1
|
Hayes EJ, Hurst C, Granic A, Sayer AA, Stevenson E. Challenges in Conducting Exercise Recovery Studies in Older Adults and Considerations for Future Research: Findings from a Nutritional Intervention Study. Geriatrics (Basel) 2024; 9:116. [PMID: 39311241 PMCID: PMC11417820 DOI: 10.3390/geriatrics9050116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Maximising the potential benefit of resistance exercise (RE) programs by ensuring optimal recovery is an important aim of exercise prescription. Despite this, research surrounding recovery from RE in older adults is limited and inconsistent. The following randomised controlled trial was designed to investigate the efficacy of milk consumption for improving recovery from RE in older adults. However, the study encountered various challenges that may be applicable to similar studies. These include recruitment issues, a lack of measurable perturbations in muscle function following RE, and potential learning effects amongst participants. Various considerations for exercise research have arisen from the data which could inform the design of future studies in this area. These include (i) recruitment-consider ways in which the study design could be altered to aid recruitment or allow a longer recruitment period; (ii) learning effects and familiarisation-consider potential learning effects of outcome measures and adjust familiarisation accordingly; (iii) identify, validate and optimise protocols for outcome measures that are applicable for the specific population; (iv) adjust the exercise protocol according to the specific aims of the study (e.g., are you replicating a usual exercise bout or is the intent to cause large amounts of muscle damage?).
Collapse
Affiliation(s)
- Eleanor Jayne Hayes
- Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Christopher Hurst
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (C.H.); (A.G.); (A.A.S.)
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Antoneta Granic
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (C.H.); (A.G.); (A.A.S.)
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Avan A. Sayer
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (C.H.); (A.G.); (A.A.S.)
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Emma Stevenson
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| |
Collapse
|
2
|
Asaeda M, Hirata K, Ohnishi T, Ito H, Miyahara S, Fukuhara K, Nakashima Y, Iwamoto Y, Ushio K, Mikami Y, Adachi N. Time course of biomechanics during jump landing before and after two different fatigue tasks. Asia Pac J Sports Med Arthrosc Rehabil Technol 2024; 37:40-46. [PMID: 39113678 PMCID: PMC11305143 DOI: 10.1016/j.asmart.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/14/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Objective Muscle fatigue contributes to anterior cruciate ligament (ACL) injuries, with increased knee and hip abduction observed during fatigue. However, there have been no reports revealing the differences between fatigue tasks or the duration of these changes. In this study, we conducted single-leg drop landings before and after hip and knee fatigue tasks to elucidate the changes in lower limb biomechanics over time. Methods Twenty-two male participants performed single-leg drop landings before, immediately after, and 5, 10, and 15 min after fatigue tasks involving isokinetic hip abduction/adduction (hip fatigue task [HFT]) and knee extension/flexion (knee fatigue task [KFT]). Hip and knee kinematic and kinetic data were collected using a three-dimensional motion analysis device and two force plates. A two-way ANOVA was performed with both the fatigue task (HFT and KFT) and time point (Time 1 to Time 4) as factors, and the main effects and interactions were calculated. Results The knee adduction angle after the HFT was significantly greater than that after KFT immediately following the fatigue task. The knee flexion moment was significantly lower in the KFT, whereas the knee adduction and internal rotation moments were significantly higher in the HFT immediately after the fatigue task. Conclusion This study revealed distinct kinematic and kinetic changes specific to each fatigue task, particularly in the frontal plane for hip joint tasks and the sagittal plane for knee joint tasks. These findings could assist in the development of ACL injury prevention programs tailored to the functional improvement and exercise capacity of each joint.
