1
|
Murata A, Tsutsui S, Yamamoto E, Kozaki T, Nakanishi R, Yamada H. A Bicortical Pedicle Screw in the Cephalad Trajectory Is the Best Option for the Fixation of an Osteoporotic Vertebra: A Finite Element Study. Spine Surg Relat Res 2024; 8:510-517. [PMID: 39399454 PMCID: PMC11464828 DOI: 10.22603/ssrr.2023-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/22/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Pedicle screws are commonly used in fixation to treat various spinal disorders. However, screw loosening is a prevalent complication, particularly in patients with osteoporosis. Various biomechanical studies have sought to address this issue, but the optimal depth and trajectory to increase the fixation strength of pedicle screws remain controversial. Therefore, a biomechanical study was conducted using finite element models. Methods Three-dimensional finite element models of the L3 vertebrae were developed from the preoperative computed tomography images of nine patients with osteoporosis and nine patients without who underwent spine surgery. Unicortical and bicortical pedicle screws were inserted into the center and into the anterior wall of the vertebrae, respectively, in different trajectories in the sagittal plane: straightforward, cephalad, and caudal. Subsequently, three different external loads were applied to each pedicle screw at the entry point: axial pullout, craniocaudal, and lateromedial loads. Nonlinear analysis was conducted to examine the fixation strength of the pedicle screws. Results Irrespective of osteoporosis, the bicortical pedicle screws had greater fixation strength than the unicortical pedicle screws in all trajectories and external loads. The fixation strength of the bicortical pedicle screws was not substantially different among the trajectories against any external loads in the nonosteoporotic vertebrae. However, the fixation strength of the bicortical pedicle screws against craniocaudal load in the cephalad trajectory was considerably greater than those in the caudal (P=0.016) and straightforward (P=0.023) trajectories in the osteoporotic vertebrae. However, this trend was not observed in pullout and lateromedial loads. Conclusions Our results indicate that bicortical pedicle screws should be used, regardless of whether the patient has osteoporosis or not. Furthermore, pedicle screws should be inserted in the cephalad trajectory in patients with osteoporosis.
Collapse
Affiliation(s)
- Akimasa Murata
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shunji Tsutsui
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Ei Yamamoto
- Department of Biomedical Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Takuhei Kozaki
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Ryuichiro Nakanishi
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hiroshi Yamada
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
2
|
Magliano A, Naddeo F, Naddeo A. A user-friendly system for identifying the optimal insertion direction and to choose the best pedicle screws for patient-specific spine surgery. Heliyon 2024; 10:e26334. [PMID: 38404767 PMCID: PMC10884480 DOI: 10.1016/j.heliyon.2024.e26334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
Background and objective Many diseases of the spine require surgical treatments that are currently performed based on the experience of the surgeon. The basis of this study is to deliver an automatic and patient-specific algorithm able to come to the aid of the surgeons in pedicle arthrodesis operations, by finding the optimal direction of the screw insertion, the maximum screw diameter and the maximum screw length. Results The paper introduce an algorithm based on the reconstructed geometry of a vertebra by 3D-scan that is able to identify the best introduction direction for screw and to select, from commercial and/or personalised databases, the best screws in order to maximize the occupation of the bone while not intersecting each other and not going through the walls of the pedicle and the bounds of the vertebral body. In fact, for pedicle arthrodesis surgery, the incorrect positioning of the screws may cause operating failures, an increase in the overall duration of surgery and, therefore, more harmful, real-time X-ray checks. In case of not availability on market, the algorithm also suggests parameters for designing and manufacturing an 'ad hoc' solution. The algorithm has been tested on 6 vertebras extracted by a medical database. Furthermore, the algorithm is based on a procedure through which the surgeon can freely choose the entering point of the screw (based on his/her own experience and will). A real patient vertebra has been processed with almost 400 different entering point, always giving a feedback on the possibility to use the entering point (in case of unavailability of a good trajectory) and on the individuation of the right trajectory and the choose of the better screws. Conclusions In very recent bibliography, several papers deal with procedure to screw' trajectory planning in arthrodesis surgery by using Computer Aided surgery systems, and some of them used also modern methodologies (KBE, AI, Deep learning, etc.) methods for planning the surgery as better as possible. Nevertheless, no methodologies or algorithm have been still realized to plan the trajectory and choose the perfect fitting screws on the basis of the patient-specific vertebra. This paper represents a wind of novelty in this field and allow surgeons to use the proposed algorithm for planning their surgeries. Finally, it allows also the easy creation of a customized surgical template, characterized by two cylindrical guides that follow a correct trajectory previously calculated by means of that automatic algorithm generated on the basis of a vertebra CAD model for a specific patient. The surgeon will be able to set the template (drilling guides) on the patient's vertebra and safely apply the screws.
