1
|
Goo M, Johnston LM, Tucker K. Shear modulus of lower limb muscles in school-aged children with mild hypotonia. J Biomech 2024; 174:112267. [PMID: 39141960 DOI: 10.1016/j.jbiomech.2024.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/24/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
The objective of this study is to compare shear modulus of lower limb muscles between children with hypotonia versus typical development (TD) or developmental disorders associated with altered tone. Nineteen children with mild hypotonia (mean age 9.4 ± 2.3y, 13 male) completed assessment of resting shear modulus of rectus femoris, biceps femoris (BF), tibialis anterior (TA) and gastrocnemius lateralis (GL) at short and long lengths using shear wave elastography. Data was compared with previous data from TD children and a scoping review for children with developmental disorders. Data were collated according to Net-Longitudinal Tension Angle (Net-LTA), which is the muscle length expressed as the net proximal and distal joint angles. Effects of Net-LTA (e.g., short, neutral, long) were examined according to sex, age and body mass index (BMI). In children with hypotonia, shear modulus was: higher at longer versus shorter lengths for four muscles (p < 0.01); correlated with age for BF-short (r = 0.60, p < 0.03) and GL-short (r = -0.54, p < 0.03), with BMI for BF-short (r = 0.71, p < 0.05); and not different between sexes (p > 0.05). The shear modulus values for lower limb muscles for children with mild hypotonia were lower than those for children with Duchenne Muscular Dystrophy (TA-neutral), or Cerebral Palsy (GL-neutral), but not TD children (all four muscles). In conclusion, shear modulus increases with longer muscle length (i.e. higher Net-LTA) in mildly hypotonic children. Children with mild hypotonia have lower shear modulus than children with cerebral palsy and Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Miran Goo
- The University of Queensland, School of Biomedical Sciences, Brisbane, Australia
| | - Leanne M Johnston
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Kylie Tucker
- The University of Queensland, School of Biomedical Sciences, Brisbane, Australia.
| |
Collapse
|
2
|
Belghith K, Zidi M, Fedele JM, Bou-Serhal R, Maktouf W. Quantifying Plantar Flexor Muscles Stiffness During Passive and Active Force Generation Using Shear Wave Elastography in Individuals With Chronic Stroke. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:735-742. [PMID: 38378402 DOI: 10.1016/j.ultrasmedbio.2024.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVES This study aims to investigate the mechanical properties of paretic and healthy plantar flexor muscles and assesses the spatial distribution of stiffness between the gastrocnemius medialis (GM) and lateralis (GL) during active force generation. METHODS Shear wave elastography measurements were conducted on a control group (CNT, n=14; age=59.9±10.6 years; BMI=24.5±2.5 kg/m2) and a stroke survivor group (SSG, n=14; age=63.2±9.6 years; BMI=23.2±2.8 kg/m2). Shear modulus within the GM and GL was obtained during passive ankle mobilization at various angles of dorsiflexion (P0 =0°; P1=10°; P2=20°; P3=-20° and P4=-30°) and during different levels (30%, 50%, 70%, 100%) of maximal voluntary contraction (MVC). Muscle activations of GM, GL, soleus and tibialis anterior were also evaluated. RESULTS The results revealed a significant increase in passive stiffness within the paretic plantar flexor muscles under high tension during passive mobilization (p<0.05). Yet, during submaximal and maximal MVC, the paretic plantar flexors exhibited decreased active stiffness levels (p<0.05). A notable discrepancy was found between the stiffness of the GM and GL, with the GM demonstrating greater stiffness from 0° of dorsiflexion in the SSG (p<0.05), and from 10° of dorsiflexion in the CNT (p<0.05). No significant difference in stiffness was observed between the GM and GL muscles during active condition. CONCLUSION Stroke affects the mechanical properties differently depending on the state of muscle activation. Notably, the distribution of stiffness among synergistic plantar flexor muscles varied in passive condition, while remaining consistent in active condition.
Collapse
Affiliation(s)
- Kalthoum Belghith
- Bioengineering, Tissues and Neuroplasticity, UR 7377, University of Paris-Est Creteil, Faculty of Health/EPISEN, Creteil, France; CLINEA group, Clinique du Parc de Belleville, Paris, France
| | - Mustapha Zidi
- Bioengineering, Tissues and Neuroplasticity, UR 7377, University of Paris-Est Creteil, Faculty of Health/EPISEN, Creteil, France
| | | | | | - Wael Maktouf
- Bioengineering, Tissues and Neuroplasticity, UR 7377, University of Paris-Est Creteil, Faculty of Health/EPISEN, Creteil, France.