Collapse
Affiliation(s)
- Makoto Asaeda
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health, 2252 Nakanoshima, Wakayama, 640-8392, Japan
| | - Kazuhiko Hirata
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomoya Ohnishi
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health, 2252 Nakanoshima, Wakayama, 640-8392, Japan
| | - Hideyuki Ito
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health, 2252 Nakanoshima, Wakayama, 640-8392, Japan
| | - So Miyahara
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health, 2252 Nakanoshima, Wakayama, 640-8392, Japan
| | - Koki Fukuhara
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuki Nakashima
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yoshitaka Iwamoto
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kai Ushio
- Department of Rehabilitation Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan
| | - Yukio Mikami
- Department of Rehabilitation Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopaedics Surgery, Graduated School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan
| |
Collapse
|
3
|
Fusagawa H, Sato T, Yamada T, Ashida Y, Kimura I, Naito A, Tokuda N, Yamauchi N, Ichise N, Terashima Y, Ogon I, Teramoto A, Yamashita T, Tohse N. Skeletal muscle endurance declines with impaired mitochondrial respiration and inadequate supply of acetyl-CoA during muscle fatigue in 5/6 nephrectomized rats. J Appl Physiol (1985) 2023; 135:731-746. [PMID: 37560765 PMCID: PMC10642514 DOI: 10.1152/japplphysiol.00226.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Chronic kidney disease (CKD)-related cachexia increases the risks of reduced physical activity and mortality. However, the physiological phenotype of skeletal muscle fatigue and changes in intramuscular metabolites during muscle fatigue in CKD-related cachexia remain unclear. In the present study, we performed detailed muscle physiological evaluation, analysis of mitochondrial function, and comprehensive analysis of metabolic changes before and after muscle fatigue in a 5/6 nephrectomized rat model of CKD. Wistar rats were randomized to a sham-operation (Sham) group that served as a control group or a 5/6 nephrectomy (Nx) group. Eight weeks after the operation, in situ torque and force measurements in plantar flexor muscles in Nx rats using electrical stimulation revealed a significant decrease in muscle endurance during subacute phase related to mitochondrial function. Muscle mass was reduced without changes in the proportions of fiber type-specific myosin heavy chain isoforms in Nx rats. Pyruvate-malate-driven state 3 respiration in isolated mitochondria was impaired in Nx rats. Protein expression levels of mitochondrial respiratory chain complexes III and V were decreased in Nx rats. Metabolome analysis revealed that the increased supply of acetyl CoA in response to fatigue was blunted in Nx rats. These findings suggest that CKD deteriorates skeletal muscle endurance in association with mitochondrial dysfunction and inadequate supply of acetyl-CoA during muscle fatigue.NEW & NOTEWORTHY Mitochondrial dysfunction is associated with decreased skeletal muscle endurance in chronic kidney disease (CKD), but the muscle physiological phenotype and major changes in intramuscular metabolites during muscle fatigue in CKD-related cachexia remain unclear. By using a 5/6 nephrectomized CKD rat model, the present study revealed that CKD is associated with reduced tetanic force in response to repetitive stimuli in a subacute phase, impaired mitochondrial respiration, and inadequate supply of acetyl-CoA during muscle fatigue.
Collapse
Affiliation(s)
- Hiroyori Fusagawa
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Iori Kimura
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Azuma Naito
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Tokuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Yamauchi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nobutoshi Ichise
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshinori Terashima
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Izaya Ogon
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Hayes EJ, Stevenson E, Sayer AA, Granic A, Hurst C. Recovery from Resistance Exercise in Older Adults: A Systematic Scoping Review. SPORTS MEDICINE - OPEN 2023; 9:51. [PMID: 37395837 DOI: 10.1186/s40798-023-00597-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Resistance exercise is recommended for maintaining muscle mass and strength in older adults. However, little is known about exercise-induced muscle damage and recovery from resistance exercise in older adults. This may have implications for exercise prescription. This scoping review aimed to identify and provide a broad overview of the available literature, examine how this research has been conducted, and identify current knowledge gaps relating to exercise-induced muscle damage and recovery from resistance exercise in older adults. METHODS Studies were included if they included older adults aged 65 years and over, and reported any markers of exercise-induced muscle damage after performing a bout of resistance exercise. The following electronic databases were searched using a combination of MeSH terms and free text: MEDLINE, Scopus, Embase, SPORTDiscus and Web of Science. Additionally, reference lists of identified articles were screened for eligible studies. Data were extracted from eligible studies using a standardised form. Studies were collated and are reported by emergent theme or outcomes. RESULTS A total of 10,976 possible articles were identified and 27 original research articles were included. Findings are reported by theme; sex differences in recovery from resistance exercise, symptoms of exercise-induced muscle damage, and biological markers of muscle damage. CONCLUSIONS Despite the volume of available data, there is considerable variability in study protocols and inconsistency in findings reported. Across all measures of exercise-induced muscle damage, data in women are lacking when compared to males, and rectifying this discrepancy should be a focus of future studies. Current available data make it challenging to provide clear recommendations to those prescribing resistance exercise for older people.
Collapse
Affiliation(s)
- Eleanor Jayne Hayes
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Emma Stevenson
- Faculty of Medical Sciences, Population Health Sciences Institute, Newcastle University, Cookson Building, 1St Floor, Newcastle Upon Tyne, UK.
| | - Avan Aihie Sayer
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
| | - Antoneta Granic
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
| | - Christopher Hurst
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
5
|
Jeon W, Borrelli J, Hsiao HY. Effects of Visual Input Absence on Balance Recovery Responses to Lateral Standing Surface Perturbations in Older and Younger Adults. J Appl Biomech 2023; 39:184-192. [PMID: 37142405 DOI: 10.1123/jab.2022-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/08/2023] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
Although the ability to recover balance in the lateral direction has important implications with regard to fall risk in older adults, the effect of visual input on balance recovery in response to lateral perturbation and the effect of age are not well studied. We investigated the effect of visual input on balance recovery response to unpredictable lateral surface perturbations and its age-related changes. Ten younger and 10 older healthy adults were compared during balance recovery trials performed with the eyes open and eyes closed (EC). Compared with younger adults, older adults showed increased electromyography (EMG) peak amplitude of the soleus and gluteus medius, reduced EMG burst duration of the gluteus maximus and medius, and increased body sway (SD of the body's center of mass acceleration) in EC. In addition, older adults exhibited a smaller % increase (EC-eyes open) of the ankle eversion angle, hip abduction torque, EMG burst duration of the fibularis longus, and a greater % increase of body sway. All kinematics, kinetics, and EMG variables were greater in EC compared with eyes open in both groups. In conclusion, the absence of visual input negatively affects the balance recovery mechanism more in older adults compared with younger adults.
