHODS To determine the potential effect of femur size the biomechanical properties of a conventional stem (CLS Spotorno) were examined in 3 different sizes (small, medium and large composite Sawbones®). Primary stability was tested under physiologically adapted dynamic loading conditions measuring 3-dimensional micromotions. For the small composite femur the dynamic load needed to be adapted since fractures occurred when reaching 1700N. Additionally, surface strain distribution was recorded before and after implantation to draw conclusions about the tendency for stress shielding. FINDINGS All tested sizes revealed similar micromotions only reaching a significant different level at one measurement point. The highest micromotions were observed at the tip of the stems exceeding the limit for osseous integration of 150μm. Regarding strain distribution the highest strain reduction after implantation was registered in all sizes at the level of the lesser trochanter. INTERPRETATION Specimen size seems to be a minor influence factor for biomechanical evaluation of cementless stems. However, the small composite femur is less suitable for biomechanical testing since this size failed under physiological adapted loads. For the CLS Spotorno osseous integration is unlikely at the tip of the stem and the tendency for stress shielding is the highest at the level of the lesser trochanter.
Collapse
|
14
|
Amirouche F, Solitro G, Walia A. No effect of femoral offset on bone implant micromotion in an experimental model. Orthop Traumatol Surg Res 2016; 102:379-85. [PMID: 26970866 DOI: 10.1016/j.otsr.2016.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND In total hip replacement (THR), the femoral offset (FO) is assessed preoperatively, and the surgeon must determine whether to restore, increase, or decrease the FO based on experience and the patient's clinical history. The FO is known to influence the abductor muscle strength, range of motion (ROM), gait, and hip pain after THR; however, the true effect of FO on bone implant micromotion is unclear. Therefore, we investigated to assess: (1) the muscle loading response during gait, (2) whether FO affects bone implant micromotion during gait. HYPOTHESIS A variation of ±10mm from the anatomical FO affects the muscle loading forces. MATERIALS AND METHODS We modified a personalized musculoskeletal model of the lower extremity to determine the 3-dimensional contact forces at the hip joint in the presence of a stem with varying offsets during a gait cycle. A detailed finite element (FE) model was then constructed for increased, restored, and decreased FOs. The maximum load obtained during normal walking gait from the musculoskeletal model was applied to the respective FE models, and the resultant stem-bone micromotion and stress distribution were computed. RESULTS Increasing the FO to +10mm decreased the peak force generated by the abductor muscles during the cycle by 15.0% and decreasing the FO to -10mm increased the von Mises stress distribution at the distal bone by 77.5% (P<0.05). A variation of the offset within 10mm of the anatomical offset showed no significant differences in micromotion (P>0.05) and peak stresses (P>0.05). DISCUSSION Coupling the musculoskeletal model of the gait cycle with FE analysis provides a realistic model to understand how FO affects bone implant micromotion. We found that there was no effect of FO on bone implant micromotion; thus, a surgeon does not need to evaluate the implications of FO on micromotion and can determine a FO that best decreases the work load of abductor muscles, increases ROM, and reduces hip pain. LEVEL OF EVIDENCE IV, biomechanical study.
Collapse
Affiliation(s)
- F Amirouche
- University of Illinois at Chicago, Department of Orthopaedics, 835, S. Wolcott avenue, Room E270, Chicago, IL 60612, USA.
