1
|
Lu Z, Wang T, Wei W, Liu J, Ji X, Zhao Y. Risk Factors of Proximal Junctional Failure After Adult Spinal Deformity Surgery: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 193:1-7. [PMID: 39349169 DOI: 10.1016/j.wneu.2024.09.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024]
Abstract
OBJECTIVE This study aimed to identify surgical, patient-specific, and radiographic risk factors for proximal junctional failure (PJF), a complex complication following adult spinal deformity (ASD) surgery. METHODS A systematic literature search was performed using PubMed, Embase, and the Cochrane Library. The literature on the risk factors for PJF after ASD surgery was included. The study patients were diagnosed with ASD and underwent surgery for ASD. PJF is defined as the occurrence of proximal junctional kyphosis, accompanied by one or more of the following characteristics: a fracture of the vertebral body at the upper instrumented vertebra (UIV) or UIV + 1 level, disruption of the posterior ligaments, or dislodgement of the instrumentation at the UIV. proximal junctional kyphosis, on the other hand, is determined by 2 criteria: a proximal junctional sagittal Cobb angle 1) of 10° and 2) at least 10° greater than the preoperative value. RESULTS Our pooled analysis of 11 unique studies (2037 patients) revealed significant differences in several preoperative and postoperative measures between PJF and non-PJF groups. CONCLUSIONS In ASD patients, the presence of concurrent osteoporosis or paravertebral muscle wasting significantly increases the risk of developing PJF. The use of bicortical screws, UIV screw angle exceeding 1°, and positioning the UIV in the lower thoracic or lumbar region also further elevate this risk. Lower preoperative SS, higher preoperative PI-LL, higher preoperative pelvic tilt, higher preoperative SVA, higher postoperative LL, and a greater change in LL characterize patients with PJF.
Collapse
Affiliation(s)
- Zicheng Lu
- Medical School of Chinese PLA, Beijing, China; Department of Orthopaedics, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tianhao Wang
- Department of Orthopaedics, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Wei
- Department of Orthopaedics Ⅱ, China Aerospace Science & Industry Corporation, Beijing, China
| | - Jianheng Liu
- Department of Orthopaedics, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xinran Ji
- Department of Orthopaedics, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yongfei Zhao
- Department of Orthopaedics, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Zhao G, He S, Chen E, Ma T, Wu K, Wu J, Li W, Song C. Biomechanical effects of osteoporosis severity on the occurrence of proximal junctional kyphosis following long-segment posterior thoracolumbar fusion. Clin Biomech (Bristol, Avon) 2023; 110:106132. [PMID: 37924756 DOI: 10.1016/j.clinbiomech.2023.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Proximal junctional kyphosis is a common long-term complication in adult spinal deformity surgery that involves long-segment posterior spinal fusion. However, the underlying biomechanical mechanisms of the impact of osteoporosis on proximal junctional kyphosis remain unclear. The present study was to evaluate adjacent segment degeneration and spine mechanical instability in osteoporotic patients who underwent long-segment posterior thoracolumbar fusion. METHODS Finite element models of the thoracolumbar spine T1-L5 with posterior long-segment T8-L5 fusion under different degrees of osteoporosis were constructed to analyze intervertebral disc stress characterization, vertebrae mechanical transfer, and pedicle screw system loads during various motions. FINDINGS Compared with normal bone mass, the maximum von Mises stresses of T7 and T8 were increased by 20.32%, 22.38%, 44.69%, 4.49% and 29.48%, 17.84%, 40.95%, 3.20% during flexion, extension, lateral bending, and axial rotation in the mild osteoporosis model, and by 21.21%, 18.32%, 88.28%, 2.94% and 37.76%, 15.09%, 61.47%, -0.04% in severe osteoporosis model. The peak stresses among T6/T7, T7/T8, and T8/T9 discs were 14.77 MPa, 11.55 MPa, and 2.39 MPa under lateral bending conditions for the severe osteoporosis model, respectively. As the severity of osteoporosis increased, stress levels on SCR8 and SCR9 intensified during various movements. INTERPRETATION Osteoporosis had an adverse effect on proximal junctional kyphosis. The stress levels in cortical bone, intervertebral discs and screws were increased with bone mass loss, which can easily lead to intervertebral disc degeneration, bone destruction as well as screw pullout. These factors have significantly affected or accelerated the occurrence of proximal junctional kyphosis.
Collapse
Affiliation(s)
- Gaiping Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Shenglan He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Eryun Chen
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Tong Ma
- Department of Bone and Joint Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Kunneng Wu
- Shanghai Institute of Medical Device Testing, Shanghai 201318, China
| | - Jie Wu
- Key Laboratory of Hydrodynamics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weiqi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Chengli Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
3
|
Zhao G, Wu K, Liu D, Zhao J, Liang P, Hang S. A biomechanical study of proximal junctional kyphosis after posterior long segment fusion with vertebral body augmentation. Clin Biomech (Bristol, Avon) 2021; 87:105415. [PMID: 34174675 DOI: 10.1016/j.clinbiomech.2021.105415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Background Proximal junction kyphosis is a common clinical complication of posterior long-segment spinal fusion and vertebral body augmentation method is one of the effective approaches to prevent it. The purpose of this study was to explore the biomechanical effect of proximal junction kyphosis after posterior long-segment thoracolumbar fusion with different vertebral augmentation schemes using finite element analysis. Methods 3D nonlinear finite element models of T1-L5 spine posterior long-segment T8-L5 thoracolumbar fusion combined with T7, T8 and T7&T8 vertebral bone cement augmentation were constructed from human spine CT data and clinical surgical operation scheme to analyze the von Mises stress in the vertebrae, intervertebral discs pressure and pedicle screws system loads under the flexion, extension, lateral bending and axial rotation motion. Findings Compared with thoracolumbar posterior long-segment fusion model, T7 maximum stress in T7, T8 and T7&T8 vertebrae augmentation models were reduced by 8.64%, 7.17%, 8.51%;0.79%, -3.88%,1.67%;4.02%, 5.30%, 4.27% and 3.18%, 3.06%, -6.38% under the flexion, extension, lateral bending and axial rotation motion. T7/T8 intervertebral disc pressure in T7, T8, T7&T8 vertebral augmentation models were 36.71Mpa,29.78Mpa,36.47Mpa;22.25Mpa,18.35Mpa,22.06Mpa;84.27Mpa,68.17Mpa, 83.89Mpa and 52.23Mpa, 38.78Mpa,52.10Mpa under the same condition. The maximum stress 178.2Mpa of pedicle screws is mainly distributed at the root of screw. Interpretation Thoracolumbar posterior long-segment fusion with proximal double-segment vertebral augmentation should be recommended to prevent proximal junction kyphosis than single-segment augmentation. Simulation results can provide theoretical foundations and assist surgeons in selecting the appropriate operation scheme.