Collapse
Affiliation(s)
- Woohyoung Jeon
- Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, TX,USA
| | - James Borrelli
- Department of Biomedical Engineering, Stevenson University, Owings Mills, MD,USA
| | - Hao-Yuan Hsiao
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX,USA
| |
Collapse
|
6
|
Kitase Y, Vallejo JA, Dallas SL, Xie Y, Dallas M, Tiede-Lewis L, Moore D, Meljanac A, Kumar C, Zhao C, Rosser J, Brotto M, Johnson ML, Liu Z, Wacker MJ, Bonewald L. Body weight influences musculoskeletal adaptation to long-term voluntary wheel running during aging in female mice. Aging (Albany NY) 2022; 15:308-352. [PMID: 36403149 PMCID: PMC9925690 DOI: 10.18632/aging.204390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022]
Abstract
Frailty is the hallmark of aging that can be delayed with exercise. The present studies were initiated based on the hypothesis that long-term voluntary wheel running (VWR) in female mice from 12 to 18 or 22 months of age would have beneficial effects on the musculoskeletal system. Mice were separated into high (HBW) and low (LBW) body weight based on final body weights upon termination of experiments. Bone marrow fat was significantly higher in HBW than LBW under sedentary conditions, but not with VWR. HBW was more protective for soleus size and function than LBW under sedentary conditions, however VWR increased soleus size and function regardless of body weight. VWR plus HBW was more protective against muscle loss with aging. Similar effects of VWR plus HBW were observed with the extensor digitorum longus, EDL, however, LBW with VWR was beneficial in improving EDL fatigue resistance in 18 mo mice and was more beneficial with regards to muscle production of bone protective factors. VWR plus HBW maintained bone in aged animals. In summary, HBW had a more beneficial effect on muscle and bone with aging especially in combination with exercise. These effects were independent of bone marrow fat, suggesting that intrinsic musculoskeletal adaptions were responsible for these beneficial effects.
Collapse
Affiliation(s)
- Yukiko Kitase
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Julian A. Vallejo
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas City, MO 64108, USA
| | - Sarah L. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Mark Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - LeAnn Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - David Moore
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Anthony Meljanac
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Corrine Kumar
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Carrie Zhao
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Jennifer Rosser
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas, Arlington, TX 76019, USA
| | - Mark L. Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Ziyue Liu
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Michael J. Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas City, MO 64108, USA
| | - Lynda Bonewald
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Jessica Lo HT, Yiu TL, Wang Y, Feng L, Li G, Lui MPM, Lee WYW. Fetal muscle extract improves muscle function and performance in aged mice. Front Physiol 2022; 13:816774. [PMID: 36277186 PMCID: PMC9585271 DOI: 10.3389/fphys.2022.816774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Loss of skeletal muscle mass and function is one of the major musculoskeletal health problems in the aging population. Recent studies have demonstrated differential proteomic profiles at different fetal stages, which might be associated with muscle growth and development. We hypothesized that extract derived from fetal muscle tissues at the stage of hypertrophy could ameliorate the loss of muscle mass and strength in aged mice. Methods: To allow sufficient raw materials for investigation, skeletal muscle extract from fetal sheep at week 16 of gestation and maternal tissue were used in the present study. iTRAQ (isobaric tags for relative and absolute quantitation) and KEGG pathway analyses identified differentially expressed proteins in fetal sheep muscle extract vs. adult sheep muscle extract. Effects of FSME and ASME on human myoblast proliferation were studied. To examine the effect of FSME in vivo, C57BL/6 male mice at 20 months of age were subjected to intramuscular administration of FSME or vehicle control for 8 weeks. A grip strength test and ex vivo muscle force frequency test were conducted. Finally, serum samples were collected for multiplex analysis to determine potential changes in immunological cytokines upon FSME injection. Results: Compared with ASME, 697 and 412 peptides were upregulated and downregulated, respectively, in FSME, as indicated by iTRAQ analysis. These peptides were highly related to muscle development, function, and differentiation from GO enrichment analysis. FSME promoted cell proliferation of myoblast cells (+300%, p < 0.01) without causing significant cytotoxicity at the tested concentration range compared with ASME. After 8 weeks of FSME treatment, the percentage of lean mass (+10%, p < 0.05), grip strength (+50%, p < 0.01), and ability in fatigue resistance were significantly higher than those of the control group. Isometric forces stimulated by different frequencies were higher in the control group. Histologically, the control group showed a larger cross-sectional area (+20%, p < 0.01) than the FSME group. The multiplex assay indicated that FSME treatment did not lead to an elevated circulatory level of inflammatory cytokines. Of note, after FSME treatment, we observed a significant drop in the circulating level of IL-12 (p40) from 90.8 ± 48.3 pg/ml to 82.65 ± 4.4 pg/ml, G-CSF from 23476 ± 8341.9 pg/ml to 28.35 ± 24.2 pg/ml, KC from 97.09 ± 21.2 pg/ml to 29.2 ± 7.2 pg/ml, and RANTES from 325.4 ± 17.3 pg/ml to 49.96 ± 32.1 pg/ml. Conclusion: This is the first study demonstrating the beneficial effect of fetal muscle extract on muscle health in aged mice. Further analysis of the active ingredients of the extract will shed light on the development of a novel treatment for sarcopenia.
