1
|
Sharma VJ, Adegoke JA, Afara IO, Stok K, Poon E, Gordon CL, Wood BR, Raman J. Near-infrared spectroscopy for structural bone assessment. Bone Jt Open 2023; 4:250-261. [PMID: 37051828 PMCID: PMC10079377 DOI: 10.1302/2633-1462.44.bjo-2023-0014.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Aims Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds. Methods A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp). Results NIRS scans on both the inner (trabecular) surface or outer (cortical) surface accurately identified variations in bone collagen, water, mineral, and fat content, which then accurately predicted bone volume fraction (BV/TV, inner R2 = 0.91, outer R2 = 0.83), thickness (Tb.Th, inner R2 = 0.9, outer R2 = 0.79), and cortical thickness (Ct.Th, inner and outer both R2 = 0.90). NIRS scans also had 100% classification accuracy in grading the quartile of bone thickness and quality. Conclusion We believe this is a fundamental step forward in creating an instrument capable of intraoperative real-time use. Cite this article: Bone Jt Open 2023;4(4):250–261.
Collapse
Affiliation(s)
- Varun J. Sharma
- Department of Surgery, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- Brian F. Buxton Department of Cardiac and Thoracic Aortic Surgery, Austin Hospital, Melbourne, Australia
- Spectromix Laboratory, Melbourne, Australia
| | - John A. Adegoke
- Spectromix Laboratory, Melbourne, Australia
- Centre for Biospectroscopy, Monash University, Melbourne, Australia
| | - Isaac O. Afara
- Spectromix Laboratory, Melbourne, Australia
- Centre for Biospectroscopy, Monash University, Melbourne, Australia
- Biomedical Spectroscopy Laboratory, Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- School of Information Technology and Electrical Engineering Faculty of Engineering, Architecture and Information Technology, Melbourne, Australia
| | - Kathryn Stok
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Eric Poon
- Spectromix Laboratory, Melbourne, Australia
- Department of Medicine, Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Claire L. Gordon
- Department of Medicine, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- Department of Infectious Diseases, Austin Hospital, Melbourne, Australia
| | - Bayden R. Wood
- Spectromix Laboratory, Melbourne, Australia
- Centre for Biospectroscopy, Monash University, Melbourne, Australia
| | - Jaishankar Raman
- Department of Surgery, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- Brian F. Buxton Department of Cardiac and Thoracic Aortic Surgery, Austin Hospital, Melbourne, Australia
- Spectromix Laboratory, Melbourne, Australia
- Correspondence should be sent to Jaishankar Raman. E-mail:
| |
Collapse
|
2
|
Bai X, Qiao G, Liu Z, Zhu W. Investigation of transient machining in the cortical bone drilling process by conventional and axial vibration-assisted drilling methods. Proc Inst Mech Eng H 2023; 237:489-501. [PMID: 36927106 DOI: 10.1177/09544119231157448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
A temperature exceeding the safety threshold and excessive drilling force occurring during bone drilling may lead to irreversible damage to bone tissue and postoperative complications. Previous studies have shown that vibration-assisted drilling methods could have lower temperatures and drilling forces than those of the conventional drilling method; we hypothesized that the main reason for these reductions stems from the differences in the transient machining processes between conventional and vibration-assisted drilling methods. To investigate these differences, comparative experiments and two-dimensional finite element models were performed and developed. The differences in the transient machining processes were verified by experimentation and clearly exhibited by the finite element models. Compared with the steady cutting process that produced continuous-spiral chips in the conventional drilling method, transient machining in the low-frequency vibration-assisted drilling method was a periodically dynamic cutting-separation process that produced uniform petal chips with specific settings of drilling and vibration parameters. Moreover, the transient machining process in the ultrasonic vibration-assisted drilling method was transformed into a combined action with high-speed impact and negative rake angle cutting processes; this action produced a large proportion of powdery chips. Therefore, it could be concluded that the superposed axial vibration significantly changed the transient machining process and radically changed the mechanical state and thermal environment; these changes were the main reason for the apparent differences in the drilling performance levels.