| | - G Solitro
- University of Illinois at Chicago, Department of Orthopaedics, 835, S. Wolcott avenue, Room E270, Chicago, IL 60612, USA
| | - A Walia
- University of Illinois at Chicago, Department of Orthopaedics, 835, S. Wolcott avenue, Room E270, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Primary cup stability in THA with augmentation of acetabular defect. A comparison of healthy and osteoporotic bone. Orthop Traumatol Surg Res 2015; 101:667-73. [PMID: 26300456 DOI: 10.1016/j.otsr.2015.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND CONTEXT Reconstruction of acetabular defect has been advocated as standard procedure in total hip arthroplasty. The presence of bony defects at the acetabulum is viewed as a cause of instability and acetabular wall augmentation is often used without proper consideration of surrounding bone density. The initial cup-bone stability is, however, a challenge and a number of studies supported by clinical follow-ups of patients suggested that if the structural graft needs supporting more than 50% of the acetabular component, a reconstruction cage device spanning ilium to ischium should be preferred to protect the graft and provide structural stability. This study aims to (1) investigate the relationship between cup motion and bone density and (2) quantify the re-distribution of stress at the defect site after augmentation. HYPHOTESIS Paprosky type I or II, acetabular defects, when reconstructed with bone screws supported by bioabsorbable calcified triglyceride bone cement are significantly less effective for osteoporotic bone than healthy bone. MATERIALS AND METHODS Acetabular wall defects were reconstructed on six cadaveric subjects with bioabsorbable calcified triglyceride bone cement using a re-bar technique. Data of the specimen with higher bone density was used to validate a Finite Element Model. Values of bone apparent density ranging from healthy to osteoporotic were simulated to evaluate (1) the cup motion, through both displacement and rotation, (2) and the von Mises stress distribution. RESULTS Defect reconstruction with bone screws and bioabsorbable calcified triglyceride bone cement results in a re-distribution of stress at the defect site. For a reduction of 65% in bone density, the cup displacement was similar to a healthy bone for loads not exceeding 300 N, as load progressed up to 1500 N, the reconstructed defect showed increase of 99 μm (128%) in displacement and of 0.08° in rotation angle. CONCLUSIONS Based on the results, we suggest that an alternative solution to wall defect augmentation with bone screws supported by bioabsorbable calcified triglyceride bone cement, be used for osteoporotic bone. LEVEL OF EVIDENCE Level IV, experimental and cadaveric study.
Collapse
|
16
|
Camine VM, Rüdiger H, Pioletti DP, Terrier A. Distribution of gap and micromotion during compressive loading around a cementless femoral stem. Comput Methods Biomech Biomed Engin 2015; 18 Suppl 1:1896-7. [PMID: 26237565 DOI: 10.1080/10255842.2015.1069626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- V M Camine
- a Laboratory of Biomechanical Orthopedics , EPFL , Lausanne , Switzerland
| | - H Rüdiger
- b Department of Orthopaedic Surgery , Schulthess Clinic , Zürich , Switzerland.,c Service of Orthopaedics and Traumatology , Lausanne University Hospital - CHUV , Lausanne , Switzerland
| | - D P Pioletti
- a Laboratory of Biomechanical Orthopedics , EPFL , Lausanne , Switzerland
| | - A Terrier
- a Laboratory of Biomechanical Orthopedics , EPFL , Lausanne , Switzerland
| |
Collapse
|
17
|
Wen-ming X, Ai-min W, Qi W, Chang-hua L, Jian-fei Z, Fang-fang X. An integrated CAD/CAM/robotic milling method for custom cementless femoral prostheses. Med Eng Phys 2015. [PMID: 26210779 DOI: 10.1016/j.medengphy.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aseptic loosening is the primary cause of cementless femoral prosthesis failure and is related to the primary stability of the cementless femoral prosthesis in the femoral cavity. The primary stability affects both the osseointegration and the long-term stability of cementless femoral prostheses. A custom cementless femoral prosthesis can improve the fit and fill of the prosthesis in the femoral cavity and decrease the micromotion of the proximal prosthesis such that the primary stability of the custom prosthesis can be improved, and osseointegration of the proximal prosthesis is achieved. These results will help to achieve long-term stability in total hip arthroplasty (THA). In this paper, we introduce an integrated CAD/CAM/robotic method of milling custom cementless femoral prostheses. The 3D reconstruction model uses femoral CT images and 3D design software to design a CAD model of the custom prosthesis. After the transformation matrices between two units of the robotic system are calibrated, consistency between the CAM software and the robotic system can be achieved, and errors in the robotic milling can be limited. According to the CAD model of the custom prosthesis, the positions of the robotic tool points are produced by the CAM software of the CNC machine. The normal vector of the three adjacent robotic tool point positions determines the pose of the robotic tool point. In conclusion, the fit rate of custom pig femur stems in the femoral cavities was 90.84%. After custom femoral prostheses were inserted into the femoral cavities, the maximum gaps between the prostheses and the cavities measured less than 1 mm at the diaphysis and 1.3 mm at the metaphysis.