| |
Collapse
|
3
|
Facciorusso S, Spina S, Picelli A, Baricich A, Francisco GE, Molteni F, Wissel J, Santamato A. The Role of Botulinum Toxin Type-A in Spasticity: Research Trends from a Bibliometric Analysis. Toxins (Basel) 2024; 16:184. [PMID: 38668609 PMCID: PMC11053519 DOI: 10.3390/toxins16040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Botulinum toxin type-A (BoNT-A) has emerged as a key therapeutic agent for the management of spasticity. This paper presents a comprehensive bibliometric and visual analysis of research concerning BoNT-A treatment of spasticity to elucidate current trends and future directions in this research area. A search was conducted in the Web of Science database for articles focused on the use of BoNT-A in spasticity published between 2000 and 2022. We extracted various metrics, including counts of publications and contributions from different countries, institutions, authors, and journals. Analytical methods in CiteSpace were employed for the examination of co-citations, collaborations, and the co-occurrence of keywords. Our search yielded 1489 publications. Analysis revealed a consistent annual increase in research output. The United States, United Kingdom, and Italy were the leading contributors. The top institution in this research was Assistance Publique Hopitaux, Paris. The journal containing the highest number of relevant publications was Toxins. Key frequently occurring keywords were 'stroke', 'cerebral palsy', 'adult spasticity', and 'upper extremity'. This study identified 12 clusters of keywords and 15 clusters of co-cited references, indicating the main focus areas and emerging themes in this field. This study comprehensively analyzed and summarized trends in BoNT-A research in the field of spasticity over the past 22 years.
Collapse
Affiliation(s)
- Salvatore Facciorusso
- Spasticity and Movement Disorders “ReSTaRt”, Unit Physical Medicine and Rehabilitation Section, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.F.); (A.S.)
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Stefania Spina
- Spasticity and Movement Disorders “ReSTaRt”, Unit Physical Medicine and Rehabilitation Section, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.F.); (A.S.)
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy;
| | - Alessio Baricich
- Physical Medicine and Rehabilitation, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Gerard E. Francisco
- Department of Physical Medicine & Rehabilitation, University of Texas Health McGovern Medical School, Houston, TX 77030, USA;
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital Como, 23845 Costa Masnaga, Italy;
| | - Jörg Wissel
- Department of Neurorehabilitation and Physical Therapy, Vivantes Hospital Spandau, 13585 Berlin, Germany;
| | - Andrea Santamato
- Spasticity and Movement Disorders “ReSTaRt”, Unit Physical Medicine and Rehabilitation Section, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.F.); (A.S.)
| |
Collapse
|
4
|
Billy J, Bensamoun SF, Mercier J, Durand S. Applications of ultrasound elastography to hand and upper limb disorders. HAND SURGERY & REHABILITATION 2024; 43:101636. [PMID: 38215880 DOI: 10.1016/j.hansur.2024.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/14/2024]
Abstract
Ultrasound elastography is a recently developed method for accurate measurement of soft tissue stiffness in addition to the clinician's subjective evaluation. The present review briefly describes the ultrasound elastography techniques and outlines clinical applications for tendon, muscle, nerve, skin and other soft tissues of the hand and upper limb. Strain elastography provides a qualitative evaluation of the stiffness, and shear-wave elastography generates quantitative elastograms superimposed on a B-mode image. The stiffness in degenerative tendinopathy and/or tendon injury was significantly lower than in a normal tendon in several studies. Elastography is also a reliable method to evaluate functional muscle activity, compared to conventional surface electromyography. The median nerve is consistently stiffer in patients with carpal tunnel syndrome than in healthy subjects, on whatever ultrasound elastography technique. Elastography distinguishes normal skin from scars and can be used to evaluate scar severity and treatment. Elastography has huge clinical applications in musculoskeletal tissues. Continued development of systems and increased training of clinicians will expand our knowledge of elastography and its clinical applications in the future.
Collapse
Affiliation(s)
- Jessica Billy
- Department of Hand Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Sabine F Bensamoun
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338, Biomechanics and Bioengineering, Compiègne, France
| | - Julie Mercier
- Department of Hand Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Sébastien Durand
- Department of Hand Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
5
|
Wu J, Yang X, Liu Y, Xi F, Lei P. Application value of real-time shear wave elastography in the diagnosis and efficacy evaluation of venous thrombosis. Technol Health Care 2024; 32:3513-3523. [PMID: 39031410 DOI: 10.3233/thc-240386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
BACKGROUND Deep vein thrombosis (DVT) of the lower limbs is a venous reflux disorder caused by abnormal coagulation of blood components, primarily characterised by swelling and pain in the lower limbs. Key risk factors include prolonged immobility due to bed rest, pregnancy, postpartum or postoperative states, traumas, malignant tumours and long-term contraceptive use. OBJECTIVE To investigate the application of real-time shear wave elastography (SWE) in diagnosing lower-limb deep vein thrombosis (DVT). METHODS A total of 91 patients with DVT were selected and divided into three groups: acute phase (n= 29), subacute phase (n= 30) and chronic phase (n= 32). The Young's modulus of the patients was measured using real-time SWE. The diagnostic efficacy of Young's modulus was evaluated by ROC curves. The hardness differences in Young's modulus across different parts of the same thrombus (head, body and tail) were measured using SWE. RESULTS Before treatment, significant differences were observed in Young's modulus among patients with DVT (P< 0.001). Following anticoagulant therapy, catheter-directed thrombolysis and systemic thrombolysis, significant differences were noted in Young's modulus among patients at the same stage but receiving different treatments (acute phase: P= 0.003; subacute phase: P= 0.014; chronic phase: P= 0.004). Catheter-directed thrombolysis had greater efficacy than anticoagulant therapy. The area under the curve for SWE in staging patients was 0.917, with a sensitivity of 92.36% and specificity of 93.81%. Significant differences in Young's modulus were found between the thrombus head and thrombus body and tail but not between the thrombus body and thrombus tail. CONCLUSION Measurement of Young's modulus using SWE can serve as an auxiliary means of evaluating staging, predicting pulmonary embolism and selecting treatment in patients with DVT.