Collapse
Affiliation(s)
- Xiaofan Bai
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, China
| | - Guochao Qiao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Zhiqiang Liu
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, China
| | - Weidong Zhu
- Department of Mechanical Engineering, University of Maryland, Baltimore County, MD, USA
| |
Collapse
|
3
|
Xie Y, Zhang L, Xiong Q, Gao Y, Ge W, Tang P. Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation. Bone Res 2019; 7:25. [PMID: 31646015 PMCID: PMC6804735 DOI: 10.1038/s41413-019-0066-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is characterized by a decrease in bone mass and strength, rendering people prone to osteoporotic fractures caused by low-energy forces. The primary treatment strategy for osteoporotic fractures is surgery; however, the compromised and comminuted bones in osteoporotic fracture sites are not conducive to optimum reduction and rigid fixation. In addition, these patients always exhibit accompanying aging-related disorders, including high inflammatory status, decreased mechanical loading and abnormal skeletal metabolism, which are disadvantages for fracture healing around sites that have undergone orthopedic procedures. Since the incidence of osteoporosis is expected to increase worldwide, orthopedic surgeons should pay more attention to comprehensive strategies for improving the poor prognosis of osteoporotic fractures. Herein, we highlight the molecular basis of osteoimmunology and bone mechanosensation in different healing phases of elderly osteoporotic fractures, guiding perioperative management to alleviate the unfavorable effects of insufficient mechanical loading, high inflammatory levels and pathogen infection. The well-informed pharmacologic and surgical intervention, including treatment with anti-inflammatory drugs and sufficient application of antibiotics, as well as bench-to-bedside strategies for bone augmentation and hardware selection, should be made according to a comprehensive understanding of bone biomechanical properties in addition to the remodeling status of osteoporotic bones, which is necessary for creating proper biological and mechanical environments for bone union and remodeling. Multidisciplinary collaboration will facilitate the improvement of overall osteoporotic care and reduction of secondary fracture incidence.
Collapse
Affiliation(s)
- Yong Xie
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qi Xiong
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Yanpan Gao
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Chang A, Easson GW, Tang SY. Clinical measurements of bone tissue mechanical behavior using reference point indentation. Clin Rev Bone Miner Metab 2018; 16:87-94. [PMID: 30983912 DOI: 10.1007/s12018-018-9249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the last thirty years, it has become increasingly clear the amount of bone (e.g. 'bone quantity') and the quality of the bone matrix (e.g. 'bone quality') both critically contribute to bone's tissue-level mechanical behavior and the subsequent ability of bone to resist fracture. Although determining the tissue-level mechanical behavior of bone through mechanical testing is relatively straightforward in the laboratory, the destructive nature of such testing is unfeasible in humans and in animal models requiring longitudinal observation. Therefore, surrogate measurements are necessary for quantifying tissue-level mechanical behavior for the pre-clinical and clinical evaluation of bone strength and fracture risk in vivo. A specific implementation of indentation known as reference point indentation (RPI) enables the mechanical testing of bone tissue without the need to excise and prepare the bone surface. However, this compromises the ability to carefully control the specimen geometry that is required to define the bone tissue material properties. Yet the versatility of such measurements in clinical populations is provocative, and to date there are a number of promising studies that have utilized this tool to discern bone pathologies and to monitor the effects of therapeutics on bone quality. Concurrently, on-going efforts continue to investigate the aspects of bone material behavior measured by RPI, and the compositional factors that contribute to these measurements. There are currently two variants, cyclic- and impact- RPI, that have been utilized in pre-clinical and clinical studies. This review surveys clinical studies that utilize RPI, with particular emphasis on the clinical instrument, as well as the endeavors to understand the fundamental mechanisms of such measurements. Ultimately, an improved awareness in the tradeoffs and limitations of in vivo RPI is critical towards the effective and successful utilization of this tool for the overall improvement of fragility determination in the clinic.
Collapse
Affiliation(s)
- Andrew Chang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
| | - Garrett W Easson
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
| | - Simon Y Tang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|