Collapse
Affiliation(s)
- Alfonso Magliano
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| | - Francesco Naddeo
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| | - Alessandro Naddeo
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| |
Collapse
|
3
|
Song F, Liu Y, Fu R, Gao X, Iqbal K, Yang D, Liu Y, Yang H. Craniocaudal toggling increases the risk of screw loosening in osteoporotic vertebrae. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 238:107625. [PMID: 37263117 DOI: 10.1016/j.cmpb.2023.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Screw loosening remains a prominent problem for osteoporotic patients undergoing pedicle screw fixation surgeries but its underlying mechanisms are not fully understood. This study sought to examine the interactive effect of craniocaudal or axial cyclic loading (toggling) and osteoporosis on screw fixation. METHODS QCT-based finite element models of normal (n = 7; vBMD = 156 ± 13 mg/cm3) and osteoporotic vertebrae (n = 7; vBMD = 72 ± 6 mg/cm3) were inserted with pedicle screws and loaded with or without craniocaudal toggling. Among them, a representative normal vertebra (age: 55; BMD: 140 mg/cm3) and an osteoporotic vertebra (age: 64; BMD: 79 mg/cm3) were also loaded with or without axial toggling. The individual and interactive effects of craniocaudal toggling and osteoporosis on screw fixation strength (the force when the pull-up displacement of the screw head reached 1 mm) and bone tissue failure (characterized by equivalent plastic strain) were examined by repeated measure ANOVA. RESULTS A significant interactive effect between craniocaudal toggling and osteoporosis on screw fixation strength was detected (p = 0.008). Specifically, craniocaudal toggling led to a marked decrease in the fixation strength (68%, p < 0.05) and stiffness (83%, p < 0.05) only in the osteoporotic vertebrae but had no effect on screw fixation strength and stiffness of the normal vertebrae (p > 0.05). Likewise, most of the bone tissues around the screw in the osteoporotic vertebrae yielded following craniocaudal toggling whereas this result was not seen in the normal vertebrae. The axial toggling had no significant effect on bone tissue failure as well as pedicle screw fixation in normal or osteoporotic vertebrae. CONCLUSIONS Craniocaudal toggling substantially reduces the screw fixation strength of the osteoporotic vertebrae by progressively increasing tissue failure around the screw, and therefore may contribute to the higher rates of screw loosening in osteoporotic compared to normal patients, whereas axial toggling is not a risk factor for pedicle screw loosening in normal or osteoporotic patients.
Collapse
Affiliation(s)
- Fei Song
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yang Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Ruisen Fu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xing Gao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Kamran Iqbal
- Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing, China
| | - Dongyue Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yuxuan Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| |
Collapse
|
4
|
Liu JB, Zuo R, Zheng WJ, Li CQ, Zhang C, Zhou Y. The accuracy and effectiveness of automatic pedicle screw trajectory planning based on computer tomography values: an in vitro osteoporosis model study. BMC Musculoskelet Disord 2022; 23:165. [PMID: 35189892 PMCID: PMC8862578 DOI: 10.1186/s12891-022-05101-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/08/2022] [Indexed: 09/25/2024] Open
Abstract
Background Pedicle screw placement in patients with osteoporosis is a serious clinical challenge. The bone mineral density (BMD) of the screw trajectory has been positively correlated with the screw pull-out force, while the computer tomography (CT) value has been linearly correlated with the BMD. The purpose of this study was to establish an in vitro osteoporosis model and verify the accuracy and effectiveness of automated pedicle screw planning software based on CT values in this model. Methods Ten vertebrae (L1-L5) of normal adult pigs were randomly divided into decalcification and control groups. In the decalcification group, the vertebral bodies were decalcified with Ethylenediaminetetraacetic acid (EDTA) to construct an in vitro osteoporosis model. In the decalcification group, automatic planning (AP) and conventional manual planning (MP) were used to plan the pedicle screw trajectory on the left and right sides of the pedicle, respectively, and MP was used on both sides of the control group. CT values of trajectories obtained by the two methods were measured and compared. Then, 3D-printed guide plates were designed to assist pedicle screw placement. Finally, the pull-out force of the trajectory obtained by the two methods was measured. Results After decalcification, the BMD of the vertebra decreased from − 0.03 ± 1.03 to − 3.03 ± 0.29 (P < 0.05). In the decalcification group, the MP trajectory CT value was 2167.28 ± 65.62 Hu, the AP trajectory CT value was 2723.96 ± 165.83 Hu, and the MP trajectory CT value in the control group was 2242.94 ± 25.80 Hu (P < 0.05). In the decalcified vertebrae, the screw pull-out force of the MP group was 48.6% lower than that of the control group (P < 0.05). The pull-out force of the AP trajectory was 44.7% higher than that of the MP trajectory (P < 0.05) and reached 97.4% of the MP trajectory in the control group (P > 0.05). Conclusion Automatic planning of the pedicle screw trajectory based on the CT value can obtain a higher screw pull-out force, which is a valuable new method of pedicle screw placement in osteoporotic vertebre. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05101-6.