Collapse
Affiliation(s)
- Xi Wen-ming
- School of Physics and Mechanical Engineering, Xiamen University, Xiamen 361005, China
| | - Wang Ai-min
- School of Physics and Mechanical Engineering, Xiamen University, Xiamen 361005, China.
| | - Wu Qi
- The 82 Hospital of People's Liberation Army, Huai'an 223001, China
| | - Liu Chang-hua
- The 174 Hospital of People's Liberation Army, Xiamen 361001, China
| | - Zhu Jian-fei
- The 82 Hospital of People's Liberation Army, Huai'an 223001, China
| | - Xia Fang-fang
- School of Physics and Mechanical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Oh KJ, Mishra A, Yang JH. Radiologic bone remodeling pattern around DCPD-coated, metaphyseal-loading cementless short stems in elderly patients. Orthopedics 2014; 37:e649-55. [PMID: 24992060 DOI: 10.3928/01477447-20140626-57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/27/2013] [Indexed: 02/03/2023]
Abstract
Concerns exist regarding using short stems during total hip arthroplasties performed in elderly patients. For this study, the authors assessed sequential bone remodeling findings in metaphyseal-loading short stems using serial radiography. A total of 100 consecutive primary THAs using short stems were performed in patients with an average age of 78.3 years. The presence and patterns of radiolucent lines, radiopaque lines, calcar rounding, proximal bone resorption, spot welds, cortical hypertrophy, and intramedullary bone formation around the distal tip were assessed. The final study group comprised 92 hips, and mean follow-up was 60±3 months (range, 48-72 months). At final follow-up, condensations of spot welds were noted in 84 (91.3%) hips. Spot weld formation occurred in all zones except 1 and 4. Calcar rounding was observed in 90 (97.8%) hips. Atrophy of the calcar was noted in 19 (20.6%) hips. Analysis of the proximal zones revealed reactive radiodense lines in zones 1 and 2 (tensile area/shoulder of stem) in 22 (23.9%) hips. A prominent reactive line around the tip of the stem was recorded in 32 (34.8%) hips on radiographs at final follow-up. However, there was no increase in space between the tip of the stem and the radiopaque line. No acetabular or femoral component migrated by more than 1 mm at final follow-up. No acetabular or femoral osteolysis was identified. The radiographic findings of metaphyseal-loading short stems in elderly patients suggest that 91.3% of implants were osseointegrated. No patient required stem revision. Metaphyseal-loading short stems in elderly patients provide continued fixation with adaptive bone remodeling.
Collapse
|
19
|
Nadorf J, Thomsen M, Gantz S, Sonntag R, Kretzer JP. Fixation of the shorter cementless GTS™ stem: biomechanical comparison between a conventional and an innovative implant design. Arch Orthop Trauma Surg 2014; 134:719-26. [PMID: 24522862 DOI: 10.1007/s00402-014-1946-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Conventional cementless total hip arthroplasty already shows very good clinical results. Nevertheless, implant revision is often accompanied by massive bone loss. The new shorter GTS™ stem has been introduced to conserve femoral bone stock. However, no long-term clinical results were available for this implant. A biomechanical comparison of the GTS™ stem with the clinically well-established CLS(®) stem was therefore preformed to investigate the targeted stem philosophy. MATERIALS AND METHODS Four GTS™ stems and four CLS(®) stems were implanted in a standardized manner in eight synthetic femurs. A high-precision measuring device was used to determine micromotions of the stem and bone during different load applications. Calculation of relative micromotions at the bone-implant interface allowed the rotational implant stability and the bending behavior of the stem to be determined. RESULTS Lowest relative micromotions were detected near the lesser trochanter within the proximal part of both stems. Maximum relative micromotions were measured near the distal tip of the stems, indicating a proximal fixation of both stems. For the varus-valgus-torque application, a comparable stem bending behavior was shown for both stems. CONCLUSION Both stems seem to provide a comparable and adequate primary stability. The shortened GTS™ design has a comparable rotational stability and bone-implant flexibility compared to a conventional stem. This study demonstrates that the CLS(®) stem and the GTS™ stem exhibit similar biomechanical behavior. However, a clinical confirmation of these experimental results is still required.