Collapse
Affiliation(s)
- Hiu Tung Jessica Lo
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Tsz Lam Yiu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yujia Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Feng
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | | | - Wayne Yuk-Wai Lee
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Wayne Yuk-Wai Lee,
| |
Collapse
|
8
|
Hayes EJ, Stevenson E, Sayer AA, Granic A, Hurst C. Recovery from resistance exercise in older adults: a protocol for a scoping review. BMJ Open Sport Exerc Med 2022; 8:e001229. [PMID: 35136657 PMCID: PMC8804680 DOI: 10.1136/bmjsem-2021-001229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Resistance exercise has been shown to improve muscle health in older adults and is recommended as a front-line treatment for many health conditions, including sarcopenia and frailty. However, despite considerable research detailing the potential benefits of resistance exercise programmes, little is known about how older adults recover from individual exercise sessions. This scoping review will examine the current evidence surrounding the acute post-exercise effects of resistance exercise and the exercise recovery process in older adults to inform future research and exercise prescription guidelines for older adults. Methods and analysis The methodological framework of Arksey and O’Malley (2005) will be applied for this scoping review. A systematic search of five online databases and the hand-searching of reference lists of identified articles will be used to identify relevant papers. Studies that aim to measure exercise-induced muscle damage or exercise recovery following a resistance exercise session in participants aged 65 years and over will be included. Qualitative and quantitative data from relevant studies will be presented in a tabular format. Results will be summarised in narrative format. Key findings will be discussed concerning resistance exercise prescription in older adults. Dissemination This review will be used to direct further research surrounding the exercise recovery process from resistance exercise in older adults and will also aid in designing specific exercise prescription guidelines for an older population. Findings will be relevant to researchers, clinicians, health workers and policy-makers and disseminated through publications and presentations.
Collapse
Affiliation(s)
- Eleanor Jayne Hayes
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emma Stevenson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Avan Aihie Sayer
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Christopher Hurst
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
McCrum C, Vaes AW, Delbressine JM, Koopman M, Liu WY, Willems P, Meijer K, Spruit MA. A pilot study on the feasibility and effectiveness of treadmill-based perturbations for assessing and improving walking stability in chronic obstructive pulmonary disease. Clin Biomech (Bristol, Avon) 2022; 91:105538. [PMID: 34823220 DOI: 10.1016/j.clinbiomech.2021.105538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Falls risk is elevated in chronic obstructive pulmonary disease (COPD). However, there is a lack of evidence regarding the contributing factors. Here, we examined the feasibility of, and initial responses to, large walking perturbations in COPD, as well as the adaptation potential of people with COPD to repeated walking perturbations that might indicate potential for perturbation-based balance training in COPD. METHODS 12 participants with COPD undergoing inpatient pulmonary rehabilitation and 12 age-gender-matched healthy control participants walked on an instrumented treadmill and experienced repeated treadmill-belt acceleration perturbations (leading to a forward balance loss). Three-dimensional motion capture was used to quantify the stability of participants body position during perturbed walking. Feasibility, stability following the initial perturbations and adaptation to repeated perturbations were assessed. FINDINGS Using perturbations in this manner was feasible in this population (no harness assists and participants completed the minimum number of perturbations). No clear, specific deficit in reactive walking stability in COPD was found (no significant effects of participant group on stability or recovery step outcomes). There were mixed results for the adaptability outcomes which overall indicated some adaptability to repeated perturbations, but not to the same extent as the healthy control participants. INTERPRETATION Treadmill-based perturbations during walking are feasible in COPD. COPD does not appear to result in significant deficits in stability following sudden perturbations and patients do demonstrate some adaptability to repeated perturbations. Perturbation-based balance training may be considered for fall prevention in research and practice in people with COPD.