Collapse
|
6
|
He J, Luo A, Yu J, Qian C, Liu D, Hou M, Ma Y. Quantitative assessment of spasticity: a narrative review of novel approaches and technologies. Front Neurol 2023; 14:1121323. [PMID: 37475737 PMCID: PMC10354649 DOI: 10.3389/fneur.2023.1121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Spasticity is a complex neurological disorder, causing significant physical disabilities and affecting patients' independence and quality of daily lives. Current spasticity assessment methods are questioned for their non-standardized measurement protocols, limited reliabilities, and capabilities in distinguishing neuron or non-neuron factors in upper motor neuron lesion. A series of new approaches are developed for improving the effectiveness of current clinical used spasticity assessment methods with the developing technology in biosensors, robotics, medical imaging, biomechanics, telemedicine, and artificial intelligence. We investigated the reliabilities and effectiveness of current spasticity measures employed in clinical environments and the newly developed approaches, published from 2016 to date, which have the potential to be used in clinical environments. The new spasticity scales, taking advantage of quantified information such as torque, or echo intensity, the velocity-dependent feature and patients' self-reported information, grade spasticity semi-quantitatively, have competitive or better reliability than previous spasticity scales. Medical imaging technologies, including near-infrared spectroscopy, magnetic resonance imaging, ultrasound and thermography, can measure muscle hemodynamics and metabolism, muscle tissue properties, or temperature of tissue. Medical imaging-based methods are feasible to provide quantitative information in assessing and monitoring muscle spasticity. Portable devices, robotic based equipment or myotonometry, using information from angular, inertial, torque or surface EMG sensors, can quantify spasticity with the help of machine learning algorithms. However, spasticity measures using those devices are normally not physiological sound. Repetitive peripheral magnetic stimulation can assess patients with severe spasticity, which lost voluntary contractions. Neuromusculoskeletal modeling evaluates the neural and non-neural properties and may gain insights into the underlying pathology of spasticity muscles. Telemedicine technology enables outpatient spasticity assessment. The newly developed spasticity methods aim to standardize experimental protocols and outcome measures and enable quantified, accurate, and intelligent assessment. However, more work is needed to investigate and improve the effectiveness and accuracy of spasticity assessment.
Collapse
Affiliation(s)
- Jian He
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Anhua Luo
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Jiajia Yu
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Chengxi Qian
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Dongwei Liu
- School of Information Management and Artificial Intelligence, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Meijin Hou
- National Joint Engineering Research Centre of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Orthopaedics and Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of TCM), Ministry of Education, Fuzhou, China
| | - Ye Ma
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
- National Joint Engineering Research Centre of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Orthopaedics and Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of TCM), Ministry of Education, Fuzhou, China
| |
Collapse
|
7
|
Lin MT, Yang SM, Wu HW, Chen YH, Wu CH. Utility of Ultrasound Elastography to Evaluate Poststroke Spasticity and Therapeutic Efficacy: A Narrative Review. J Med Ultrasound 2023; 31:171-177. [PMID: 38025006 PMCID: PMC10668905 DOI: 10.4103/jmu.jmu_106_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 12/01/2023] Open
Abstract
Poststroke spasticity (PSS) is a common complication that affects function and daily self-care. Conservative PSS treatments include traditional rehabilitation, botulinum toxin injection, and extracorporeal shock wave therapy. Currently, the Modified Ashworth Scale and Modified Tardieu Scale are widely used tools to clinically evaluate spasticity, but the best tool for PSS assessment remained controversial. Ultrasound elastography (UE), including shear wave and strain image as the emerging method to evaluate soft tissue elasticity, became popular in clinical applications. Spastic biceps and gastrocnemius muscles were reported to be significantly stiffer compared to nonparetic muscles or healthy control using shear wave or strain elastography. More studies investigated the utility, reliability, and validity of UE in patients with PSS, but the contemporary consensus for the utility of UE in the measurement and therapeutic follow-up of PSS remained lacking. Therefore, this narrative review aimed to appraise the literature on the shear wave and strain elastography on PSS and summarize the roles of UE in assessing the therapeutic efficacy of different PSS interventions.