Collapse
Affiliation(s)
- J Nadorf
- Laboratory of Biomechanics and Implant Research, Department of Orthopedics and Traumatology, University Hospital Heidelberg, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany,
| | | | | | | | | |
Collapse
|
20
|
Costi JJ, Edmonds-Wilson RH, Howie DW, Stamenkov R, Field JR, Stanley RM, Hearn TC, Callary SA, McGee MA. Stem micromotion after femoral impaction grafting using irradiated allograft bone: a time zero in vitro study. Clin Biomech (Bristol, Avon) 2013; 28:770-6. [PMID: 23896432 DOI: 10.1016/j.clinbiomech.2013.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 06/30/2013] [Accepted: 07/04/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND A gamma irradiation dose of 15kGy has been shown to adequately sterilise allograft bone, commonly used in femoral impaction bone grafting to treat bone loss at revision hip replacement, without significantly affecting its mechanical properties. The objective of this study was to evaluate whether use of 15kGy irradiated bone affects the initial mechanical stability of the femoral stem prosthesis, as determined by micromotion in a comprehensive testing apparatus, in a clinically relevant time zero in vitro model of revision hip replacement. METHODS Morselised ovine bone was nonirradiated (control), or irradiated at 15kGy or 60kGy. For each dose, six ovine femurs were implanted with a cemented polished taper stem following femoral impaction bone grafting. Using testing apparatus that reproduces stem loading, stems were cyclically loaded and triaxial micromotion of the stem relative to the bone was measured at the proximal and distal stem regions using non-contact laser transducers and linear variable differential transformers. FINDINGS There were no significant differences in proximal or distal stem micromotion between groups for all directions (p≤0.80), apart for significantly greater distal stem medial-lateral micromotion in the 60kGy group compared to the 15kGy group (P=0.03), and near-significance in the anterior-posterior direction (P=0.08, power=0.85). INTERPRETATION Using a clinically relevant model and loading apparatus, irradiation of bone at 15kGy does not affect initial femoral stem stability following femoral impaction bone grafting.
Collapse
Affiliation(s)
- John J Costi
- Biomechanics & Implants Research Group, The Medical Device Research Institute, Flinders University, South Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boisgard S, Descamps S, Bouillet B. Complex primary total hip arthroplasty. Orthop Traumatol Surg Res 2013; 99:S34-42. [PMID: 23375960 DOI: 10.1016/j.otsr.2012.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/23/2012] [Indexed: 02/02/2023]
Abstract
Although total hip arthroplasty is now a classic procedure that is well controlled by orthopedic surgeons, some cases remain complex. Difficulties may be due to co-morbidities: obesity, skin problems, muscular problems, a history of neurological disease or associated morphological bone deformities. Obese patients must be informed of their specific risks and a surgical approach must be used that obtains maximum exposure. Healing of incisions is not a particular problem, but adhesions must be assessed. Neurological diseases may require tenotomy and the use of implants that limit instability. Specific techniques or implants are necessary to respect hip biomechanics (offset, neck-shaft angle) in case of a large lever arm or coxa vara. In case of arthrodesis, before THA can be performed, the risk of infection must be specifically evaluated if the etiology is infection, and the strength of the gluteal muscles must be determined. Congenital hip dysplasia presents three problems: the position and coverage of the cup, placement of a specific or custom made femoral stem, with an osteotomy if necessary, and finally lowering the femoral head into the cup by freeing the soft tissues or a shortening osteotomy. Acetabular dysplasia should not be underestimated in the presence of significant bone defect (BD), and reconstruction with a bone graft can be proposed. Sequelae from acetabular fractures presents a problem of associated BD. Internal fixation hardware is rarely an obstacle but the surgical approach should take this into account. Treatment of acetabular protrusio should restore a normal center of rotation, and prevent recurrent progressive protrusion. The use of bone grafts and reinforcement rings are indispensible. Femoral deformities may be congenital or secondary to trauma or osteotomy. They must be evaluated to restore hip biomechanics that are as close to normal as possible. Fixation of implants should restore anteversion, length and the lever arm. Most problems that can make THA a difficult procedure may be anticipated with proper understanding of the case and thorough preoperative planning.
Collapse
Affiliation(s)
- S Boisgard
- Service de chirurgie orthopédique et traumatologique, hôpital Gabriel-Montpied, CHU de Clermont-Ferrand,Clermont-Ferrand, France.
| | | | | |
Collapse
|