Collapse
Affiliation(s)
- Christopher McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Anouk W Vaes
- Research and Development, CIRO, Horn, the Netherlands
| | | | - Maud Koopman
- Research and Development, CIRO, Horn, the Netherlands; Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Wai-Yan Liu
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands; Research and Development, CIRO, Horn, the Netherlands; Department of Orthopaedic Surgery, Máxima Medical Center, Eindhoven, the Netherlands; Department of Orthopaedic Surgery, Catharina Hospital, Eindhoven, the Netherlands
| | - Paul Willems
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Kenneth Meijer
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Martijn A Spruit
- Research and Development, CIRO, Horn, the Netherlands; Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
10
|
Hayes EJ, Granic A, Hurst C, Dismore L, Sayer AA, Stevenson E. Older Adults' Knowledge and Perceptions of Whole Foods as an Exercise Recovery Strategy. Front Nutr 2021; 8:748882. [PMID: 34671632 PMCID: PMC8520979 DOI: 10.3389/fnut.2021.748882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Resistance exercise is a widely advocated treatment for improving muscle strength and performance in older adults. Maximizing the benefit of resistance exercise by ensuring optimal recovery is an important aim and studies are now seeking interventions to expedite exercise recovery in older people. A recovery strategy that has acquired considerable interest is the consumption of protein, and more recently, the consumption of protein-rich whole foods. This study aimed to understand the perspectives of community-dwelling older adults, and determine their knowledge of exercise recovery strategies, their preferences for recovery strategies, and their attitudes toward using whole foods, such as milk as a post-exercise recovery aid. Two hundred ninety-one older adults (74 ± 4 years) were recruited to complete a self-administered online survey. A mixed methods approach was used to gather in-depth data from the cohort. Participants were asked to complete a combination of free-text (open-ended) and multiple-choice questions. Content analysis was conducted on responses to open-ended questions through a systematic classification process of coding. The most common recovery strategies reported were heat treatment, rest, and massage. Nutrition was rarely cited as a recovery strategy. Less than 2% of respondents mentioned nutrition, of these, only half mentioned a protein source. Forty-nine percent expressed negative opinions toward recovery supplements (e.g., “waste of money”) compared to 7% expressing positive opinions. Whole foods such as milk, meat, fish, and fruit, were deemed to be a more acceptable recovery strategy than supplements by 80% of respondents. Those that found whole foods to be equally as acceptable (18%), cited efficacy as their main concern, and those that declared whole foods less acceptable (2%) had no common reason. Despite the high acceptability of whole foods, only 35% were aware that these foods could aid recovery. When asked about milk specifically, the majority of older adults (73%) said this would, or might, be an acceptable exercise recovery strategy. Those that found milk an unacceptable recovery strategy (27%) often cited disliking milk or an allergy/intolerance. In conclusion, whilst whole foods represented an acceptable recovery intervention for older adults, the majority were unaware of the potential benefits of nutrition for post-exercise recovery.
Collapse
Affiliation(s)
- Eleanor Jayne Hayes
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher Hurst
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lorelle Dismore
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Avan A Sayer
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emma Stevenson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
11
|
Papa EV, Patterson RM, Bugnariu N. "Going Backward": Effects of age and fatigue on posterior-directed falls in Parkinson disease. NeuroRehabilitation 2021; 49:151-159. [PMID: 34180424 DOI: 10.3233/nre-210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Nearly half of persons with Parkinson disease (PD) report fatigue as a factor in their fall history. However, it is unknown whether these self-reported falls are caused by a sensation of fatigue or performance fatigue. OBJECTIVE We sought to investigate the influences of performance fatigue and age on postural control in persons with PD. METHODS Individuals with PD (n = 14) underwent postural control assessments before (T0) and immediately after (T1) fatiguing exercise. Biomechanical data were gathered on participants completing a treadmill-induced, posterior-directed fall. Performance fatigue was produced using lower extremity resistance exercise on an isokinetic ergometer. Repeated measures ANCOVAs were used with age as a covariate to determine the effects of performance fatigue on biomechanical variables. RESULTS After adjustment for age, there was a statistically significant difference in peak center of pressure (COP) latency during the support phase of recovery. Pairwise comparisons demonstrated a decrease in peak ankle displacement from T0 to T1. Age was also found to be significantly related to reaction time and peak knee displacement while participants were fatigued. CONCLUSIONS The decreased peak COP latency, along with decreased ankle angular displacement, suggest that persons with PD adopt a stiffening strategy in response to backward directed falls. Postural stiffening is not uncommon in persons with PD and could be a risk factor for falls. Older individuals with PD demonstrate slower mobility scores and decreased reaction times in the setting of fatigue, suggesting a combined effect of the aging and fatigue processes.