Collapse
Affiliation(s)
- Meng-Ting Lin
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Mei Yang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Hao-Wei Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yen-Hua Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
García-Bernal MI, González-García P, Madeleine P, Casuso-Holgado MJ, Heredia-Rizo AM. Characterization of the Structural and Mechanical Changes of the Biceps Brachii and Gastrocnemius Muscles in the Subacute and Chronic Stage after Stroke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1405. [PMID: 36674159 PMCID: PMC9864550 DOI: 10.3390/ijerph20021405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The objective of this study was to characterize the changes of muscle tone, stiffness, and thickness of upper and lower limb muscles in stroke survivors. Forty patients with subacute or chronic stroke and 31 controls were included and measured using myotonometry (MyotonPRO), with multiple site assessments at muscle belly (MB) and musculotendinous (MT) locations of the biceps brachii and gastrocnemius muscles. Muscle thickness (ultrasonography) was obtained for each muscle. Upper and lower limb motor performance was evaluated with the Fugl−Meyer Assessment for Upper Extremity and the Functional Ambulance Category. Overall, muscle tone and stiffness were significantly higher at MT than at MB sites. Among stroke patients, differences between the paretic and nonparetic limb were found for the biceps brachii, with lower muscle tone, stiffness, and thickness of the paretic side (all, p < 0.05). There were weak to moderate correlations between mechanical (myotonometry) and structural (ultrasound) muscular changes, regardless of the post-stroke stage. This suggests that myotonometry and ultrasonography assess similar, although different, constructs and can be combined in the clinical setting. Their discriminative ability between the paretic and nonparetic sides and between participants with and without stroke differs depending on the muscle, the functional level, and the stroke stage.
Collapse
Affiliation(s)
- María Isabel García-Bernal
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBIS), 41013 Sevilla, Spain
| | - Paula González-García
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBIS), 41013 Sevilla, Spain
| | - Pascal Madeleine
- Sport Sciences—Performance and Technology, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - María Jesús Casuso-Holgado
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
- Uncertainty, Mindfulness, Self, Spirituality (UMSS) Research Group, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Alberto Marcos Heredia-Rizo
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
- Uncertainty, Mindfulness, Self, Spirituality (UMSS) Research Group, Universidad de Sevilla, 41009 Sevilla, Spain
| |
Collapse
|
9
|
Matsumoto-Miyazaki J, Sawamura S, Nishibu Y, Okada M, Ikegame Y, Asano Y, Yano H, Shinoda J. Spastic muscle stiffness evaluated using ultrasound elastography and evoked electromyogram in patients following severe traumatic brain injury: an observational study. Brain Inj 2022; 36:1331-1339. [PMID: 36317245 DOI: 10.1080/02699052.2022.2140196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To determine the relationship between muscle stiffness assessed using ultrasound shear wave elastography, spinal motor neuron excitability assessed using the F wave, and clinical findings of spasticity in patients with spastic muscle overactivity following severe traumatic brain injury. METHODS This study enrolled 17 inpatients with severe traumatic brain injury and 20 healthy volunteers. Biceps brachii muscle stiffness was then evaluated using ultrasound shear wave speed. Spinal motor neuron excitability was evaluated using the F/M ratio recorded from abductor pollicis brevis muscle. Clinical parameters, such as the modified Ashworth scale and modified Tardieu scale, were assessed in the patient with traumatic brain injury. RESULTS The patients with traumatic brain injury group had a significantly higher shear wave speed and F/M ratio compared with the healthy group. A higher shear wave speed was correlated with higher clinical spastic severity in patients with traumatic brain injury. The F/M ratio was not significantly correlated with clinical spastic severity. CONCLUSION Ultrasound shear wave elastography might be helpful for assessing muscle stiffness in patients with spastic muscle overactivity following severe traumatic brain injury. Further studies comprising larger cohorts are warranted.
Collapse
Affiliation(s)
- Jun Matsumoto-Miyazaki
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Japan.,Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shogo Sawamura
- Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Rehabilitation, Heisei College of Health Sciences, Gifu, Japan
| | - Yumiko Nishibu
- Department of Radiation Technology, Kizawa Memorial Hospital, Minokamo, Japan
| | - Maki Okada
- Department of Clinical Examination, Kizawa Memorial Hospital, Minokamo, Japan
| | - Yuka Ikegame
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Japan
| | - Yoshitaka Asano
- Department of Emergency Medicine, Kizawa Memorial Hospital, Minokamo, Japan
| | - Hirohito Yano
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Japan.,Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Jun Shinoda
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Japan.,Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
10
|
García-Bernal MI, González-García P, Casuso-Holgado MJ, Cortés-Vega MD, Heredia-Rizo AM. Measuring Mechanical Properties of Spastic Muscles After Stroke. Does Muscle Position During Assessment Really Matter? Arch Phys Med Rehabil 2022; 103:2368-2374. [PMID: 35724753 DOI: 10.1016/j.apmr.2022.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the influence of muscle position (relaxed vs stretched) on muscle mechanical properties and the ability of myotonometry to detect differences between sides, groups, and sites of testing in patients with stroke. We also analyzed the association between myotonometry and clinical measures of spasticity. DESIGN Cross-sectional study. SETTING Outpatient rehabilitation units including private and public centers. PARTICIPANTS Seventy-one participants (20 subacute stroke, 20 chronic stroke, 31 controls) were recruited (N=71). INTERVENTION Muscle mechanical properties were measured bilaterally with a MyotonPRO at muscle belly and musculotendinous sites during 2 protocols (muscle relaxed or in maximal bearable stretched position). MAIN OUTCOME MEASURES Muscle tone and stiffness of the biceps brachii and gastrocnemius. Poststroke spasticity was evaluated with the Modified Tardieu Scale (MTS). A mixed-model analysis of variance was used to detect differences in the outcome measures. RESULTS The analysis of variance showed a significant effect of muscle position on muscle mechanical properties (higher tone and stiffness with the muscle assessed in stretched position). Measurements with the stretched muscle could help discriminate between spastic and nonspastic sides, but only at the biceps brachii. Overall, there was a significant increase in tone and stiffness in the chronic stroke group and in myotendinous sites compared with muscle belly sites (all, P<.05). No correlations were found between myotonometry and the MTS. CONCLUSIONS Myotonometry assessment of mechanical properties with the muscle stretched improves the ability of myotonometry to discriminate between sides in patients after stroke and between people with and without stroke.
