1
|
Papadopoulou M, Karavasilis E, Christidi F, Argyropoulos GD, Skitsa I, Makrydakis G, Efstathopoulos E, Zambelis T, Karandreas N. Multimodal Neurophysiological and Neuroimaging Evidence of Genetic Influence on Motor Control: A Case Report of Monozygotic Twins. Cogn Behav Neurol 2021; 34:53-62. [PMID: 33652469 DOI: 10.1097/wnn.0000000000000262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/06/2020] [Indexed: 11/26/2022]
Abstract
Considering genetic influence on brain structure and function, including motor control, we report a case of right-handed monozygotic twins with atypical organization of fine motor movement control that might imply genetic influence. Structural and functional organization of the twins' motor function was assessed using transcranial magnetic stimulation (TMS), fMRI with a motor-task paradigm, and diffusion tensor imaging (DTI) tractography. TMS revealed that both twins presented the same unexpected activation and inhibition of both motor cortices during volitional unilateral fine hand movement. The right ipsilateral corticospinal tract was weaker than the left contralateral one. The motor-task fMRI identified activation in the left primary motor cortex and bilateral secondary motor areas during right-hand (dominant) movement and activation in the bilateral primary motor cortex and secondary motor areas during left-hand movement. Based on DTI tractography, both twins showed a significantly lower streamline count (number of fibers) in the right corticospinal tract compared with a control group, which was not the case for the left corticospinal tract. Neither twin reported any difficulty in conducting fine motor movements during their activities of daily living. The combination of TMS and advanced neuroimaging techniques identified an atypical motor control organization that might be influenced by genetic factors. This combination emphasizes that activation of the unilateral uncrossed pyramidal tract represents an alternative scheme to a "failure" of building a standard pattern but may not necessarily lead to disability.
Collapse
Affiliation(s)
| | - Efstratios Karavasilis
- Second Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- Department of Physiotherapy, University of West Attica, Athens, Greece
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios D Argyropoulos
- Second Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioulia Skitsa
- DNA Analysis Laboratory, Athens Legal Medicine Service Hellenic Ministry of Justice, Athens, Greece
| | - George Makrydakis
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- Second Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Zambelis
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Karandreas
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Welniarz Q, Dusart I, Gallea C, Roze E. One hand clapping: lateralization of motor control. Front Neuroanat 2015; 9:75. [PMID: 26082690 PMCID: PMC4451425 DOI: 10.3389/fnana.2015.00075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Lateralization of motor control refers to the ability to produce pure unilateral or asymmetric movements. It is required for a variety of coordinated activities, including skilled bimanual tasks and locomotion. Here we discuss the neuroanatomical substrates and pathophysiological underpinnings of lateralized motor outputs. Significant breakthroughs have been made in the past few years by studying the two known conditions characterized by the inability to properly produce unilateral or asymmetric movements, namely human patients with congenital “mirror movements” and model rodents with a “hopping gait”. Whereas mirror movements are associated with altered interhemispheric connectivity and abnormal corticospinal projections, abnormal spinal cord interneurons trajectory is responsible for the “hopping gait”. Proper commissural axon guidance is a critical requirement for these mechanisms. Interestingly, the analysis of these two conditions reveals that the production of asymmetric movements involves similar anatomical and functional requirements but in two different structures: (i) lateralized activation of the brain or spinal cord through contralateral silencing by cross-midline inhibition; and (ii) unilateral transmission of this activation, resulting in lateralized motor output.
Collapse
Affiliation(s)
- Quentin Welniarz
- Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130, Sorbonne Universités, UPMC UM119 Paris, France ; Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France
| | - Isabelle Dusart
- Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130, Sorbonne Universités, UPMC UM119 Paris, France
| | - Cécile Gallea
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France
| | - Emmanuel Roze
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France ; Département des Maladies du Système Nerveux, AP-HP, Hôpital Pitié Salpêtrière Paris, France
| |
Collapse
|
3
|
Mirror movement-like defects in startle behavior of zebrafish dcc mutants are caused by aberrant midline guidance of identified descending hindbrain neurons. J Neurosci 2014; 34:2898-909. [PMID: 24553931 DOI: 10.1523/jneurosci.2420-13.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mirror movements are involuntary movements on one side of the body that occur simultaneously with intentional movements on the contralateral side. Humans with heterozygous mutations in the axon guidance receptor DCC display such mirror movements, where unilateral stimulation results in inappropriate bilateral motor output. Currently, it is unclear whether mirror movements are caused by incomplete midline crossing and reduced commissural connectivity of DCC-dependent descending pathways or by aberrant ectopic ipsilateral axonal projections of normally commissural neurons. Here, we show that in response to unilateral tactile stimuli, zebrafish dcc mutant larvae perform involuntary turns on the inappropriate body side. We show that these mirror movement-like deficits are associated with axonal guidance defects of two identified groups of commissural reticulospinal hindbrain neurons. Moreover, we demonstrate that in dcc mutants, axons of these identified neurons frequently fail to cross the midline and instead project ipsilaterally. Whereas laser ablation of these neurons in wild-type animals does not affect turning movements, their ablation in dcc mutants restores turning movements. Thus, our results demonstrate that in dcc mutants, turns on the inappropriate side of the body are caused by aberrant ipsilateral axonal projections, and suggest that aberrant ipsilateral connectivity of a very small number of descending axons is sufficient to induce incorrect movement patterns.