Collapse
Affiliation(s)
- Jia Bin Liu
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Rui Zuo
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Wen Jie Zheng
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Chang Qing Li
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China
| | - Chao Zhang
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China.
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao Hospital, Amy Medical University (Third Military Medical University), Chongqing, 400037, People's Republic of China.
| |
Collapse
|
5
|
Spirig JM, Winkler E, Cornaz F, Fasser MR, Betz M, Snedeker JG, Widmer J, Farshad M. Biomechanical performance of bicortical versus pericortical bone trajectory (CBT) pedicle screws. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:2292-2300. [PMID: 34057540 DOI: 10.1007/s00586-021-06878-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 04/18/2021] [Accepted: 05/13/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE The cortical bone trajectory (CBT) is an alternative to the traditional pedicle screw trajectory (TT) in posterior spinal instrumentation, enhancing screw contact with cortical bone and therefore increasing fixation strength. Additional to the trajectory, insertion depth (pericortical vs. bicortical placement) could be a relevant factor affecting the fixation strength. However, the potential biomechanical benefit of a bicortical placement of CBT screws is unknown. Therefore, the aim of this study was to quantify the fixation strength of pericortical- versus bicortical-CBT (pCBT versus bCBT) screws in a randomized cadaveric study. METHODS Pedicle screws were either placed pericortical or bicortical with a CBT in 20 lumbar vertebrae (2 × 20 instrumented pedicles) from four human spine cadavers by using patient-specific templates. Instrumented specimens underwent physiological cyclic loading testing (1'800'000 cycles, 10 Hz), including shear and tension loads as well as bending moments. Translational and angular displacements of the screws were quantified and compared between the two techniques. RESULTS There was a slight decrease in translational (0.2 mm ± 0.09 vs. 0.24 mm ± 0.11) and angular displacements (0.06° ± 0.05 vs. 0.13° ± 0.11) of bCBT screws when compared with pCBT screws after 1'800'000 cycles. However, the results were non-significant (p > 0.05). CONCLUSION The authors do not recommend placing CBT screws bicortically, as no relevant biomechanical advantage is gained while the potential risk for iatrogenic injury to structures anterior to the spine is increased.
Collapse
Affiliation(s)
- José M Spirig
- Department of Orthopaedics, Balgrist University Hospital, University of Zürich, Zürich, Switzerland.
| | - Elin Winkler
- Department of Orthopaedics, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Frédéric Cornaz
- Department of Orthopaedics, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Marie-Rosa Fasser
- Department of Orthopaedics, Balgrist University Hospital, University of Zürich, Zürich, Switzerland.,Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Michael Betz
- Department of Orthopaedics, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Jess G Snedeker
- Department of Orthopaedics, Balgrist University Hospital, University of Zürich, Zürich, Switzerland.,Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Jonas Widmer
- Department of Orthopaedics, Balgrist University Hospital, University of Zürich, Zürich, Switzerland.,Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Jain P, Rana M, Biswas JK, Khan MR. Biomechanics of spinal implants-a review. Biomed Phys Eng Express 2020; 6:042002. [PMID: 33444261 DOI: 10.1088/2057-1976/ab9dd2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Spinal instrumentations have been classified as rigid fixation, total disc replacement and dynamic stabilization system for treatment of various spinal disorders. The efficacy and biomechanical suitability of any spinal implant can be measured through in vitro, in vivo experiments and numerical techniques. With the advancement in technology finite element models are making an important contribution to understand the complex structure of spinal components along with allied functionality, designing and application of spinal instrumentations at preliminary design stage. This paper aimed to review the past and recent studies to describe the biomechanical aspects of various spinal implants. The literatures were grouped and reviewed in accordance to instrumentation category and their functionality in the spinal column at respective locations.
Collapse
Affiliation(s)
- Pushpdant Jain
- School of Mechanical Engineering, VIT Bhopal University, Bhopal-Indore Highway Kothrikalan, Sehore Madhya Pradesh - 466114, India
| | | | | | | |
Collapse
|