Collapse
Affiliation(s)
- María-Isabel García-Bernal
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, Sevilla, Spain
| | - Paula González-García
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, Sevilla, Spain.
| | - María Jesús Casuso-Holgado
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, Sevilla, Spain; UMSS Research Group, Universidad de Sevilla, Sevilla, Spain
| | - María Dolores Cortés-Vega
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, Sevilla, Spain
| | - Alberto Marcos Heredia-Rizo
- Departmento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, Sevilla, Spain; UMSS Research Group, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
11
|
Campanella W, Corazza A, Puce L, Privitera L, Pedrini R, Mori L, Boccuni L, Turtulici G, Trompetto C, Marinelli L. Shear wave elastography combined with electromyography to assess the effect of botulinum toxin on spastic dystonia following stroke: A pilot study. Front Neurol 2022; 13:980746. [PMID: 36299267 PMCID: PMC9589110 DOI: 10.3389/fneur.2022.980746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Shear wave elastography (SWE) is a method for carrying out a quantitative assessment of the mechanical properties of soft tissues in terms of stiffness. In stroke survivors, the paretic muscles may develop hypertonia due to both neural-mediated mechanisms and structural alterations with consequent muscular fibrous-fatty remodeling. Methods Fourteen adult patients with spastic dystonia following stroke were recruited. Muscle hypertonia was assessed using the modified Ashworth scale (MAS). Muscle activation was measured by surface electromyography (sEMG) with the selected muscle in shortened (spastic dystonia) and stretched (dynamic stretch reflex) positions. SWE was performed on a selected paretic muscle and on the contralateral non-paretic one to calculate shear wave velocities (SWV) along and across muscular fibers. The modified Heckmatt scale (MHS) pattern was also determined. All evaluations were performed shortly before BoNT-A injections (T0) and one month later (T1). Results All SWV on paretic muscles were higher than contralateral non-paretic ones (p < 0.01). After BoNT-A injection, a significant reduction in MAS (p = 0.0018), spastic dystonia (p = 0.0043), and longitudinal SWE measurements, both in shortened (p = 0.001) and in stretched muscular conditions (p = 0.0029), was observed. No significant changes in SWV on non-paretic muscles were observed. Higher SWV resulted along the direction of muscular fibers vs. across them (p = 0.001). No changes resulted from the MHS evaluations after BoNT-A. There was a positive correlation between MHS scores and SWV values while the muscle was in the shortened position, but not with spastic dystonia recorded by sEMG. Conclusions This is the first study evaluating the effect of BoNT-A on muscle hypertonia following stroke, assessed by both SWE and sEMG. These findings support SWE as a useful method to disclose intrinsic muscular remodeling, independently of the effect of spastic dystonia, in particular, while muscles were assessed in a neutral position. SWE measurements of muscle stiffness cannot tell apart neural-mediated and intrinsic muscle hypertonia. Interestingly, when sEMG activity is very limited, as in spastic muscles kept in a shortened position, SWE can provide a measurement of stiffness due almost completely to intrinsic muscle changes. Alongside sEMG, SWE could aid clinicians in the assessment of responses to treatments.
Collapse
Affiliation(s)
- William Campanella
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Neurorehabilitation, Genova, Italy
| | - Angelo Corazza
- Unità di Radiologia Diagnostica ed Interventistica Istituto Ortopedico Galeazzi di Milano, Milan, Italy
| | - Luca Puce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Laura Privitera
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Riccardo Pedrini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Laura Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Neurorehabilitation, Genova, Italy
| | - Leonardo Boccuni
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Giovanni Turtulici
- S.C. Radiodiagnostica Ospedale Evangelico Internazionale di Genova, Genova, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Neurorehabilitation, Genova, Italy
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Clinical Neurophysiology, Genova, Italy
- *Correspondence: Lucio Marinelli
| |
Collapse
|
12
|
Wei HQ, Gan M, Li GY, Ma SH, Liu JH. Quantitative Evaluation of Biceps Brachii Muscle by Shear Wave Elastography in Stroke Patients. Ther Clin Risk Manag 2022; 18:879-887. [PMID: 36212049 PMCID: PMC9541677 DOI: 10.2147/tcrm.s361664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The present study aimed to investigate the differences in muscle size and shear wave speed (SWS) values of biceps brachii muscle (BBM) between stroke survivors and healthy controls. Methods This study comprised 61 stroke survivors and 24 healthy subjects, examined at Guangzhou First People's Hospital within one year. Each participant underwent ultrasonic examinations for recording some specific measurement indicators, including muscle thickness, cross-sectional area (CSA), and shear wave speed (SWS) of BBM. The muscular tension of the paretic arm was scored using the modified Ashworth scale (MAS). These above-mentioned indexes were compared between stroke survivors and healthy controls. Also, the correlations among SWS and MAS scores were assessed. Results When the lifting arm angle was set for 45°, the CSA and muscle thickness of BBM were obviously decreased in the paretic arms of stroke subjects compared to the non-paretic arms as well as the arms of healthy controls. Moreover, the paretic arms had obviously higher SWS than the non-paretic arms and the healthy arms at 45° or 90°. When the angles of paretic arms were lifted at 90° and 45°, respectively, a positive correlation was established between MAS and SWS. Conclusion Ultrasonic examination assessing muscle thickness, CSA, and SWS of the BBM could be used as a means of assessment of the paretic arms of stroke survivors.