Collapse
Affiliation(s)
- Evan V Papa
- School of Rehabilitation and Communication Sciences, Idaho State University, Meridian, ID, USA
| | - Rita M Patterson
- University of North Texas Health Science Center, Fort Worth, TX, USA
| | | |
Collapse
|
12
|
Allin LJ, Madigan ML. Effects of Manual Material Handling Workload on Measures of Fall Risk. IISE Trans Occup Ergon Hum Factors 2020; 8:155-165. [PMID: 33190617 DOI: 10.1080/24725838.2020.1850552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OCCUPATIONAL APPLICATIONS We found, contrary to expectations, that performing a fatiguing simulated heavy manual material handling (MMH) task did not adversely affect the risk of trip-induced falls when compared to a less-fatiguing light MMH task. However, when considering these MMH tasks together rather than in comparison, our results provide evidence for adverse effects of fatigue on both gait and the ability to recover balance after tripping. The current results provide additional evidence that physical fatigue increases fall risk, start to clarify the mechanisms by which this increase occurs, and can help in developing and evaluating fall prevention strategies targeting these mechanisms.
Collapse
Affiliation(s)
- Leigh J Allin
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Michael L Madigan
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
13
|
Martins PP, Porto JM, Vieira FT, Trimer IR, Capato LL, de Abreu DCC. The effect of unilateral muscle fatigue of hip abductor muscles on balance and functional capacity in community-dwelling older women. Arch Gerontol Geriatr 2020; 91:104222. [PMID: 32784078 DOI: 10.1016/j.archger.2020.104222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Hip abductor muscles are important for the maintenance of postural stability, mainly on the mediolateral direction and unipodal support conditions. The objective of the present study was to evaluate the effect of unilateral induced fatigue of hip abductor muscles on balance and functional capacity of older women. METHODS The study included physically independent women aged 60-75 years. We assessed static balance with the single limb stance test (SLS) and evaluated functional capacity with the maximum gait speed (MGS) and step test (ST). We ran the protocol of hip abductor muscle fatigue with a Biodex isokinetic dynamometer. Assessment of balance and functional capacity happened before and after the muscle fatigue protocol. We applied the t-test for repeated measures to determine whether unilateral hip abductor muscle fatigue influences the performance in the tests (SLS, MGS and ST). RESULTS The protocol of hip abductor muscle fatigue negatively affected all three evaluated tasks: SLS (p = 0.000), ST (p = 0.000) and MGS (p = 0.000). However, the single limb stance test was the most task affected (effect size = 0.51, pre- and post-fatigue difference = 28.1 %). CONCLUSION After the unilateral muscle fatigue of hip abductors, we observed the worst performance on clinical tests, mainly regarding the SLS test, which shows the involvement of hip abductors during usual motor tasks. However, the small magnitude of the limitation of functional tests (MGS and ST) suggests the presence of postural compensations.
Collapse
Affiliation(s)
- Pâmela Precinotto Martins
- Physiotherapy Course, Department of Health Sciences, Rehabilitation and Functional Performance Program, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, 14049-900, SP Brazil.
| | - Jaqueline Mello Porto
- Physiotherapy Course, Department of Health Sciences, Rehabilitation and Functional Performance Program, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, 14049-900, SP Brazil.
| | - Flávio Tavares Vieira
- Physiotherapy Course, Department of Health Sciences, Rehabilitation and Functional Performance Program, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, 14049-900, SP Brazil.
| | - Isabella Ramirez Trimer
- Physiotherapy Course, Department of Health Sciences, Rehabilitation and Functional Performance Program, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, 14049-900, SP Brazil.
| | - Luana Letícia Capato
- Physiotherapy Course, Department of Health Sciences, Rehabilitation and Functional Performance Program, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, 14049-900, SP Brazil.
| | - Daniela Cristina Carvalho de Abreu
- Physiotherapy Course, Department of Health Sciences, Rehabilitation and Functional Performance Program, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, 14049-900, SP Brazil.
| |
Collapse
|
14
|
Games KE, Winkelmann ZK, McGinnis KD, McAdam JS, Pascoe DD, Sefton JM. Functional Performance of Firefighters After Exposure to Environmental Conditions and Exercise. J Athl Train 2020; 55:71-79. [PMID: 31876454 PMCID: PMC6961651 DOI: 10.4085/1062-6050-75-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Slips, trips, and falls are leading causes of musculoskeletal injuries in firefighters. Researchers have hypothesized that heat stress is the major contributing factor to these fireground injuries. OBJECTIVE To examine the effect of environmental conditions, including hot and ambient temperatures, and exercise on functional and physiological outcome measures, including balance, rectal temperature, and perceived exertion. DESIGN Randomized controlled clinical trial. SETTING Laboratory environmental chamber. PATIENTS OR OTHER PARTICIPANTS A total of 13 healthy, active career firefighters (age = 26 ± 6 years [range = 19-35 years], height = 178.61 ± 4.93 cm, mass = 86.56 ± 16.13 kg). INTERVENTION(S) Independent variables consisted of 3 conditions (exercise in heat [37.41°C], standing in heat [37.56°C], and exercise in ambient temperature [14.24°C]) and 3 data-collection times (preintervention, postintervention, and postrecovery). Each condition was separated from the others by at least 1 week and lasted a maximum of 40 minutes or until the participant reached volitional fatigue or a rectal temperature of 40.0°C. MAIN OUTCOME MEASURE(S) Firefighting-specific functional balance performance index, rectal temperature, and rating of perceived exertion. RESULTS Exercise in the heat decreased functional balance, increased rectal temperature, and altered the perception of exertion compared with the other intervention conditions. CONCLUSIONS A bout of exercise in a hot, humid environment increased rectal temperature in a similar way to that reported in the physically active population and negatively affected measures of functional balance. Rather than independently affecting balance, the factors of exercise and heat stress appeared to combine, leading to an increased likelihood of slips, trips, and falls.