Collapse
|
4
|
Gallea C, Popa T, Hubsch C, Valabregue R, Brochard V, Kundu P, Schmitt B, Bardinet E, Bertasi E, Flamand-Roze C, Alexandre N, Delmaire C, Méneret A, Depienne C, Poupon C, Hertz-Pannier L, Cincotta M, Vidailhet M, Lehericy S, Meunier S, Roze E. RAD51 deficiency disrupts the corticospinal lateralization of motor control. Brain 2013; 136:3333-46. [DOI: 10.1093/brain/awt258] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
5
|
Kim HS, Jang SH, Lee ZI, Lee MY, Cho YW, Kweon M, Son SM. Therapeutic benefit of repetitive transcranial magnetic stimulation for severe mirror movements: A case report. Neural Regen Res 2013; 8:569-74. [PMID: 25206701 PMCID: PMC4146057 DOI: 10.3969/j.issn.1673-5374.2013.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/11/2013] [Indexed: 12/02/2022] Open
Abstract
Congenital mirror movements retard typical hand functions, but no definite therapeutic modality is available to treat such movements. We report an 8-year-old boy with severe mirror movements of both hands. His mirror movements were assessed using the Woods and Teuber grading scale and his fine motor skills were also evaluated by the Purdue Pegboard Test. A 2-week regimen of repetitive transcranial magnetic stimulation produced markedly diminished mirror movement symptoms and increased the fine motor skills of both hands. Two weeks after the completion of the regimen, mirror movement grades had improved from grade 4 to 1 in both hands and the Purdue Pegboard Test results of the right and left hands also improved from 12 to 14 or 13. These improvements were maintained for 1 month after the 2-week repetitive transcranial magnetic stimulation regimen. After 18 months, the mirror movement grade was maintained and the Purdue Pegboard test score had improved to 15 for the right hand while the left hand score was maintained at 13. This occurred without any additional repetitive transcranial magnetic stimulation or other treatment. These findings suggest that repetitive transcranial magnetic stimulation for this patient had a therapeutic and long-term effect on mirror movements.
Collapse
Affiliation(s)
- Han Sun Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | - Zee-Ihn Lee
- Department of Pediatrics, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | - Mi Young Lee
- Department of Physical Medicine and Rehabilitation, Daegu Fatima Hospital, Daegu 701-600, Republic of Korea
| | - Yun Woo Cho
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | - Migyoung Kweon
- Department of Physical therapy, College of Health and Therapy, Daegu Haany University, Gyeongsan 712-751, Republic of Korea
| | - Su Min Son
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| |
Collapse
|
6
|
Peng J, Charron F. Lateralization of motor control in the human nervous system: genetics of mirror movements. Curr Opin Neurobiol 2012; 23:109-18. [PMID: 22989473 DOI: 10.1016/j.conb.2012.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 08/21/2012] [Accepted: 08/26/2012] [Indexed: 01/10/2023]
Abstract
Mirror movements (MM) are a peculiar motor defect in humans where the intended unilateral movement of a body part results in involuntary movement of the same body part on the opposite side. This loss in the lateralization of motor control can be caused by genetic mutations that result in an aberrant projection of the corticospinal tract. However, recent evidence suggests that the same genes controlling corticospinal tract development also play roles in the development of other circuits involved in motor control, including local spinal circuits and the corpus callosum. These recent studies in humans and mouse models of MM will be discussed to provide an overview of the basis of MM and the molecular mechanisms underlying the lateralization of motor control.
Collapse
Affiliation(s)
- Jimmy Peng
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
7
|
Addamo PK, Farrow M, Bradshaw JL, Georgiou-Karistianis N. Relative or absolute? Implications and consequences of the measures adopted to investigate motor overflow. J Mot Behav 2011; 43:203-12. [PMID: 21480026 DOI: 10.1080/00222895.2011.561376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Motor overflow is involuntary overt movement or covert muscle activity that cooccurs with voluntary movement. Overflow is present in several pathological conditions, as well as in neurologically healthy children and older adults, and can be induced in healthy young adults under effortful conditions. This motor phenomenon may provide insight into the underlying mechanisms and kinetic characteristics of voluntary and involuntary motor control in various populations. Although often measured behaviorally using force transduction techniques, different methods of calculating and presenting such overflow data have resulted in seemingly contradictory findings, with limited discussion of the advantages and limitations of different approaches. In this article, the authors examined the relevant literature to highlight significant methodological considerations for authors and readers conducting or appraising this type of research. Issues regarding the interpretation and reporting of findings are also discussed. Researchers are encouraged to continue using behavioral measures to create well-defined variables that enable the study of the kinematic characteristics of overflow, as these may offer promising new ways forward in better characterizing and understanding this intriguing movement phenomenon.
Collapse
Affiliation(s)
- Patricia K Addamo
- Experimental Neuropsychology Research Unit, School of Psychology and Psychiatry, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|