Collapse
Affiliation(s)
- Hong-Qin Wei
- Department of Ultrasound, Guangzhou First People’s Hospital, Guangzhou, Guandong, People’s Republic of China
| | - Man Gan
- Department of Ultrasound, Guangzhou First People’s Hospital, Guangzhou, Guandong, People’s Republic of China
| | - Guo-Yan Li
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, Guangzhou, Guandong, People’s Republic of China
| | - Sui-Hong Ma
- Department of Ultrasound, Guangzhou First People’s Hospital, Guangzhou, Guandong, People’s Republic of China,Correspondence: Sui-Hong Ma; Jian-Hua Liu, Tel +86 13824420620; +86 13622888381, Fax +86 020 81332620, Email ;
| | - Jian-Hua Liu
- Department of Ultrasound, Guangzhou First People’s Hospital, Guangzhou, Guandong, People’s Republic of China
| |
Collapse
|
13
|
Galvão S, de Oliveira LF, de Lima R, Xerez D, Menegaldo LL. Shear wave elastography of the brachioradialis spastic muscle and its correlations with biceps brachialis and clinical scales. Clin Biomech (Bristol, Avon) 2022; 97:105687. [PMID: 35661892 DOI: 10.1016/j.clinbiomech.2022.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/18/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Shear wave elastography technique estimates biological tissue shear elastic modulus (μ[kPa]), which can be used as an objective, muscle-specific indicator of stiffness increase caused by spasticity. We measured both the brachioradialis and biceps brachialis μ in hemiparetic post-stroke patients (n = 11). The spastic arm was compared with the supposedly non-affected contralateral limb and correlated with Fugl-Meyer Assessment and Modified Ashworth Scales. METHODS Shear elastic modulus was estimated using an Aixplorer V.9 ultrasound device with the elbow at full extension. Average shear elastic modulus t-test, effect sizes, correlation matrix, spider plots and factor analysis were used to check for differences between spastic and nonspastic sides and explore relationships among the variables. FINDINGS Spastic brachioradialis μ (22.54 ± 11.59 kPa) and biceps brachialis (26.86 ± 12.07 kPa) were significantly greater than the non-spastic counterparts (13.13 ± 2.81 kPa, p = 0.031, ηp2 = 0.3846 for brachioradialis and 15.25 ± 5.00 kPa, p = 0.007, ηp2 = 0.5345 for biceps brachialis). Significant correlations were observed between the spastic brachioradialis and biceps μ and Modified Ashworth Scales, but no correlation with Fugl-Meyer Assessment. INTERPRETATION Elastography can provide muscle-specific shear elastic modulus estimations of spastic brachioradialis and biceps brachialis, which are distinct from the nonspastic side. In some patients, there was no clear correspondence of the Fugl-Meyer Assessment functional scale with Modified Ashworth Scales and μ, suggesting that spasticity is not the only determinant of arm function. Additionally, shear wave elastography of brachioradialis and biceps brachialis muscles may guide the spasticity treatment, for instance, selecting the preferable candidate for botulinum toxin therapy.