Collapse
Affiliation(s)
- Kenneth E. Games
- Department of Applied Medicine and Rehabilitation, Indiana State University, Terre Haute
| | - Zachary K. Winkelmann
- Department of Applied Medicine and Rehabilitation, Indiana State University, Terre Haute
| | - Kaitlin D. McGinnis
- Warrior Research Center, School of Kinesiology, Auburn University, AL. Dr McAdam is now with the Center for Exercise Medicine, University of Alabama at Birmingham and Dr Winkelmann is now with the Arnold School of Public Health, University of South Carolina
| | - Jeremy S. McAdam
- Warrior Research Center, School of Kinesiology, Auburn University, AL. Dr McAdam is now with the Center for Exercise Medicine, University of Alabama at Birmingham and Dr Winkelmann is now with the Arnold School of Public Health, University of South Carolina
| | - David D. Pascoe
- Warrior Research Center, School of Kinesiology, Auburn University, AL. Dr McAdam is now with the Center for Exercise Medicine, University of Alabama at Birmingham and Dr Winkelmann is now with the Arnold School of Public Health, University of South Carolina
| | - JoEllen M. Sefton
- Warrior Research Center, School of Kinesiology, Auburn University, AL. Dr McAdam is now with the Center for Exercise Medicine, University of Alabama at Birmingham and Dr Winkelmann is now with the Arnold School of Public Health, University of South Carolina
| |
Collapse
|
15
|
Effect of aging on H-reflex response to fatigue. Exp Brain Res 2019; 238:273-282. [DOI: 10.1007/s00221-019-05708-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/07/2019] [Indexed: 02/03/2023]
|
16
|
Camacho-Cardenosa M, Camacho-Cardenosa A, Brazo-Sayavera J, Olcina G, Tomas-Carus P, Timón R. Evaluation of 18-Week Whole-Body Vibration Training in Normobaric Hypoxia on Lower Extremity Muscle Strength in an Elderly Population. High Alt Med Biol 2019; 20:157-164. [PMID: 31021265 DOI: 10.1089/ham.2018.0129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Therapeutic benefits of hypoxic training have been suggested for clinical populations, such as elderly who could suffer loss of lower limb muscle strength and higher risk of falling. This study investigated the effects of 18 weeks of whole-body vibration (WBV) training in normobaric hypoxia on the strength parameters of an elderly population. Thirty-one healthy elderly participants were randomly assigned to a hypoxic whole-body vibration group (HWBV; n = 10), normoxic whole-body vibration group (NWBV; n = 11), or control group (n = 10). The experimental groups received the same vibration treatment in a hypoxia chamber (HWBV: 16.1% fraction of inspired oxygen [FiO2]; NWBV: 21.0% FiO2). Isokinetic leg muscle strength was evaluated using a Biodex System-3 isokinetic dynamometer. Body composition was obtained with dual-energy X-ray absorptiometry. There were no significant differences between groups in either strength or body composition parameters. The NWBV group showed statistically significant improvements in the maximal strength of knee extensors, with a small effect size (p = 0.004; d = 0.54). No significant differences were found in any variable of the HWBV group. The combination of WBV training and exposure to normobaric cyclic hypoxia carried out in the present study did not have an effect on strength parameters in healthy elderly subjects.