Collapse
Affiliation(s)
- Gaiping Zhao
- Department of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Kunneng Wu
- Department of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongqing Liu
- Department of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jian Zhao
- Department of Orthopedics, Western Theater General Hospital, Chengdu, China
| | - Peng Liang
- Department of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shengqi Hang
- Department of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Sudres P, Evin M, Wagnac E, Bailly N, Diotalevi L, Melot A, Arnoux PJ, Petit Y. Tensile mechanical properties of the cervical, thoracic and lumbar porcine spinal meninges. J Mech Behav Biomed Mater 2021; 115:104280. [PMID: 33395616 DOI: 10.1016/j.jmbbm.2020.104280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The spinal meninges play a mechanical protective role for the spinal cord. Better knowledge of the mechanical behavior of these tissues wrapping the cord is required to accurately model the stress and strain fields of the spinal cord during physiological or traumatic motions. Then, the mechanical properties of meninges along the spinal canal are not well documented. The aim of this study was to quantify the elastic meningeal mechanical properties along the porcine spinal cord in both the longitudinal direction and in the circumferential directions for the dura-arachnoid maters complex (DAC) and solely in the longitudinal direction for the pia mater. This analysis was completed in providing a range of isotropic hyperelastic coefficients to take into account the toe region. METHODS Six complete spines (C0 - L5) were harvested from pigs (2-3 months) weighing 43±13 kg. The mechanical tests were performed within 12 h post mortem. A preload of 0.5 N was applied to the pia mater and of 2 N to the DAC samples, followed by 30 preconditioning cycles. Specimens were then loaded to failure at the same strain rate 0.2 mm/s (approximately 0.02/s, traction velocity/length of the sample) up to 12 mm of displacement. RESULTS The following mean values were proposed for the elastic moduli of the spinal meninges. Longitudinal DAC elastic moduli: 22.4 MPa in cervical, 38.1 MPa in thoracic and 36.6 MPa in lumbar spinal levels; circumferential DAC elastic moduli: 20.6 MPa in cervical, 21.2 MPa in thoracic and 12.2 MPa in lumbar spinal levels; and longitudinal pia mater elastic moduli: 18.4 MPa in cervical, 17.2 MPa in thoracic and 19.6 MPa in lumbar spinal levels. DISCUSSION The variety of mechanical properties of the spinal meninges suggests that it cannot be regarded as a homogenous structure along the whole length of the spinal cord.
Collapse
Affiliation(s)
- Patrice Sudres
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Morgane Evin
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada.
| | - Eric Wagnac
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Nicolas Bailly
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Lucien Diotalevi
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Anthony Melot
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada; Hôpital privé Clairval, Marseille, France
| | - Pierre-Jean Arnoux
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Yvan Petit
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| |
Collapse
|
5
|
Brummund M, Brailovski V, Petit Y, Facchinello Y, Mac-Thiong JM. Impact of spinal rod stiffness on porcine lumbar biomechanics: Finite element model validation and parametric study. Proc Inst Mech Eng H 2017; 231:1071-1080. [PMID: 28927347 DOI: 10.1177/0954411917732596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A three-dimensional finite element model of the porcine lumbar spine (L1-L6) was used to assess the effect of spinal rod stiffness on lumbar biomechanics. The model was validated through a comparison with in vitro measurements performed on six porcine spine specimens. The validation metrics employed included intervertebral rotations and the nucleus pressure in the first instrumented intervertebral disc. The numerical results obtained suggest that rod stiffness values as low as 0.1 GPa are required to reduce the mobility gradient between the adjacent and instrumented segments and the nucleus pressures across the porcine lumbar spine significantly. Stiffness variations above this threshold value have no significant effect on spine biomechanics. For such low-stiffness rods, intervertebral rotations in the instrumented zone must be monitored closely in order to guarantee solid fusion. Looking ahead, the proposed model will serve to examine the transverse process hooks and variable stiffness rods in order to further smooth the transition between the adjacent and instrumented segments, while preserving the stability of the instrumented zone, which is needed for fusion.
Collapse
Affiliation(s)
- Martin Brummund
- 1 Department of Mechanical Engineering, École de technologie supérieure, Montreal, QC, Canada.,2 Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - Vladimir Brailovski
- 1 Department of Mechanical Engineering, École de technologie supérieure, Montreal, QC, Canada.,2 Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - Yvan Petit
- 1 Department of Mechanical Engineering, École de technologie supérieure, Montreal, QC, Canada.,2 Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - Yann Facchinello
- 1 Department of Mechanical Engineering, École de technologie supérieure, Montreal, QC, Canada.,2 Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - Jean-Marc Mac-Thiong
- 2 Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,3 Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|