Collapse
Affiliation(s)
- Silvana Galvão
- Biomedical Engineering Program - Coppe, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Liliam Fernandes de Oliveira
- Biomedical Engineering Program - Coppe, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Physical Education and Sports School, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato de Lima
- Biomedical Engineering Program - Coppe, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Xerez
- School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano L Menegaldo
- Biomedical Engineering Program - Coppe, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Roots J, Trajano GS, Fontanarosa D. Ultrasound elastography in the assessment of post-stroke muscle stiffness: a systematic review. Insights Imaging 2022; 13:67. [PMID: 35380302 PMCID: PMC8982789 DOI: 10.1186/s13244-022-01191-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/10/2022] [Indexed: 12/31/2022] Open
Abstract
Background Post-stroke muscle stiffness is a major challenge in the rehabilitation of stroke survivors, with no gold standard in clinical assessment. Muscle stiffness is typically evaluated by the Modified Ashworth Scale or the Tardieu Scale; however, these can have low reliability and sensitivity. Ultrasound elastography is an advanced imaging technology that can quantitatively measure the stiffness of a tissue and has been shown to have good construct validity when compared to clinically assessed muscle stiffness and functional motor recovery. Objective The purpose of this article is to systematically review the literature regarding the change in muscle stiffness as measured by ultrasound elastography in stroke survivors. Methods Scopus, PubMed, Embase, CINAHL, MEDLINE and Cochrane Library were searched for relevant studies that assessed the change in stiffness of post-stroke muscle stiffness measured by ultrasound elastography following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Results In total, 29 articles were identified, using either strain elastography and shear wave elastography to measure the stiffness of muscles in stroke survivors, most frequently in the biceps and medial gastrocnemius muscles. The stiffness was typically higher in the paretic compared to the non-paretic or healthy control. Other variations that increased the stiffness include increasing the joint angle and introducing a passive stretch or muscle activation. The paretic muscle has also been assessed pre- and post-treatment demonstrating a decrease in stiffness. Conclusion Ultrasound elastography is a promising imaging technology for determining the muscle stiffness in stroke survivors with need for a standardized imaging protocol.
Collapse
Affiliation(s)
- Jacqueline Roots
- School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane, QLD, 4000, Australia.,Centre for Biomedical Technologies (CBT), Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane, QLD, 4000, Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane, QLD, 4000, Australia. .,Centre for Biomedical Technologies (CBT), Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
15
|
Cao J, Xiao Y, Qiu W, Zhang Y, Dou Z, Ren J, Zheng R, Zheng H, Chen Z. Reliability and diagnostic accuracy of corrected slack angle derived from 2D-SWE in quantitating muscle spasticity of stroke patients. J Neuroeng Rehabil 2022; 19:15. [PMID: 35120556 PMCID: PMC8817514 DOI: 10.1186/s12984-022-00995-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Background To explore the feasibility of corrected slack angle acquired from two-dimensional shear wave elastography (2D-SWE) for quantitating the spasticity of medial gastrocnemius (MG) in stroke patients. Methods Consecutive stroke patients with spastic MG and matched healthy controls were recruited. Intra- and interobserver reliability of 2D-SWE measurement were evaluated, and the correlation between corrected slack angle and modified Ashworth scale (MAS) score was examined. The corrected slack angle before and after botulinum toxin A (BoNT-A) injection was compared and its diagnostic performance in classifying the severity of spasticity were assessed with receiver operating characteristic (ROC) curve analysis. Results The intra- (0.791 95% CI 0.432–0.932) and interobserver (0.751 95% CI 0.382–0.916) reliability of slack angle acquired with 2D-SWE were good. Significant correlation was found between corrected slack angle and MAS score (R = − 0.849, p < 0.001). The corrected slack angle increased after BoNT-A injection. The cutoff value of MAS ≥ 3 had the highest sensitivity (100%) and specificity (93.33%). The positive predictive value (PPV) for classification of MAS ≥ 1+ and the negative predictive value (NPV) for classification of MAS ≥ 3 were greater than 90%. Conclusion 2D-SWE was a reliable method to quantitate the post-stroke spasticity. The corrected slack angle had advantage in classifying the severity of spasticity, especially in early identification of mild spasticity and confirmation of severe spasticity. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-00995-8.
Collapse
Affiliation(s)
- Junyan Cao
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Yang Xiao
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, China
| | - Weihong Qiu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Yanling Zhang
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Jie Ren
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Rongqin Zheng
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, China
| | - Zhaocong Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
16
|
Abstract
Over the past decade, ultrasound elastography has emerged as a new technique for measuring soft tissue properties. Real-time, noninvasive, and quantitative evaluations of tissue stiffness have improved and aid in the assessment of normal and pathological conditions. Specifically, its use has substantially increased in the evaluation of muscle, tendon, and ligament properties. In this review, the authors describe the principles of elastography and present different techniques including strain elastography and shear-wave elastography; discuss their applications for assessing soft tissues in the hand before, during, and postsurgeries; present the strengths and limitations of their measurement capabilities; and describe directions for future research.
Collapse
Affiliation(s)
- Hugo Giambini
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, College of Engineering and Integrated Design, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Kai-Nan An
- Mayo Clinic College of Medicine, 200 First Street, S.W, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Kwon DR, Kwon DG. Botulinum Toxin a Injection Combined with Radial Extracorporeal Shock Wave Therapy in Children with Spastic Cerebral Palsy: Shear Wave Sonoelastographic Findings in the Medial Gastrocnemius Muscle, Preliminary Study. CHILDREN 2021; 8:children8111059. [PMID: 34828772 PMCID: PMC8622460 DOI: 10.3390/children8111059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Therapeutic strategies to boost the effect of botulinum toxin may lead to some advantages, such as long lasting effects, the injection of lower botulinum toxin dosages, fewer side effects, and lower costs. The aim of this study is to investigate the combined effect of botulinum toxin A (BTA) injection and extracorporeal shock wave therapy (ESWT) for the treatment of spasticity in children with spastic cerebral palsy (CP). Fifteen patients with spastic CP were recruited through a retrospective chart review to clarify what treatment they received. All patients received a BTA injection on gastrocnemius muscle (GCM), and patients in group 1 underwent one ESWT session for the GCM immediately after BTA injection and two consecutive ESWT sessions at weekly intervals. Ankle plantar flexor and the passive range of motion (PROM) of ankle dorsiflexion were measured by a modified Ashworth scale (MAS) before treatment and at 1 and 3 month(s) post-treatment. In group 1, the shear wave velocity (SWV) of GCM was measured. The PROM and MAS in group 1 and 2 before treatment significantly improved at 1 and 3 month(s) after treatment. The change in PROM was significantly different between the two groups at 1 and 3 month(s) after treatment. The SWV before treatment significantly decreased at 1 month and 3 months after treatment in group 1. Our study has shown that the combination of BTA injection and ESWT would be effective at controlling spasticity in children with spastic CP, with sustained improvement at 3 months after treatment.