Collapse
Affiliation(s)
| | | | - Javier Brazo-Sayavera
- 2 Instituto Superior de Educación Física, Universidad de la República, Rivera, Uruguay.,3 Polo de Desarrollo Universitario EFISAL, Rivera, Uruguay
| | - Guillermo Olcina
- 1 Faculty of Sport Science, University of Extremadura, Caceres, Spain
| | - Pablo Tomas-Carus
- 4 Departamento de Desporto e Saúde, Escola de Cie^ncia e Tecnologia, Universidade de Évora, Évora, Portugal.,5 Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
| | - Rafael Timón
- 1 Faculty of Sport Science, University of Extremadura, Caceres, Spain
| |
Collapse
|
17
|
Walsh GS, Low DC, Arkesteijn M. The effect of prolonged level and uphill walking on the postural control of older adults. J Biomech 2018; 69:19-25. [PMID: 29398002 DOI: 10.1016/j.jbiomech.2018.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/24/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Prolonged walking could alter postural control leading to an increased risk of falls in older adults. The aim of this study was to determine the effect of level and uphill prolonged walking on the postural control of older adults. Sixteen participants (64 ± 5 years) attended 3 visits. Postural control was assessed during quiet standing and the limits of stability immediately pre, post and post 15 min rest a period of 30 min walking on level and uphill (5.25%) gradients on separate visits. Each 30 min walk was divided into 3 10 min blocks, the limits of stability were measured between each block. Postural sway elliptical area (PRE: 1.38 ± 0.22 cm2, POST: 2.35 ± 0.50 cm2, p = .01), medio-lateral (PRE: 1.33 ± 0.03, POST: 1.40 ± 0.03, p = .01) and anterio-posterior detrended fluctuation analysis alpha exponent (PRE: 1.43 ± 0.02, POST: 1.46 ± 0.02, p = .04) increased following walking. Medio-lateral alpha exponent decreased between post and post 15 min' rest (POST: 1.40 ± 0.03, POST15: 1.36 ± 0.03, p = .03). Forward limits of stability decreased between the second walking interval and post 15 min' rest (Interval 2: 28.1 ± 1.6%, POST15: 25.6 ± 1.6%, p = .01) and left limits of stability increased from pre-post 15 min' rest (PRE: 27.7 ± 1.2%, POST15: 29.4 ± 1.1%, p = .01). The neuromuscular alterations caused by prolonged walking decreased the anti-persistence of postural sway and altered the limits of stability in older adults. However, 15 min' rest was insufficient to return postural control to pre-exercise levels.
Collapse
Affiliation(s)
- Gregory S Walsh
- Department of Sport and Health Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| | - Daniel C Low
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3FD, UK
| | - Marco Arkesteijn
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3FD, UK
| |
Collapse
|
18
|
Kim MK, Yoo KT. The effects of open and closed kinetic chain exercises on the static and dynamic balance of the ankle joints in young healthy women. J Phys Ther Sci 2017; 29:845-850. [PMID: 28603357 PMCID: PMC5462684 DOI: 10.1589/jpts.29.845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/07/2017] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of the present study was to analyze the effects of open kinetic chain and closed kinetic chain exercises on the static and dynamic balance of ankle joints in young healthy women. [Subjects and Methods] Twenty women in their 20s were randomly assigned to two groups of ten women each: an open kinetic chain exercise group and a closed kinetic chain exercise group. Each group performed five sets of exercises three times per week for four weeks. Exercise intensity was increased once after two weeks. The subjects' Romberg's test results and their limits of stability were measured to evaluate their static and dynamic balance. The data were analyzed using a two-way repeated measures analysis of variance test. [Results] In the results of Romberg's test, the main effect of the time showed a significant difference in the trace length with eyes closed (Effect size: d=0.97). In the result of limits of stability, the interaction effect showed a significant difference in the backward, and the main effect of the group showed a significant difference in the forward. [Conclusion] The open kinetic chain and closed kinetic chain exercises both improved the balance of the subjects. The closed kinetic chain exercise was more effective at improving the dynamic balance of young healthy women than the open kinetic chain exercise.
Collapse
Affiliation(s)
- Mi-Kyoung Kim
- Department of Physical Therapy, Namseoul University, Republic of Korea
| | - Kyung-Tae Yoo
- Department of Physical Therapy, Namseoul University, Republic of Korea
| |
Collapse
|
19
|
Papa EV, Hassan M, Bugnariu N. The Effects of Performance Fatigability on Postural Control and Rehabilitation in the Older Patient. CURRENT GERIATRICS REPORTS 2016; 5:172-178. [PMID: 28154794 DOI: 10.1007/s13670-016-0179-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fatigue is common in older adults and has a significant effect on quality of life. Despite the high prevalence of fatigue in older individuals, several aspects are poorly understood. It is important to differentiate subjective fatigue complaints from fatigability of motor performance because the two are independent constructs with potentially distinct consequences on mobility. Performance fatigability is the magnitude of change in a performance criterion over a given time of task performance. Performance fatigability is a compulsory element of any strength training program, yet strength training is an important component of rehabilitation programs for older adults. The consequences of fatigability for older adults suggest that acute exercise of various types may result in acute impairments in postural control. The effects of performance fatigability on postural control in older adults are evaluated here to aid the rehabilitation clinician in making recommendations for evaluation of fall risks and exercise prescription.
Collapse
Affiliation(s)
- Evan V Papa
- University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Mahdi Hassan
- University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Nicoleta Bugnariu
- University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| |
Collapse
|