Collapse
Affiliation(s)
- Dong Rak Kwon
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Korea
- Correspondence:
| | - Dae Gil Kwon
- Department of Rehabilitation Medicine, Comprehensive and Integrative Medicine Hospital, Daegu 42473, Korea;
| |
Collapse
|
18
|
Babaei-Ghazani A, Majdalani CE, Luong DH, Bertrand-Grenier A, Sobczak S. Sonoelastography of the Shoulder: A Narrative Review. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:704725. [PMID: 36188843 PMCID: PMC9397707 DOI: 10.3389/fresc.2021.704725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022]
Abstract
Sonoelastography is a relatively new non-invasive imaging tool to assess the in vivo qualitative and quantitative biomechanical properties of various tissues. Two types of sonoelastography (SE) are commonly explored: strain and shear wave. Sonoelastography can be used in multiple medical subspecialties to assess pathological tissular changes by obtaining mechanical properties, shear wave speed, and strain ratio data. Although there are various radiological imaging methods, such as MRI or CT scan, to assess musculoskeletal structures (muscles, tendons, joint capsules), SE is more accessible since this approach is of low cost and does not involve radiation. As of 2018, SE has garnered promising data in multiple studies. Preliminary clinico-radiological correlations have been established to bridge tissue biomechanical findings with their respective clinical pathologies. Specifically, concerning the shoulder complex, recent findings have described mechanical tissue changes in shoulder capsulitis. The long head of the biceps and supraspinatus SE were among the recently studied structures with conditions regarding impingement, tendinosis, and tears. Since ultrasonography has established itself as an important tool in shoulder evaluation, it completes the history and physical examination skills of the clinicians. This study will provide an update on the most recent findings on SE of shoulder structures.
Collapse
Affiliation(s)
- Arash Babaei-Ghazani
- Department of Physical Medicine and Rehabilitation, Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physical Medicine and Rehabilitation, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Carl-Elie Majdalani
- Department of Physical Medicine and Rehabilitation, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Dien Hung Luong
- Department of Physical Medicine and Rehabilitation, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Antony Bertrand-Grenier
- Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Stéphane Sobczak
- Département d'anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de recherche sur les affections neuromusculosquelettiques (GRAN), Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Chaire de recherche en anatomie fonctionnelle, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- *Correspondence: Stéphane Sobczak
| |
Collapse
|
19
|
Goo M, Tucker K, Johnston LM. A profile of reference data for shear modulus for lower limb muscles in typically developing children. Clin Biomech (Bristol, Avon) 2021; 83:105254. [PMID: 33740498 DOI: 10.1016/j.clinbiomech.2020.105254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Shear wave elastography can measure shear wave speed in muscles, which is used to estimate shear modulus. Normative values and standardized methodology are needed for children. Study aims were to: estimate shear modulus behavior of lower limb muscles of typically developing children; and establish a profile of reference data and recommendations for clinical assessment. METHODS Forty-one typically developing children (mean 9.7 y, SD 1.9 y) completed assessment of resting shear modulus of rectus femoris, biceps femoris, gastrocnemius lateralis and tibialis anterior at short and long lengths using shear wave elastography. Effects of muscle length, age, sex and BMI were examined. Then, our data and data from a scoping review for typical individuals were collated according to Net-Longitudinal Tension Angle (net proximal and distal joint angles). FINDINGS Shear modulus was: higher at long versus short muscle lengths for all four muscles (P < 0.001); correlated with increasing age for tibialis anterior at short (r = 0.39) and long lengths (r = 0.42) (both P = 0.01); but not related to sex or BMI. Shear modulus: tended to increase with increasing Net-Longitudinal Tension Angle for 18 lower limb muscles; and was higher for children than adults for some muscles (e.g. tibialis anterior and gastrocnemius lateralis, both P < 0.001). INTERPRETATION In typically developing children, shear modulus of lower limb muscles increases with increasing Net-Longitudinal Tension Angle. Recommendations enable comparison of values across different test positions and populations. Some relation between shear modulus and age was identified, but more research is needed.
Collapse
Affiliation(s)
- Miran Goo
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
| | - Kylie Tucker
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
| | - Leanne M Johnston
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, QLD 4072, Australia.
| |
Collapse
|